
Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 263–275
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

263

From Balustrades to Pierre Vinken:
Looking for Syntax in Transformer Self-Attentions

David Mareček and Rudolf Rosa
Charles University, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
Malostranské náměstı́ 25, 118 00 Prague, Czech Republic

{marecek, rosa}@ufal.mff.cuni.cz

Abstract

We inspect the multi-head self-attention in
Transformer NMT encoders for three source
languages, looking for patterns that could have
a syntactic interpretation. In many of the at-
tention heads, we frequently find sequences of
consecutive states attending to the same po-
sition, which resemble syntactic phrases. We
propose a transparent deterministic method of
quantifying the amount of syntactic informa-
tion present in the self-attentions, based on
automatically building and evaluating phrase-
structure trees from the phrase-like sequences.
We compare the resulting trees to existing
constituency treebanks, both manually and by
computing precision and recall.

1 Introduction

The classical approach to Natural Language Pro-
cessing used to be complex pipelines, e.g. (Popel
and Žabokrtský, 2010; Manning et al., 2014; For-
cada et al., 2011), consisting of multiple steps
of linguistically motivated analyses, such as part-
of-speech tagging or syntactic parsing, using ex-
plicit intermediate representations (e.g. depen-
dency trees) to abstract over the underlying texts.

In recent years, this has changed with the intro-
duction of deep neural end-to-end models, which
take raw text as input and produce the desired out-
put directly. Any intermediate representations of
the text may emerge during the training of the neu-
ral network, and are hidden to us.

We focus on the encoder part of the Transformer
architecture (Vaswani et al., 2017), applied to neu-
ral machine translation (NMT), as visualizations
presented by the authors suggest that its attention
heads capture various phenomena such as syntax,
semantic roles or anaphora links.

In this work, we analyze the syntactic proper-
ties of the self-attention heads both qualitatively

and quantitatively. For the quantitative evalua-
tion, we devise a new technique that quantifies
the amount of syntactic information by explicitly
building constituency trees from the attentions and
comparing them with the standard syntactic trees.

Section 3 briefly describes the Transformer en-
coder architecture and the way we visualize the
self-attention matrices using heatmaps. In Sec-
tion 4, we present our findings from an extensive
manual inspection of the heatmaps, identifying
several common patterns, including the baluster-
like structures which seem to resemble syntactic
phrases. To avoid confirmation bias, we proceed
by devising a linguistically uninformed tree ex-
traction algorithm (Section 5), which builds a con-
stituency tree based solely on the assumption that
the balusters correspond to syntactic phrases. We
analyze the resulting parse trees and compare them
with standard syntactic trees, both manually and
via automatic evaluation. In Section 6, we fol-
low the hypothesis that only some of the attention
heads are “syntactic”, and try to identify them.

2 Related Work

Initial analyses of syntax captured by neural net-
works focused on RNNs. Shi et al. (2016) exam-
ine how much syntax is learned by RNN encoder
by freezing its weights and using a decoder to pre-
dict syntactic trees. Adi et al. (2016) examine sen-
tence vector representations by training auxiliary
classifiers to take sentence encodings and predict
attributes like word order. Linzen et al. (2016) as-
sess the ability of LSTMs to learn syntax by pre-
dicting verbal numbers. Blevins et al. (2018) mea-
sure the amount of syntax in RNNs by predicting
part-of-speech tags and constituent labels.

In the last year, related studies appeared also for
the Transformer architecture. Tang et al. (2018)
show the Transformer networks perform better

264

than RNNs on word sense disambiguation. Zhang
and Bowman (2018) show that language models
use more syntactic and morphological information
than translation models.

Recently, Hewitt and Manning (2019) tried to
find syntactic structures in contextual word rep-
resentations by training simple models on anno-
tated parse trees, concluding that syntactic trees
are embedded both in BERT (Devlin et al., 2018)
and ELMo (Peters et al., 2018) models. This
is also supported by Liu et al. (2019), who suc-
cessfully trained probes to extract linguistic struc-
tures, including syntactic dependencies, from var-
ious trained neural networks.

Most existing works train probing models on
annotated data (e.g. treebanks). However, such a
model may learn to predict the linguistic structure
not because it is captured by the network, but be-
cause it can be predicted from features preserved
from the input, as has been already noted e.g. by
Belinkov and Glass (2018). In our work, we try
to avoid that risk by not using annotated data for
the predictions, but rather looking for structures
explicitly present in the network representations.

In a study closely related to ours, Raganato and
Tiedemann (2018) also observe syntax-like pat-
terns in Transformer encoder self-attentions, and
try to extract syntactic trees without using anno-
tated data (except for taking the root node from the
gold annotation). However, they construct depen-
dency trees, while we observe phrase-like rather
than dependency-like structures. Moreover, their
findings are somewhat inconclusive, as the accu-
racy of the resulting trees is close to the baseline,
while our results are clearly positive. A similar ap-
proach was already suggested (but not evaluated)
in (Mareček and Rosa, 2018).

3 Transformer NMT Encoder

In the Transformer architecture, Vaswani et al.
(2017) came up with several important improve-
ments over the classical attention, including multi-
headed attention. It features a set of independent
attention heads, each deciding on its own to which
states to attend. This allows each of the heads
to specialize to provide a different type of infor-
mation or feature (similarly e.g. to CNN filters).
The encoder typically uses six multi-head self-
attention sub-layers. Each state on a given layer
(output state) is computed from a concatenation
of the result of applying a set of attention heads

to the states on the previous layer (input states),
passed through a feed-forward layer. This may al-
low the encoder to do more advanced multi-step
processing, such as aggregating the information
about several subwords into one position and then
attending to this position on the higher layers.

Another notable feature of the Transformer en-
coder is the use of residual connections, which
transport the source subword embeddings for-
ward, bypassing the self-attention mechanism, and
get averaged with the outputs of the self-attention.
This ensures that the output state at each position
retains a significant amount of the corresponding
source subword embedding, supporting the usual
shortcut of assuming that the hidden states can
be thought of as representations of the underlying
subwords (in the context of the sentence).

3.1 Encoder Self-Attention Visualization
We focus on exploring multi-head self-attentions
of the encoder. We use a natural visualization of
self-attention heads using square matrix heatmaps
(Figure 1), going from black (attention weight = 0)
to white (attention weight = 1). The subwords that
correspond to the rows and columns are printed
alongside the matrix. The rows correspond to out-
put states, and the columns to input states; as the
output states attend to input states, the softmaxed
attention weights on each row sum to 1.

Note that the visualizations may be deceiving
in several aspects. It is important to understand
that the fact that a given head at a given position
on a given layer attends to a position of a specific
subword does not mean that the resulting hidden
state will simply contain the representation of that
subword, for several reasons:
• The input to the self attention is the output of

the previous layer, i.e. a hidden state, presum-
ably but not necessarily representing the sub-
word at this position to some extent, and usu-
ally mixing in information about other sub-
words in the sentence.
• The hidden states emitted from each layer

are the outputs of a feed forward network
that takes a concatenation of outputs from all
of the heads on that layer as input, and can
thus mix them, ignore them, only use parts of
them, etc.

3.2 Experiment Setup
We analyze the Transformer NMT encoders for
the following three languages: English (en),

265

en-de 33.5 en-fr 45.2 fr-de 24.3
de-en 39.8 fr-en 42.1 de-fr 32.9

Table 1: BLEU scores measured on the test data.

French (fr), and German (de). We selected those
particular languages because they are available in
the Europarl corpus1 (Koehn, 2005) comprising
large high-quality multiparallel data, and because
constituency syntax parse trees can be obtained for
them by the Stanford parser (Klein and Manning,
2003) out-of-the-box.2

As we want to explore a state-of-the-art setup,
we use the Transformer model (Vaswani et al.,
2017) as reimplemented by Helcl et al. (2018) in
the Neural Monkey framework3 in standard set-
ting: 6 encoder and decoder layers, 16 attention
heads, embedding size of 512, hidden-layers’ size
of 4096, dropout 0.9, and batch size 30.

We train the translator for all 6 source-target
language pairs (en-fr, en-de, fr-en, fr-de, de-en,
de-fr).4 From the Europarl corpus, we take first
1,000 sentences as development data, last 1,000
sentences as evaluation data, and the remaining
486,272 sentences for training. Table 1 lists the
BLEU scores of the systems. All inspections
and evaluations, both manual and automatic, have
been performed on the evaluation data.

The data are tokenized by the Stanford Tok-
enizer5 to make the tokens consistent with the con-
stituency trees with which we will compare our re-
sults. We then build a shared dictionary of 100,000
BPE subword units (Sennrich et al., 2016) on the
concatenated training data of all three languages,
append an EOS symbol to each sentence, and train
the translation model.

4 Manual Analysis of Attention Matrices

On a small sample of 10 sentences and for each
language pair, we created the heatmaps for all
16 attention heads of all 6 encoder layers. Six
heatmaps for one sentence from the en→de en-
coder are shown in Figure 1; all 96 of them are

1http://data.statmt.org/
wmt18/translation-task/
training-parallel-ep-v8.tgz

2https://nlp.stanford.edu/software/
lex-parser.html

3https://github.com/ufal/neuralmonkey
4We intersect the English-German and English-French

parallel corpora using English as pivoting language.
5https://nlp.stanford.edu/software/

tokenizer.shtml

enclosed in the Appendix.
A general observation is that the attentions are

nearly always very peaked. Even though the atten-
tion mechanism was designed as soft, most atten-
tion heads concentrate nearly all of the attention at
each output state onto just one input state.

In the following subsections, we list all of the
distinctive patterns that we have identified.6 An
important thing to note is that typically, a head
behaves consistently across all sentences, i.e., for
a given head on a given layer of a given trained
Transformer encoder, we typically see the same
attention patterns across all sentences.

4.1 Diagonals

Especially at the first encoder layer, there often ap-
pear various simple diagonal heads.

Typically, each output state attends to the input
state at the same position. This may serve to pass
the subword information to the higher layers.

In some cases, most of the output states at-
tend to the corresponding input states, but some of
them attend elsewhere. The role of such partial di-
agonal may be looking for a specific phenomenon
that only occurs for some of the output states.

Often, individual output states attend to preced-
ing or following input states, forming a parallel
diagonal (Figure 1b). Sometimes the heads attend
further, e.g. to the “pre-previous” input state.

4.2 Balustrades

The most frequent pattern, appearing in about 2/3
of the attention heads, are balustrades – a series
of vertical bars, typically placed at the diagonal,
which resemble the balusters of a staircase railing.
Examples of such balustrades are shown in Fig-
ure 1c,d,e. The balustrades are often placed up-
wards or downwards from the main diagonal.

We observe that different heads contain balus-
ters of different lengths. For longer balusters, the
input state that they attend to often corresponds to
a punctuation or a conjunction; often there are also
heads that attend exclusively or almost exclusively
to the sentence-final punctuation.

We have noticed that in many cases, the se-
quence of subwords spanned by a baluster may
be understood as a syntactic phrase (e.g. a noun
and its determiner, or a syntactic clause between

6We observe all patterns which Raganato and Tiedemann
(2018) identified, i.e. diagonals and attending to the end of the
sentence, but also other patterns which they did not observe.

http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz
http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz
http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz
https://nlp.stanford.edu/software/lex-parser.html
https://nlp.stanford.edu/software/lex-parser.html
https://github.com/ufal/neuralmonkey
https://nlp.stanford.edu/software/tokenizer.shtml
https://nlp.stanford.edu/software/tokenizer.shtml

266

h
u
g
e

a
re
a
s

co
ve
ri
n
g

th
o
u
sa
n
d
s

o
f

h
e
ct
a
re
s

o
f

vi
n
e
ya
rd
s

h
a
ve

b
e
e
n

b
u
rn
e
d

; th
is

m
e
a
n
s

th
a
t

th
e

vi
n
@
@

e
-@

@
g
ro
w
e
rs

h
a
ve

su
ff
e
re
d

lo
ss

a
n
d

th
a
t

th
e
ir

p
la
n
ts

h
a
ve

b
e
e
n

d
a
m
a
g
e
d

. E
O
S

huge
areas

covering
thousands

of
hectares

of
vineyards

have
been

burned
;

this
means

that
the

vin@@
e-@@

growers
have

suffered
loss
and
that
their

plants
have
been

damaged
.

EOS

(a)

layer 1

head 10

h
u
g
e

a
re
a
s

co
ve
ri
n
g

th
o
u
sa
n
d
s

o
f

h
e
ct
a
re
s

o
f

vi
n
e
ya
rd
s

h
a
ve

b
e
e
n

b
u
rn
e
d

; th
is

m
e
a
n
s

th
a
t

th
e

vi
n
@
@

e
-@

@
g
ro
w
e
rs

h
a
ve

su
ff
e
re
d

lo
ss

a
n
d

th
a
t

th
e
ir

p
la
n
ts

h
a
ve

b
e
e
n

d
a
m
a
g
e
d

. E
O
S

huge
areas

covering
thousands

of
hectares

of
vineyards

have
been

burned
;

this
means

that
the

vin@@
e-@@

growers
have

suffered
loss
and
that
their

plants
have
been

damaged
.

EOS

(b)

layer 4

head 2

(c)

layer 4

head 2 h
u
g
e

a
re
a
s

co
ve
ri
n
g

th
o
u
sa
n
d
s

o
f

h
e
ct
a
re
s

o
f

vi
n
e
ya
rd
s

h
a
ve

b
e
e
n

b
u
rn
e
d

; th
is

m
e
a
n
s

th
a
t

th
e

vi
n
@
@

e
-@

@
g
ro
w
e
rs

h
a
ve

su
ff
e
re
d

lo
ss

a
n
d

th
a
t

th
e
ir

p
la
n
ts

h
a
ve

b
e
e
n

d
a
m
a
g
e
d

. E
O
S

huge
areas

covering
thousands

of
hectares

of
vineyards

have
been

burned
;

this
means

that
the

vin@@
e-@@

growers
have

suffered
loss
and
that
their

plants
have
been

damaged
.

EOS

h
u
g
e

a
re
a
s

co
ve
ri
n
g

th
o
u
sa
n
d
s

o
f

h
e
ct
a
re
s

o
f

vi
n
e
ya
rd
s

h
a
ve

b
e
e
n

b
u
rn
e
d

; th
is

m
e
a
n
s

th
a
t

th
e

vi
n
@
@

e
-@

@
g
ro
w
e
rs

h
a
ve

su
ff
e
re
d

lo
ss

a
n
d

th
a
t

th
e
ir

p
la
n
ts

h
a
ve

b
e
e
n

d
a
m
a
g
e
d

. E
O
S

huge
areas

covering
thousands

of
hectares

of
vineyards

have
been

burned
;

this
means

that
the

vin@@
e-@@

growers
have

suffered
loss
and
that
their

plants
have
been

damaged
.

EOS

(d)

layer 4

head 13

h
u
g
e

a
re
a
s

co
ve
ri
n
g

th
o
u
sa
n
d
s

o
f

h
e
ct
a
re
s

o
f

vi
n
e
ya
rd
s

h
a
ve

b
e
e
n

b
u
rn
e
d

; th
is

m
e
a
n
s

th
a
t

th
e

vi
n
@
@

e
-@

@
g
ro
w
e
rs

h
a
ve

su
ff
e
re
d

lo
ss

a
n
d

th
a
t

th
e
ir

p
la
n
ts

h
a
ve

b
e
e
n

d
a
m
a
g
e
d

. E
O
S

huge
areas

covering
thousands

of
hectares

of
vineyards

have
been

burned
;

this
means

that
the

vin@@
e-@@

growers
have

suffered
loss
and
that
their

plants
have
been

damaged
.

EOS

(e)

layer 1

head 11

h
u
g
e

a
re
a
s

co
ve
ri
n
g

th
o
u
sa
n
d
s

o
f

h
e
ct
a
re
s

o
f

vi
n
e
ya
rd
s

h
a
ve

b
e
e
n

b
u
rn
e
d

; th
is

m
e
a
n
s

th
a
t

th
e

vi
n
@
@

e
-@

@
g
ro
w
e
rs

h
a
ve

su
ff
e
re
d

lo
ss

a
n
d

th
a
t

th
e
ir

p
la
n
ts

h
a
ve

b
e
e
n

d
a
m
a
g
e
d

. E
O
S
huge
areas

covering
thousands

of
hectares

of
vineyards

have
been

burned
;

this
means

that
the

vin@@
e-@@

growers
have

suffered
loss
and
that
their

plants
have
been

damaged
.

EOS

(f)

layer 3

head 10

Figure 1: Heatmaps of selected attention heads showing different patterns. There are diagonal patterns in (a) and
(b), balustrades in (c) and (d), a combination in (e), and rather scattered attention in (f).

267

two commas). Furthermore, by looking at multi-
ple attention heads at once, we can interpret the
balusters of various lengths spanning the same
subwords as shorter phrases nested within longer
phrases. This leads us to the idea of constructing
a constituency tree from the nested phrases, and
comparing it with classical syntactic constituency
trees (see Section 5).

4.3 Equal or Similar Subwords

There is typically one or two heads where each
output state attends to all instances of the same
subword, usually with a more or less uniform
distribution (see the subwords “of”, “have” and
“that” in Figure 1a). We have also seen these
heads to sometimes attend to very similar but not
identical subwords (e.g. singular and plural).

4.4 The Rest

Admittedly, for about 1/5 of the attention heads,
we have not identified any clear pattern, and thus
have no hypothesis as for the function of such
heads. Sometimes, the head shows some of the be-
haviours only for some of the output states; some-
times we do not see even such partial patterns (Fig-
ure 1f).

5 Extracting Constituency Trees

Our aim is to analyze whether syntactic struc-
tures seem to be captured by Transformer self-
attentions, to what extent, and of what kind. As
explained in the previous section, we often ob-
serve balusters of various lengths in the attention
heatmaps, which can be interpreted as nested syn-
tactic phrases. In this section, we try to measure to
which extent this interpretation seems to be valid.

For this purpose, we devise a linguistically un-
informed transparent deterministic algorithm to
extract binary constituency trees from the balus-
ters (Section 5.1). We automatically evaluate the
results by comparing them with classical syntac-
tic trees, generated by a standard syntactic parser
(Section 5.2), to see whether the observed struc-
tures seem to capture syntax as we know it. We
discuss the results in Section 5.3.

5.1 Tree Extraction Algorithm

We now explain how we construct constituency
trees from the balusters in the attention matrices.

Our goal is not to optimize our algorithm to-
wards producing good syntactic trees. Rather,

we try to keep our algorithm linguistically unin-
formed, to reveal only what really is captured by
the self-attentions. Therefore, we:
• build binary constituency trees, as this is

quite a basic way to represent nested phrases,
• use information from all attention heads, not

only those which seem to capture syntax,
• keep the number of other hyperparameters

minimal and set them to the most uninformed
values, rather than tuning them,
• do not train or tune the tree extraction in any

way (unlike most related work).
The first step is to identify the balusters. We

have previously described a baluster as a sequence
of output states attending to a single input state.
The attentions are typically very peaked, with
nearly all of the attention mass concentrated onto
one input state. However, as the attentions are soft,
each of the output states in fact attends to all of the
input states to some extent. We thus “harden” the
soft attention matrix A′ by only keeping the max-
imal attention weight on each row of the attention
matrix, setting all the other weights to 0:

Ao,i =

{
A′o,i if A′o,i = maxj∈[1,N]A

′
o,j

0 otherwise
(1)

where i is the input state index, o is the output
state index, and N is the sentence length.

Next, we extract candidate phrases from the
balusters and weight them. From each baluster, we
extract only the candidate phrase corresponding to
the full length of the baluster. The weight of the
phrase corresponds to the average attention that
output states in the phrase give to the common in-
put state they attend to (i.e. the average brightness
of the points in the baluster). If the same phrase
appears in multiple attention matrices, their scores
are summed together. The weight of the phrase
spanning the a-th to b-th subwords thus is:

w′a,b =
∑

h∈Ha,b

∑
o∈[a,b]A

h
o,ih

b− a+ 1
(2)

where Ha,b is the set of attention heads containing
a baluster spanning the output states a to b, Ah is
the hardened attention matrix for head h, and ih is
the input state attended by the baluster in head h.

The weights defined in this way are unbalanced,
giving more importance to shorter phrases, as
they are more frequent in the attention matrices.

268

We thus equalize the weights so that the average
weight of all phrases of the same length equals 1:

wa,b =
w′a,b · |P b−a+1|∑
(c,d)∈P b−a+1 w′c,d

(3)

where P k is the index pair set of all extracted
phrases of length k.

To construct the constituency tree from the
phrases, we use the CKY dynamic programming
algorithm (Ney, 1991), which searches for the
highest scoring constituency tree in O(n3).

For each tree spanning the a-th to b-th subword,
we define its score sa,b recursively by finding a
separator k, a ≤ k < b, that maximizes the aver-
age of scores and weights of the two subtrees with
spans (a, k) and (k + 1, b):

sa,b = max
k

sa,k + sk+1,b + wa,k + wk+1,b

4
. (4)

The initial scores for single-subword subtrees are
set to 1. The averaging then keeps the scores
equalized – subtrees then have the same power re-
gardless of the size of their spans.

The CKY algorithm works bottom up, start-
ing with the trivial single-subword trees, and then
iteratively computing the values of larger sub-
trees based on the values precomputed in previous
steps. Together with the score of each tree, the al-
gorithm also stores the k from Equation 4, which
defines the highest scoring pair of subtrees cover-
ing the same span. Once the algorithm reaches the
tree covering the whole sentence, it recursively re-
turns the highest scoring tree based on the stored
values of the highest scoring subtrees.

5.2 Automatic Evaluation
To evaluate the syntacticity of the Transformer
self-attentive encoder, we extract the constituency
trees using our tree extraction algorithm for the
1,000 sentences of our evaluation set; we will re-
fer to these as extracted trees.

We then induce syntactic trees for these sen-
tences with the Stanford Parser. We use the fac-
tored lexicalized parsing models distributed to-
gether with the parser, which had been trained on
standard constituency treebanks of the languages –
English Penn Treebank (Marcus et al., 1993), Ger-
man Negra Corpus (Skut et al., 1999), and French
Treebank (Abeillé et al., 2003). We post-process
the trees in the following way:

1. remove phrase labels

X

Xdamaged

X

X
been
have

X
plants
Their

X

X

X
damaged

been

X
have

plants
Their

Figure 2: Left (lbal) and right (rbal) balanced binary
tree baselines.

2. wrap each word into a single-word phrase
3. split words into subwords
4. flatten phrases containing only one immedi-

ate subphrase or only one subword
We show an example of applying this procedure:

0. (S (VP vinegrowers suffer))
1. ((vinegrowers suffer))
2. (((vinegrowers) (suffer)))
3. (((vin- e- growers) (suffer)))
4. ((vin- e- growers) suffer)

We will refer to the resulting trees as parse trees.
We compare the extracted trees with the parse

trees, assuming that the more similar they are, the
more syntactic the Transformer encoder is.

We calculate the precision of the extracted tree
as the proportion of its phrases that are “correct”
in the sense that they are consistent with the parse
tree, not crossing any of its phrases. (For the sake
of this analysis, we only consider one possible way
of capturing syntax, as defined in the respective
treebanks; we discuss that in Section 5.3.)

Let P be the parse tree, an extracted phrase e is
correct if and only if:

∀p ∈ P : (p ∩ e = ∅) ∨ (p ⊆ e) ∨ (e ⊆ p). (5)

Recall is computed inversely, as the proportion
of phrases in the parse tree that are consistent with
the extracted tree. We compute the total preci-
sion and recall as an average over all extracted
phrases in all the trees, and also report their har-
monic mean (F1).

The results of the evaluations for all three
source languages are shown in Table 2. To put
them into perspective, we also report scores for
several uninformed parsing baselines:

1. rbal: balanced binary tree aligned right
2. lbal: balanced binary tree aligned left
3. rand.init: our proposed algorithm using ran-

domly initialized Transformer weights
Examples of the lbal and rbal baselines are shown
in Figure 2.

269

English
system precision recall F1 score
rbal 30.1% 24.3% 26.8%
lbal 27.8% 20.8% 23.8%
rand.init 25.1% 20.0% 22.3%
en→ de 35.4% 30.6% 32.8%
en→ fr 35.4% 30.2% 32.6%

German
system precision recall F1 score
rbal 39.1% 31.3% 34.8%
lbal 38.1% 27.6% 32.0%
rand.init 33.7% 25.9% 29.3%
de→ en 46.1% 39.6% 42.6%
de→ fr 46.7% 40.9% 43.6%

French
system precision recall F1 score
rbal 34.3% 28.7% 31.3%
lbal 32.5% 25.4% 28.5%
rand.init 26.1% 24.4% 25.3%
fr→ en 44.4% 39.7% 41.9%
fr→ de 46.9% 41.7% 44.2%

Table 2: Scores of baseline trees and our extracted trees
using all attention heads, evaluated against standard
syntactic parse trees.

5.3 Discussion of Results

The F1 scores of the trees extracted from the atten-
tion matrices are 6 to 13 percentage points higher
than the best baselines, showing that some syntax
is indeed captured by the Transformer encoder.

For English, the scores are notably lower than
for the other languages. Manual inspection has
shown that this is mostly due to the English parse
trees being strongly right-branching, while the
other treebanks use flatter, more balanced trees,
mainly due to different annotation styles of the
treebanks. The trees extracted from the attention
matrices are similar for all of the languages, and
resemble the German or French parse trees more
than the English ones. However, a part of the score
differences may also be due to a differing syntac-
ticity of the individual encoders, as can be seen
from the differing scores for fr→en and fr→de.

Figure 3 shows an example of a tree extracted
from the en→de encoder (the sentence is the same
as in Figure 1). We can see that many of the
subtrees seem to make sense syntactically, both
smaller ones, such as “[have been] damaged”, as
well as larger ones, such as the tree spanning
“huge. . . vineyards”. Some are questionable, but

X

X

X
EOS

.

X

damaged

X
been
have

X

X

X

X
plants

their

X

X

X

that

X

and

X
X

loss
suffered

have

X

growers

X
X

e-
vin-

the

X

that

X

means

X
this

;

X

burned

X
been
have

X

X

X

X
vineyards

of

X
X

hectares
of

thousands

covering

X
areas
huge

Figure 3: A constituency tree generated by our tree ex-
traction algorithm from the attention matrices of the en-
de encoder for the 4th sentence of the evaluation set.

not necessarily wrong, e.g. “[the vine-] growers”.
A clear limitation of our automatic evaluation

method is that it only evaluates whether the struc-
tures match those of the syntactic formalism of the
standard treebank, but it cannot appreciate alterna-
tive structures that also make sense syntactically.
However, this issue is hard to solve without a sig-
nificant amount of manual work.

Nevertheless, some structures clearly do not
correspond to the syntactic structure of the sen-
tence, regardless of the syntactic formalism that
we adhere to. E.g. the phrases “their plants” and
“have been damaged” belong together, but they are
separated in the extracted tree all the way to the
root. The reason we find these incorrect structures
in the extracted trees may be that we are using all

270

the encoder attention matrices in the extraction al-
gorithm, even though not all of the attention heads
seem to behave syntactically; we investigate this to
some extent in the next section. However, it is also
quite likely that the encoder only captures some
parts of the syntactic structure of the sentence, not
a full syntactic tree – especially given the fact that
the model is trained to do machine translation, and
may thus have no reason to capture structures ir-
relevant for this task. Moreover, classical syntac-
tic trees are by far not the only possible way of
capturing syntax, and it is quite likely that the syn-
tax captured by the self-attentive encoder should
be understood differently.7

6 Selecting Syntactic Heads

As we have discussed in Section 4, there is a
range of different types of attention heads. In
our interpretation, some of them, especially the
balustrades, seem to capture syntactic structures,
while others seem not to do so. A logical step thus
is to try to identify the syntactic heads, and only
use those for the tree extraction.8

We propose to use the automatic evaluation as
the criterion for selecting the “syntactic” heads.
We suggest two greedy approaches: head addi-
tion, and head ablation.

In the head addition approach, we start with an
empty set of heads and then iteratively add the
heads one by one, maximizing the precision of the
extracted trees in each step, until we have the set
of all heads. We then identify the highest scoring
head combination that we encountered.

The head ablation approach is the logical in-
verse; we start with all the heads and iteratively
remove them until we end up with only one head.

We ran the selection algorithms using only the
first 100 sentences. The setups selected as best by
the algorithm were then evaluated on the full eval-
uation set. As the head addition consistently out-
performed head ablation by approximately 2 per-
centage points, we only report the evaluation of

7For example, the syntactic structure could be quite flat,
with shorter phrases or treelets joined into a linked list, rather
than a complex tree structure with long-distance relations.
Also, we have noted that connectors, such as punctuation and
conjunctions, often seem to be part of both of their neighbour-
ing phrases, which could lead to a formalism using partially
overlapping phrases. We intend to investigate this in future.

8 However, once we start subselecting only some of the
heads, we are clearly introducing our expectations about the
syntactic structures to be found into the process – we are now
contaminating the so far linguistically uninformed approach
with our notion of “good” or “syntactic” phrases.

improvement in
system precision recall F1 score
en→ de +9.48% +7.01% +8.10%
en→ fr +8.43% +6.23% +7.19%
de→ en +4.60% +2.06% +3.13%
de→ fr +5.96% +1.76% +3.52%
fr→ en +11.58% +8.54% +9.91%
fr→ de +12.16% +8.63% +10.20%

Table 3: Evaluation of syntactic heads subselection.
Score gains over the base tree extraction as reported
in Table 2, in percentage points.

L 1 2 3 4 5 6
P 36% 3% 10% 10% 19% 21%

Table 4: Average proportion of attention head layers in
the best subselection setups for all language pairs. L
is the number of the layer, P is the proportion of the
selected heads that come from the given layer.

the head addition in Table 3.
We can see improvements in F1 ranging from 3

to 10 percentage points, showing that better syn-
tactic trees can be extracted by subselecting the
heads. However, we are perhaps overtuning the
setup, and the reported numbers are thus probably
somewhat inflated. Therefore, we are reluctant to
draw any strong conclusions from the results.

Nevertheless, the meta-analysis of the heads se-
lected as syntactic is of interest. For each of the
language pairs, between 18 and 32 heads of the
total 96 were selected. However, these are not
evenly distributed across the layers. As we show in
Table 4, on average, one third of the selected heads
come from the first layer, which mostly contains
diagonals and short balusters; the last two layers,
which contain a lot of balusters of varied lengths,
each contributes one fifth of the heads.

7 Conclusion

We analyzed the Transformer encoder self-
attention, identifying baluster structures resem-
bling syntactic phrases. We devised a transparent
linguistically uninformed algorithm for extracting
constituency trees from the balusters, compared
the resulting trees with standard syntactic parse
trees, and showed that syntax is indeed captured.

Acknowledgments

This work has been supported by the grant 18-
02196S of the Czech Science Foundation.

271

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for french. In Treebanks,
pages 165–187. Springer.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. CoRR, abs/1608.04207.

Yonatan Belinkov and James Glass. 2018. Analysis
methods in neural language processing: A survey.
CoRR, abs/1812.08951.

Terra Blevins, Omer Levy, and Luke Zettlemoyer.
2018. Deep RNNs encode soft hierarchical syntax.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 14–19, Melbourne, Australia.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Mikel L. Forcada, Mireia Ginestı́-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema
Ramı́rez-Sánchez, and Francis M. Tyers. 2011.
Apertium: a free/open-source platform for rule-
based machine translation. Machine Translation,
25(2):127–144.

Jindřich Helcl, Jindřich Libovický, Tom Kocmi, Tomáš
Musil, Ondřej Cı́fka, Dušan Variš, and Ondřej Bo-
jar. 2018. Neural monkey: The current state and
beyond. In The 13th Conference of The Associa-
tion for Machine Translation in the Americas, Vol.
1: MT Researchers’ Track, pages 168–176, Strouds-
burg, PA, USA. The Association for Machine Trans-
lation in the Americas, The Association for Machine
Translation in the Americas.

John Hewitt and Christopher D. Manning. 2019. Struc-
tural Probe for Finding Syntax in Word Representa-
tions. In Proceedings of NAACL 2019.

Dan Klein and Christopher D Manning. 2003. Fast ex-
act inference with a factored model for natural lan-
guage parsing. In Advances in neural information
processing systems, pages 3–10.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Conference Pro-
ceedings: the tenth Machine Translation Summit,
pages 79–86, Phuket, Thailand. AAMT, AAMT.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. CoRR, abs/1903.08855.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

David Mareček and Rudolf Rosa. 2018. Extract-
ing syntactic trees from transformer encoder self-
attentions. In Proceedings of the First Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 347–349, Stroudsburg, PA, USA. The
Assotiation of Computational Linguistics.

Hermann Ney. 1991. Dynamic programming pars-
ing for context-free grammars in continuous speech
recognition. Trans. Sig. Proc., 39(2):336–340.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Martin Popel and Zdeněk Žabokrtský. 2010. TectoMT:
Modular NLP framework. In Lecture Notes in Ar-
tificial Intelligence, Proceedings of the 7th Interna-
tional Conference on Advances in Natural Language
Processing (IceTAL 2010), volume 6233 of Lecture
Notes in Computer Science, pages 293–304, Berlin
/ Heidelberg. Iceland Centre for Language Technol-
ogy (ICLT), Springer.

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
287–297. Association for Computational Linguis-
tics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725. Association for Computational Linguistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural MT learn source syntax? In
EMNLP, pages 1526–1534.

Wojciech Skut, Hans Uszkoreit, and Thorsten Brants.
1999. Syntactic annotation of a german newspaper
corpus. In ATALA sur le Corpus Annotés pour la
Syntaxe Treebanks, June 18-19, pages 69–76, Paris,
France. o.A.

http://arxiv.org/abs/1812.08951
http://arxiv.org/abs/1812.08951
http://www.aclweb.org/anthology/P18-2003
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/s10590-011-9090-0
https://doi.org/10.1007/s10590-011-9090-0
http://arxiv.org/abs/1903.08855
http://arxiv.org/abs/1903.08855
http://arxiv.org/abs/1903.08855
https://doi.org/10.1109/78.80816
https://doi.org/10.1109/78.80816
https://doi.org/10.1109/78.80816
http://aclweb.org/anthology/W18-5431
http://aclweb.org/anthology/W18-5431
http://aclweb.org/anthology/W18-5431
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

272

Gongbo Tang, Mathias Müller, Annette Rios, and Rico
Sennrich. 2018. Why self-attention? a targeted eval-
uation of neural machine translation architectures.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4263–4272. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 6000–6010. Curran As-
sociates, Inc.

Kelly W. Zhang and Samuel R. Bowman. 2018. Lan-
guage modeling teaches you more syntax than trans-
lation does: Lessons learned through auxiliary task
analysis. CoRR, abs/1809.10040.

http://aclweb.org/anthology/D18-1458
http://aclweb.org/anthology/D18-1458
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

273

Appendix: Visualization of all attention
heads

We provide visualisations of encoder’s self-
attention heads for English source sentence “Huge
areas covering thousands of hectares of vineyards
have been burned; this means that the vin@@
e-@@ growers have suffered loss and that their
plants have been damaged.”, when translating into
German.

Figure 4: Layer 1 Figure 5: Layer 2

274

Figure 6: Layer 3 Figure 7: Layer 4

275

Figure 8: Layer 5 Figure 9: Layer 6

