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Abstract

The text of clinical notes can be a valuable
source of patient information and clinical as-
sessments. Historically, the primary approach
for exploiting clinical notes has been informa-
tion extraction: linking spans of text to con-
cepts in a detailed domain ontology. How-
ever, recent work has demonstrated the poten-
tial of supervised machine learning to extract
document-level codes directly from the raw
text of clinical notes. We propose to bridge
the gap between the two approaches with two
novel syntheses: (1) treating extracted con-
cepts as features, which are used to supple-
ment or replace the text of the note; (2) treating
extracted concepts as labels, which are used to
learn a better representation of the text. Un-
fortunately, the resulting concepts do not yield
performance gains on the document-level clin-
ical coding task. We explore possible explana-
tions and future research directions.

1 Introduction

Clinical decision support from raw-text notes taken
by clinicians about patients has proven to be a
valuable alternative to state-of-the-art models built
from structured EHRs. Clinical notes contain valu-
able information that the structured part of the
EHR does not provide, and do not rely on expen-
sive and time-consuming human annotation (Torres
et al., 2017; American Academy of Professional
Coders, 2019). Impressive advances using deep
learning have allowed for modeling on the raw text
alone (Mullenbach et al., 2018; Rios and Kavuluru,
2018a; Baumel et al., 2018). However, there exist
some shortcomings to these approaches: clinical
text is noisy, and often contains heavy amounts of
abbreviations and acronyms, a challenge for ma-
chine reading (Nguyen and Patrick, 2016). Addi-
tionally, rare words replaced with "UNK" tokens
for better generalization may be crucial for predict-
ing rare labels.
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Clinical concept extraction tools abstract over
the noise inherent in surface representations of
clinical text by linking raw text to standardized
concepts in clinical ontologies. The Apache clin-
ical Text Analysis Knowledge Extraction System
(cTAKES, Savova et al., 2010) is the most widely-
used such tool, with over 1000 citations. Based on
rules and non-neural machine learning methods and
engineered for almost a decade, cTAKES provides
an easily-obtainable source of human-encoded do-
main knowledge, although it cannot leverage deep
learning to make document-level predictions.

Our goal in this paper is to maximize the predic-
tive power of clinical notes by bridging the gap
between information extraction and deep learn-
ing models. We address the following research
questions: how can we best leverage tools such as
cTAKES on clinical text? Can we show the value
of these tools in linking unstructured data to struc-
tured codes in an existing ontology for downstream
prediction?

We explore two novel hybrids of these meth-
ods: data augmentation (augmenting text with ex-
tracted concepts) and multi-task learning (learning
to predict the output of cTAKES). Unfortunately,
in neither case does cTAKES improve downstream
performance on the document-level clinical cod-
ing task. We probe this negative result through an
extensive series of ablations, and suggest possible
explanations, such as the lack of word variation
captured through concept assignment.

2 Related Work

Clinical Ontologies Clinical concept ontologies
facilitate the maintenance of EHR systems with
standardized and comprehensive code sets, allow-
ing consistency across healthcare institutions and
practitioners. The Unified Medical Language Sys-
tem (UMLS) (Lindberg et al., 1993) maintains
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428
Heart Failure

428.0 428.1 428.2
Congestive heart failure | | Left heart failure Systolic heart failure

428.20 428.21 42822
Unspecified | | Acute systolic heart failure | | Chronic systolic heart failure| ssss

Figure 1: A subtree of the ICD ontology (figure from
Singh et al., 2014).

a standardized vocabulary of clinical concepts,
each of which is assigned a concept unique iden-
tifier (CUI). The Systematized Nomenclature of
Medicine- Clinical Terms (SNOMED-CT) (Don-
nelly, 2006) and the International Classification
of Diseases (ICD) (National Center for Health
Statistics, 1991) build off of the UMLS and pro-
vide structure by linking concepts based on their
relationships. The SNOMED ontology has over
340,000 active concepts, ranging from fine-grained
("Adenylosuccinate lyase deficiency") to extremely
general ("patient"). The ICD ontology is narrower
in scope, with around 13,000 diagnosis and pro-
cedure codes used for insurance billing. Unlike
SNOMED, which has an unconstrained graph struc-
ture, ICD9 is organized into a top-down hierarchy
of specificity (see Figure 1).

Clinical Information Extraction Tools There
are several tools for extracting structured informa-
tion from clinical text. Popular types of informa-
tion extraction include named-entity recognition,
identifying words or phrases in the text which align
with clinical concepts, and ontology mapping, la-
belling the identified words and phrases with their
respective clinical codes from an existing ontol-
ogy.! Of the tools which perform both of these
tasks, the open-source Apache cTAKES is used
in over 50% of recent work (Wang et al., 2017),
outpacing competitors such as MetaMap (Aronson,
2001) and MedLEE (Friedman, 2000).

cTAKES utilizes a rule-based system for per-
forming ontology mapping, via a UMLS dictionary
lookup on the noun phrases inferred by a part-of-
speech tagger. Taking raw text as input, the soft-
ware outputs a set of UMLS concepts identified in

'Ontology mapping also serves as a form of text normal-
ization.

Figure from https://healthnlp.github.io/
examples/.
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the text and their positions, with functionality to
map them to other ontologies such as SNOMED
and ICD9. It is highly scalable, and can be de-
ployed locally to avoid compromising identifiable
patient data. Figure 2 shows an example cTAKES
annotation on a clinical record.

Clinical Named-Entity Recognition (NER)
Recent work has focused on developing tools
to replace cTAKES in favor of modern neural
architectures such as Bi-LSTM CRFs (Boag
et al., 2018; Tao et al., 2018; Xu et al., 2018;
Greenberg et al., 2018), varying in task definition
and evaluation. = Newer approaches leverage
contextualized word embeddings such as ELMo
(Zhu et al., 2018; Si et al., 2019). In contrast, we
focus on maximizing the power of existing tools
such as cTAKES. This approach is more practical
in the near-term, because the adoption of new
NER systems in the clinical domain is inhibited
by the amount of computational power, data, and
gold-label annotations needed to build and train
such token-level models, as well as considerations
for the effectiveness of domain transfer and a
necessity to perform annotations locally in order to
protect patient data. Newer models do not provide
these capabilities.

NER in Text-based Models Prior works use the
output of cTAKES as features for disease- and
drug-specific tasks, but either concatenate them
as shallow features, or substitute them for the text
itself (see Wang et al. (2017) for a literature re-
view). Weng et al. (2017) incorporate the output
of cTAKES into their input feature vectors for the
task of predicting the medical subdomain of clini-
cal notes. However, they use them as shallow fea-
tures in a non-neural setting, and combine cTAKES
annotations with the text representations by con-
catenating the two into one larger feature vector.
In contrast, we propose to learn dense neural con-
cept embedding representations, and integrate the
concepts in a learnable fashion to guide the rep-
resentation learning process, rather than simply
concatenating them or using them as a text replace-
ment. We additionally focus on a more challenging
task setting.

Boag and Kané (2017) augment a Word2Vec
training objective to predict clinical concepts. This
work is orthogonal to ours as it is an unsupervised
"embedding pretraining" approach rather than an
end-to-end supervised model.
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Figure 2: An example of cTAKES annotation output with part-of-speech tags and UMLS CUISs for named entities.”

Automated Clinical Coding The automated
clinical coding task is to predict from the raw text
of a hospital discharge summary describing a pa-
tient encounter all of the possible ICD9 (diagnosis
and procedure) codes which a human annotator
would assign to the visit. Because these annotators
are trained professionals, the ICD codes assigned
serve as a natural label set for describing a patient
record, and the task can be seen as a proxy for
a general patient outcome or treatment prediction
task. State-of-the-art methods such as CAML (Mul-
lenbach et al., 2018) treat each label prediction as
a separate task, performing many binary classifi-
cations over the many-thousand-dimensional label
space. The model is described in more detail in the
next section.

The label space is very large (tens of thousands
of possible codes) and frequency is long-tailed.
Rios and Kavuluru (2018b) find that CAML per-
forms weakly on rare labels.

3 Problem Setup

Task Notation A given discharge summary is
represented as a matrix X € R%*N 3 The set of
diagnosis and procedure codes assigned to the visit
is represented as the one-hot vector y € {0, 1}%.
The task can be framed as L = |£| binary classifi-
cations: predict y; € {0, 1} for code [ in labelspace
L.

Data We use the publically-available MIMIC-III
dataset, a collection of deidentified discharge sum-
maries describing patient stays in the Beth Israel
Deaconess Medical Center ICU between 2001 and
2012 (Johnson et al., 2016; Pollard and Johnson,
2016). Each discharge summary has been tagged
with a set of ICD9 codes. See Figure 3 for an exam-
ple of a record, and Appendix A for a description
of the dataset and preprocessing.

Concept Annotation We run cTAKES on the
discharge summaries (described in Appendix B).

3We use notation for a single instance throughout.
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Results on the extracted concepts are presented in
Table 1. Note the difference in number of anno-
tations provided by using the SNOMED ontology
compared to ICD9.#

ICD9Y

Total concepts extracted 1,005,756
Mean # extracted concepts per document 19.10
Mean % words assigned a concept per document 1.26%
SNOMED

Total concepts extracted 28,090,075
Mean # extracted concepts per document 532.76
Mean % words assigned a concept per document 35.21%
Mean # tokens per document 1513.00

Table 1: Descriptive Statistics on concept extraction for
the MIMIC-III corpus.

Base model We evaluate against CAML (Mul-
lenbach et al., 2018), a state-of-the-art text-based
model for the clinical coding task. The model lever-
ages a convolutional neural network (CNN) with
per-label attention to predict the combination of
codes to assign to a diven discharge summary. Ap-
plying convolution over X results in a convolved
input representation H € R%*N (with d. < d,) in
which the column-dimensionality NV is preserved.
H is then used to predict y, by attentional pooling
over the columns.

We include implementation details of all meth-
ods, including hyperparameters and training, in
Appendix A.

4 Approach 1: Augmentation Model

One limitation of learning-based models is their
tendency to lose uncommon words to "UNK" to-
kens, or to suffer from poor representation learning
for them. We hypothesize that rare words are impor-
tant for predicting rare labels, and that text-based

“Preliminary experiments with sparser ontologies
(RXNORM) were not promising, leading us to choose these
two ontologies based on their annotation richness (SNOMED)
and direct relation to the prediction task (ICD9).
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Sample record:

Admission Date: (#2111 E=E=2"]
Date of Birth: Sex: F

Service:

HISTORY OF PRESENT ILLNESS:

Discharge Date:

MICU and then to [**Doctor Last Name **] Medicine

This is an 8l-year-old female
with a history of emphysema (not on home 02), who presents...

[**2118-6-14**] | 519.1: ‘*Other disease..
491.21: ‘Obstructive ..
518.81: ‘Acute respir..

486: ‘Pneumonia, orga..
‘276.1: ‘Hyposmolality..
244.9: ‘Unspecified h.
31.99: ‘Other ocperati..

Figure 3: An example clinical discharge summary and associated ICD codes.

models may be improved by augmenting word em-
beddings with concept embeddings as a means to
strengthen representations of rare or unseen words.
We additionally hypothesize that linking multiple
words to a shared concept via cTAKES annotation
will reduce textual noise by grouping word variants
to a shared representation in a smaller and more
frequently updated parameter space.

4.1 Method

Given a discharge summary containing words
wi, W, ..., wy € W?* and an embedding func-

tion v : W — R%, we construct input ma-
rix X = [z7, 2L ... 2}] € Re*N as column-

stacked word embeddings, where x,, = y(wy,).
We additionally assume a code embedding func-
tion ¢ : C — R% and a set of annotated codes
for a given document ¢y, cs,...,cy € C*, where
C is the full codeset for the ontology used to anno-
tate the document, and ¢,, is the code annotated for
word token w,,, if one exists (else ¢, = &, by abuse
of notation). We construct a representation for each
document, D, of the same dimensionality as X,
by learning one representation leveraging both the
concept and word embedding at each position:
For token n,

dn :5wn,cn¢(cn) + (1 - 51071,0")33717 (1)

Buwn.cn € [0,1] is a learned parameter specific to
each observed word+concept pair, including UNK
tokens.” Intuitively, if there is a concept associ-
ated with index n, a concept embedding ¢(c;,) is
generated and a linear combination of the word
and concept embedding is learned, using a learned

>We experimented with models in which this gate was
computed element-wise and shared by all word+concept pairs
(e.g. by passing @, and ¢(c,,) through a linear layer or sim-
ple multi-layer perceptron to compute d,,), but this did not
improve performance.
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parameter specific to that word+concept pair.® We
fix Buw,,cn=z = 0, which reverts to the word em-
bedding when there is no concept assigned.

We additionally propose a simpler version of this
method, full replace, in which word embeddings
are completely replaced with concept embeddings
if they exist (i.e. Bu, ¢, = 1, Ywy, ¢, # ). In
this formulation, if a concept spans multiple words,
all of those words are represented by the same vec-
tor. Conversely, the CAML baseline corresponds
to a model in which 3, ., = 0, Ywy,, c,.

4.2 Evaluation Setup

Metrics In addition to the metrics reported in
prior work, we report average precision score (AP),
which is a preferred metric to AUC for imbal-
anced classes (Saito and Rehmsmeier, 2015; Davis
and Goadrich, 2006). We report both macro- and
micro- metrics, with the former being more favor-
able toward rare labels by weighting all classes
equally. We additionally focus on the precision-at-
k (P@Fk) metric, representing the fraction of the
k highest-scored predicted labels that are present
in the ground truth. Both macro-metrics and P@Fk
are useful in a computer-assisted coding use-case,
where the desired outcome is to correctly identify
needle-in-the-haystack labels as opposed to more
frequent ones, and to accurately suggest a small
subset of codes with the highest confidence as an-
notation suggestions (Mullenbach et al., 2018).

Baselines Along with CAML, we evaluate on a
raw codes baseline where the ICD9 annotations
generated by cTAKES cy, ¢, ..., cy are used di-
rectly as the document-level predictions. Formally,

®A single token may have multiple concept annotations
associated with it. We experiment with an attention mecha-
nism for this case (see Appendix C), but find a heuristic of
arbitrarily selecting the first concept assigned to each word
performs just as well.



Ye, = 1 whenc, € Landc, # @, for all n in
integers 1 to V.

4.3 Results

We present results on the test set in Table 2. Over-
all, the concept-augmented models are indistin-
guishable from the baseline, and there is no sig-
nificant difference between annotation type or re-
combination method, although the linear combi-
nation method with ICD9 annotations is the best
performing and rivals the baseline.

Following the negative results for our initial at-
tempt to augment word embeddings with concept
embeddings, we tried two alternative strategies:

e We concatenated the ICD9 annotations
with two other ontologies: RXNORM and
SNOMED. While this led to greater coverage
over the text (with slightly more than one third
of the tokens in the text receiving correspond-
ing concept annotations), it did not improve
downstream performance.

e Prior work has demonstrated that leveraging
clinical ontological structure can allow mod-
els to learn more effective code embeddings
in fully structured data models (Singh et al.,
2014; Choi et al., 2017). We applied the
methodology of Choi et al. (2017) on both
the ICD9 and SNOMED annotations, but this
did not improve performance. For more de-
tails, see Appendix D.

4.4 Error Analysis

Error analysis of the word-to-concept mapping pro-
duced by cTAKES exposes limitations of our initial
hypothesis that cTAKES mitigates word-level vari-
ation by assigning multiple distinct word phrases
to shared concepts. Figure 4 demonstrates that the
vast majority of the ICD9 concepts in the corpus are
assigned to only one distinct word phrase, and the
same results are observed for SNOMED concepts.
This may explain the virtually indistinguishable
performance of the augmentation models from the
baseline, because randomly-initialized word and
concept embeddings which are observed in strictly
identical contexts should theoretically converge to
the same representation.’

*These metrics were computed by randomly selecting k
elements from those predicted, since there are no sorted prob-
abilities associated with this baseline. For the same reasons
we cannot report AUC or AP metrics.

Simulations of the augmentation method under a con-
trived setting with more concept annotations per note as well
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Figure 4: A histogram showing the distribution of
ICD9 concepts in C grouped according to the number
of unique word phrases in the MIMIC-III corpus asso-
ciated with each. We observe the same trend when plot-
ting SNOMED annotations.

The raw codes baseline performs poorly, which
aligns with the observation that cTAKES codes as-
signed to a discharge summary often do not have
appropriate or proportional levels of specificity (for
example, the top-level ICD9 code 428 Heart Fail-
ure’ may be assigned by cTAKES, but the gold-
label code is *428.21 Acute Systolic Heart Failure’).
This may also contribute to the negative result of
the proposed model.

Figure 6 (included in the Appendix) illustrates
prediction performance as a function of code fre-
quency in the training set, showing that the pro-
posed model does not improve upon the baseline
for rare or semi-rare codes.®

4.5 Ablations

We separate and analyze the two distinct compo-
nents of cTAKES’ annotation ability for further
analysis: 1) how well cTAKES recognizes the lo-
cation of concepts in the text (VER), and 2) how
accurately cTAKES maps the recognized positions
to the correct clinical concepts (ontology mapping).
Annotation sparsity (NER) and/or cTAKES map-
ping error may lend the raw text on its own equally
useful, as observed in Table 2. We investigate these
hypotheses here. We evaluate performance of abla-
tions relative to the augmentation model and base-
line to determine whether each component individ-

as more unique word phrases mapping to a single concept
demonstrate solid performance increases over the baseline.
This provides supporting evidence that the findings presented
in this section may be the cause of the negative result rather
than our proposed architecture.

8We use the following grouping criteria: rare codes have
50 or fewer occurrences in the training data, semi-rare have
between 50 and 1000, and common have more than 1000.
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AUC AP F1 R@k P@k
Model Macro Micro | Macro Micro | Macro Micro | 8 15 8 15
Baseline (Mullenbach et al., 2018) | 0.8892 0.9846 | 0.2492 0.5426 | 0.0796 0.5421 | 0.3731 0.5251 | 0.7120 0.5616
Baseline (raw codes) n/a* n/a* n/a* n/a* 0.0189 0.0877 | 0.0534* 0.0640* | 0.1132* 0.0747*
Augmentation with ICD9
full replace 0.8846 0.9838 | 0.2242 0.5329 | 0.0691 0.5363 | 0.3688 0.5189 | 0.7048  0.5564
linear combination 0.8914 0.9849 | 0.2467 0.5427 | 0.0763 0.5419 | 0.3732  0.5267 | 0.7121 0.5634
Augmentation with SNOMED
full replace 0.83744 0.9830 | 0.2221 0.5271 | 0.0724 0.5326 | 0.3675 0.5177 | 0.7022  0.5547
linear combination 0.8781 0.9835 | 0.2238 0.533 | 0.0692 0.5357 | 0.3687 0.5194 | 0.7042  0.5563

Table 2: Test set results using the augmentation methods.

ually adds value. The ablations are:

1. Dummy Concepts We replace all word embed-
dings annotated by cTAKES with 0-vectors,
and only use remaining embeddings for pre-
diction. If this alternative shows similar per-
formance to the baseline, then we conclude
that the positions in the text annotated by
cTAKES (NER) are not valuable for predic-
tion performance.

2. Concepts Only We test the complement by re-
placing all word embeddings not annotated
by cTAKES with a 0-vector. In contrast to
Dummy Concepts, strong performance of this
approach relative to the baseline will allow us
to conclude that the positions in the text anno-
tated by cTAKES are valuable for prediction
performance.

3. Concepts Only, Concept Embeddings We re-
place all word embeddings not annotated by
cTAKES with a 0-vector, and then replace all
remaining word embeddings with their con-
cept embedding. If this model performs better
than Concepts Only, it will demonstrate the
strength of cTAKES’ ontology mapping com-
ponent.

Note that Dummy Concepts and Concepts Only
are the decomposition of the baseline CAML. Sim-
ilarly, Dummy Concepts and Concepts Only, Con-
cept Embeddings are the decomposition of the full-
replace augmentation model presented in Section
4.

Results Results are presented in Tables 3 and
4. Results are consistent with previous experi-
ments in that augmentation with concept anno-
tations does not improve performance. For both
ontologies, neither the Dummy Concepts nor the
Concepts Only models outperform the full-text

models (in which both token representations are
used). However, there are some interesting findings.
Using SNOMED annotations, performance of the
Concepts Only model is significantly higher than
Dummy Concepts and very close to full-text model
performance. This finding is strengthened by con-
sidering the concept coverage discussed in Table
1: the Concepts Only model achieves comparable
performance receiving only about 35% (1% in the
ICD?9 setting) of the input tokens which the full-
text baseline receives, and the Dummy Concepts
Model receives about 65% (99% in the ICD9 set-
ting). Thus, a significant proportion of downstream
prediction performance can be attributed a small
portion of the text which is recognized by cTAKES
in both the SNOMED and ICD?9 settings, indicating
the strength of cTAKES’ NER component.

5 Approach 2: Multi-task Learning

We present an alternative application of cTAKES
as a form of distant supervision. Our approach is
inspired by recent successes in multi-task learning
for NLP which demonstrate that cheaply-obtained
labels framed as an auxiliary task can improve per-
formance on downstream tasks (Swayamdipta et al.,
2018; Ruder, 2017; Zhang and Weiss, 2016). We
propose to predict clinical information extraction
system annotations as an auxiliary task, and share
lower-level representations with the clinical coding
task through a jointly-trained model architecture.
We hypothesize that domain-knowledge embed-
ded in cTAKES will guide the shared layers of the
model architecture towards a more optimal repre-
sentation for the clinical coding task.

We formulate the auxiliary task as follows: given
each word-embedding or word-embedding span
in the input which cTAKES has assigned a code,
can the model predict the code assigned to it by
cTAKES?
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Token Representation AUC AP F1 R@k P@k
Model Concept Match No Match | Macro Micro | Macro Micro | Macro Micro | 8 15 8 15
Baseline (Mullenbach et al., 2018) Word Word 0.8892 0.9846 | 0.2492 0.5426 | 0.0796 0.5421 | 0.3731 0.5251 | 0.7120 0.5616
Dummy Concepts 0 Word 0.8876 0.9839 | 0.2119 0.5236 | 0.0732 0.5261 | 0.3634 0.5141 | 0.6943 0.5506
Concepts Only Word 0 0.7549  0.9626 | 0.0538 0.2487 | 0.0080 0.1961 | 0.2063 0.2880 | 0.4196 0.3197
Concepts Only, Concept Embeddings | Concept 0 0.7534  0.9620 | 0.0552 0.2464 | 0.0086 0.1972 | 0.2058 0.2855 | 0.4200 0.3166
Augmentation Model (full replace) Concept Word 0.8846 0.9838 | 0.2242 0.5329 | 0.0691 0.5363 | 0.3688 0.5189 | 0.7048 0.5564

Table 3: Test set results of ablation experiments on the MIMIC-III dataset, using ICD9 concept annotations.

Token Representation AUC AP F1 R@k P@k
Model Concept Match  No Match ‘ Macro Micro | Macro Micro | Macro  Micro ‘ 8 15 ‘ 8 15
Baseline (Mullenbach et al., 2018) Word Word 0.8892 0.9846 | 0.2492 0.5426 | 0.0796 0.5421 | 0.3731 0.5251 | 0.7120 0.5616
Dummy Concepts 0 Word 0.8472  0.9780 | 0.1461 0.4375 | 0.0413 0.4426 | 0.3202 0.4439 | 0.6234 0.4804
Concepts Only Word 0 0.8736 0.9817 | 0.2059 0.4518 | 0.0515 0.4295 | 0.3278 0.4583 | 0.6300 0.4903
Concepts Only, Concept Embeddings | Concept 0 0.8739 0.9813 | 0.2019 0.4451 | 0.0519 0.4258 | 0.3247 0.4538 | 0.6254 0.4851
Augmentation Model (full replace) Concept Word 0.8744 0.9830 | 0.2221 0.5271 | 0.0724 0.5326 | 0.3675 0.5177 | 0.7022 0.5547

Table 4: Test set results of ablation experiments on the MIMIC-III dataset, using SNOMED concept annotations.

5.1 Method

We annotate the set of non-null ground-truth codes
output by cTAKES for document ¢ in the training
data as {(CLZ‘J, Ci,l), (a@g, 01'72), ce (ai,M7 Ci,M)},
where each anchor a; ,,, indicates the span of tokens
in the text for which concept ¢; ,,, is annotated, and
Cim 7& .

The loss term of the model is augmented to in-
clude the multi-class cross-entropy of predicting
the correct code for all annotated spans in the train-
ing batch:

I
L =" BCE(y; 1)
i=1
Z{:l Zi\n/llzl - logp(ci,m | ai,m)
Zz‘lzl M;

where BC'E(y;, y;) is the standard (binary cross-
entropy) loss from the baseline for the clinical
coding task, p(¢im | @im) is the probability as-
signed by the auxiliary model to the true cTAKES-
annotated concept given word span a; ,, as input, A
is the hyperparameter to tradeoff between the two
objectives, and I is the number of instances in the
batch.

Because we use the auxiliary task as a “scaf-
fold” (Swayamdipta et al., 2018) for transferring
domain knowledge encoded in cTAKES’ rules into
the learned representations for the clinical coding
task, we must only run cTAKES and compute a for-
ward pass through the auxiliary module at training
time. At test-time, we evaluate only on the clini-
cal coding task, so the time complexity of model
inference remains the same as the baseline, an ad-
vantage of this architecture.

+ A
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Figure 5: The proposed architecture (for prediction on
a single document, ¢, and auxiliary supervision on a sin-
gle annotation, m). The bottom box illustrates the pre-
convolution model, and the top box post-convolution.
The architecture on the left is the baseline.

We model p(¢;m | aim) via a multi-layer per-
ceptron with a Softmax output layer to obtain a
distribution over the codeset, C. We additionally
experiment with a linear layer variant to combat
overfitting on the auxiliary task by reducing the ca-
pacity of this module. The input to this module is a
single vector, z; ,, € R, constructed by selecting
the maximum value over s word embeddings for
each dimension, where s is the length of the input
span.” To facilitate information transfer between
the clinical coding and auxiliary task, we experi-
ment with tying both the randomly-initialized em-
bedding layer, X, and a higher-level layer of the

*While this is simple representation, we find that multi-
word concept annotations are rather rare, in which case z;
is equivalent to &; .



AUC AP F1 R@k P@k
Shared Features Auxiliary Model | Macro Micro | Macro Micro | Macro Micro | 8 15 8 15
Baseline (Mullenbach et al., 2018) | n/a 0.8892 0.9846 | 0.2492 0.5426 | 0.0796 0.5421 | 0.3731 0.5251 | 0.7120 0.5616
Pre-convolution MLP 0.8874 0.9839 | 0.2365 0.5390 | 0.0734 0.5376 | 0.3724 0.5235 | 0.7102 0.5597
Pre-convolution Linear Layer 0.8834 0.9838 | 0.2398 0.5412 | 0.0766 0.5414 | 0.3731 0.5265 | 0.7113 0.5633
Post-convolution MLP 0.7252  0.9619 | 0.0578 0.3002 | 0.0159 0.2966 | 0.2449 0.3417 | 0.4879 0.3748
Post-convolution Linear Layer 0.7562  0.9655 | 0.0606 0.3035 | 0.0123 0.2934 | 0.2461 0.3392 | 0.4900 0.3700

Table 5: Test set performance on the ICD9 coding task for A = 1 and using ICD9 annotations.

Tagging Accuracy
Shared Features | Auxiliary Model | After one epoch | After last epoch
Pre-convolution MLP 0.9343 0.9398
Pre-convolution | Linear Layer 0.8940 0.9400
Post-convolution | MLP 0.9102 0.9335
Post-convolution | Linear Layer 0.7524 0.9341

Table 6: Dev set performance on the auxiliary task for
A = 1 and using ICD9 annotations. Relatively high
task performance is achieved even after one epoch with
a simple model.

network (e.g. the outputs of the document-level
convolution layer H described in Section 3). See
Figure 5 for the model architecture.

5.2 Experiment and Results

Results are presented in Table 5 and Table 6 for
ICD9 annotations. Overall, the cTAKES span-
prediction task does more to hurt than help perfor-
mance on the main task. Tying the model weights at
a higher layer (post-convolution as opposed to pre-
convolution) results in worse performance, even
though the model fits the auxiliary task well. This
indicates either that the model may not have enough
capacity to adequately fit both tasks, or that the
cTAKES prediction task as formulated may actu-
ally misguide the clinical coding task slightly in
parameter search space.'?

We additionally remark that increasing the
weight of the auxiliary task generally lowers per-
formance on the clinical coding task, and tuning A
on the dev set does not result in more optimal per-
formance (we include results with A = 1 here; see
Table 9 in the Appendix). Notably, for even very
small values of A\, we achieve very high validation
accuracy on the auxiliary task. This performance
does not change with larger weightings, indicating
that the auxiliary task may not be difficult enough
to result in effective knowledge transfer.!!

1%We found similar results using SNOMED annotations.

""While the models in Sections 4 did not introduce new
hyperparameters to the baseline architecture, hyperparameters
for this architecture were selected by human intuition. Room
for future work includes more extensive tuning (see Table 8 in
Appendix A).

6 Conclusion

Integrating existing clinical information extraction
tools with deep learning models is an important
direction for bridging the gap between rule-based
and learning-based methods. We have provided an
analysis of the quality of the widely-used clinical
concept annotator cTAKES when integrated into
a state-of-the-art text-based prediction model. In
two settings, we have shown that cTAKES does not
improve performance over raw text alone on the
clinical coding task. We additionally demonstrate
through error analysis and ablation studies that the
amount of word variation captured and the differen-
tiation between the named-entity recognition and
ontology-mapping tasks may affect cTAKES’ ef-
fectiveness.

While automated coding is one application area,
the models presented here could easily be ex-
tended to other downstream prediction tasks such
as patient diagnosis and treatment outcome predic-
tion. Future work will include evaluating newly-
developed clinical NER tools with similar func-
tionalities to cTAKES in our framework, which
can potentially serve as a means to evaluate the
effectiveness of newer systems vis-a-vis cTAKES.
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A Experimental Details

Data Following Mullenbach et al. (2018), we
use the same train/test/validation splits for the
MIMIC-III dataset, and concatenate all supplemen-
tal text for a patient discharge summary into one
record. We use the authors’ provided data pro-
cessing pipeline'? to preprocess the corpus. The
vocubulary includes all words occurring in at least
3 training documents. See Table 7 for descriptive
statistics of the dataset.

We construct a concept vocabulary for embed-
ding initialization following the same specification
as the word vocabulary: any concept which does
not occur in at least 3 training documents is re-
placed with an UNK token. Details on the size of
the vocabulary can be found in Table 8.

# training documents 47,723
# test documents 3,372
# dev documents 1,631
Mean # tokens per document 1,513.0
Mean # labels per document  16.09
Total # labels (L) 8,921

Table 7: Dataset Descriptive Statistics.

Training We train with the same specifications
as Mullenbach et al. (2018) unless otherwise spec-
ified, with dropout performed after concept aug-
mentation for the models in Sections 4, and early
stopping with a patience of 10 epochs on the pre-
cision at 8 metric, for a maximum of 200 epochs
(note that in the multi-task learning models the stop-
ping criterion is only a function of performance on
the clinical coding task). Unlike previous work, we
reduce the batch size to 12 in order to allow each
batch to fit on a single GPU, and we do not use
pretrained embeddings as we find this improves
performance. All models are trained on a single
NVIDIA Titan X GPU with 12,189 MiB of RAM.

We port the optimal hyperparameters reported in
Mullenbach et al. (2018) to our experiments. With
more extensive hyperparameter tuning, we may ex-
pect to see a potential increase in the performance
of our models over the baseline. See Table 8 for
hyperparameters and other details specific to our
proposed model architectures. All neural models

Phttps://github.com/jamesmullenbach/
caml-mimic/blob/master/notebooks/
dataproc_mimic_III.ipynb
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are implemented using PyTorch'3, and built on the
open-source implementation of CAML. !

Parameter Value
Vocabulary Size 51,917
SNOMED Concept Vocabulary (C) Size 20,775
ICD9 Concept Vocabulary (C) Size 1,529
Embedding Size (d.) 100
Post-convolution Embedding Size (d.) 50
Dropout Probability 0.2
Learning Rate 0.0001
Attention Mechanism Hidden State Size 20
Attention Mechanism Activation Function ReLU
Auxiliary hidden layer size 700
Auxiliary activation function ReLU

Table 8: Model details.

B Concept Extraction

We build a custom dictionary from the UMLS
Metathesaurus that includes mappings from UMLS
CUIs to SNOMED-CT and ICD9-CM concepts.
We run the cTAKES annotator in advance of train-
ing for all 3 dataset splits using the resulting dic-
tionary, allowing us to obtain annotations for each
note in the dataset, and the positions of the anno-
tations in the raw text. Note that for the multi-
task learning experiments (Section 5), we only re-
quire annotations for training data. Annotating
the MIMIC-III datafiles using these specifications
takes between 4 and 5 hours for 3,000 discharge
summaries on a single CPU, and can be parallelized
for efficiency.

C Attention for Overlapping Concepts

We implement an attention mechanism (Bahdanau
et al., 2014) to compute a single concept embed-
ding #(C,) € R when C, = {c1,c2,...,cs}
represents a set of concepts annotated at position
n instead of a single concept. Intuitively, we want
to more heavily weight those concepts in the set
which have the most similarity to the surrounding
text. We define a context vector for position n as:

4d
Un = [xana Lp—1, Ln+1, mn+2] € R™

The context is defined as the concatenated word
embeddings surrounding position n. We use a con-
text size of n + / — 2, where 2 is a hyperparameter.
We choose to use a smaller value for computational
efficiency.

Bhttps://github.com/pytorch/pytorch

“https://github.com/jamesmullenbach/
caml-mimic
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A AUC AP F1 R@k P@k Auxiliary Tagging Accuracy
Macro  Micro ‘ Macro Micro | Macro Micro ‘ 8 15 ‘ 8 15 ‘ After one epoch  After last epoch
0.001 | 0.9002 0.9848 | 0.3129 0.5470 | 0.0704 0.5511 | 0.3902 0.5447 | 0.7164 0.5631 | 0.8888 0.9398
0.01 | 0.8954 0.9842 | 0.2885 0.5352 | 0.0636 0.5425 | 0.3843 0.5328 | 0.7088 0.5528 | 0.8938 0.9401
0.1 0.9000 0.9846 | 0.3145 0.5465 | 0.0689 0.5471 | 0.3909 0.5426 | 0.7183 0.5617 | 0.8940 0.9400
0.5 0.8934 0.9840 | 0.2892 0.5362 | 0.0624 0.5386 | 0.3844 0.5361 | 0.7089 0.5546 | 0.8941 0.9400
1 0.8975 0.9840 | 0.3087 0.5460 | 0.0668 0.5477 | 0.3886 0.5439 | 0.7169 0.5624 | 0.8940 0.9400
10 0.8979 0.9842 | 0.3122 0.5484 | 0.0678 0.5474 | 0.3908 0.5457 | 0.7182 0.5644 | 0.8940 0.9400
50 0.8939 0.9837 | 0.2982 0.5410 | 0.0638 0.5427 | 0.3855 0.5391 | 0.7111 0.5592 | 0.8940 0.9401
100 0.8913 0.9835 | 0.2943 0.5383 | 0.0632 0.5407 | 0.3849 0.5374 | 0.7096 0.5577 | 0.8940 0.9401
1000 | 0.8851 0.9827 | 0.2750 0.5260 | 0.0564 0.5309 | 0.3803 0.5290 | 0.7016 0.5491 | 0.8940 0.9401

Table 9: The effect of tuning A on dev set performance on the ICD9 coding task, for the pre-convolution model
with a linear auxiliary layer and ICD9 annotations. We select A = 1 for reporting test results; there isn’t a clear

value which produces strictly better performance.

We concatenate the word-context vector and
each concept embedding ¢; in C,, as [vy, ¢(¢;)] €
R and pass it through a multi-layer perceptron
to compute a similarity score: f : R%% — R!. An
attention score for each c; is computed as:

_eap(F(vn, 6(cy))
S exp(f(vn, d(cr))

This represents the relevance of the concept to
the surrounding word-context, normalized by the
other concepts in the set. A final concept embed-
ding #(C,,) € R% is computed as a linear combi-
nation of the concept vectors, weighted by their
attention scores:

J

J
$(Cn) =Y ;- d(cy)
j=1

D Leveraging Ontological Graph
Structure

Following the methodology of Choi et al. (2017),
we experiment with learning higher-quality concept
representations using the hierarchical structure of
the ICD9 ontology. We replace concept embedding
¢(cy,) with a learned linear combination of itself
and its parent concepts’ embeddings (see Figure 1).
For child concepts which are observed infrequently
or have poor representations, prior work has shown
that a trained model will learn to weight the par-
ent embeddings more heavily in the linear com-
bination. Because the parent concepts represent
more general concepts, they have most often been
observed more frequently in the training set and
have stronger representations. This also allows for
learned representations which capture relationships
between concepts. We refer the reader to Choi et al.
(2017) for details.

100 ! ! -
model
N meca
. caml

F1 on Test Set

common rare
Occurrence of Code in Training Data

semi_rare

Figure 6: F1 on Test Data based on Frequency of Codes
in Training Data, where the metric is defined ("'meca’
indicates the linear combination ICD9 augmentation
model).
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