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Abstract
A common approach in knowledge base com-
pletion (KBC) is to learn representations for
entities and relations in order to infer missing
facts by generalizing existing ones. A short-
coming of standard models is that they do not
explain their predictions to make them verifi-
able easily to human inspection.

In this paper, we propose the context path
model (CPM) which generates explanations
for new facts in KBC by providing sets of
context paths as supporting evidence for these
triples. For example, a new triple (Theresa
May, nationality, Britain) may be explained by
the path (Theresa May, born in, Eastbourne,
contained in, Britain). The CPM is formu-
lated as a wrapper that can be applied on top of
various existing KBC models. We evaluate it
for the well-established TransE model. We ob-
serve that its performance remains very close
despite the added complexity, and that most
of the paths proposed as explanations provide
meaningful evidence to assess the correctness.

1 Introduction

Knowledge bases (KBs), such as Freebase (Bol-
lacker et al., 2008), Wikidata (Vrandečić and
Krötzsch, 2014) or Yago (Suchanek et al., 2007),
are structured representations of knowledge in form
of entities and their respective relationships. For
example, KBs can comprise facts about persons
like their family relations and their occupation or
facts about places like the region or country they
are located in. A common application of knowl-
edge bases is question answering systems (Bordes
et al., 2014; Berant et al., 2013). KBs are also used
by Google to better understand search queries, to
present fact boxes and to provide explorative search
suggestions (Steiner et al., 2012).

The major contemporary construction mode for
KBs is collaborative, which is both a major advan-
tage (as long as community interest persists, KBs

grow over time) and a major shortcoming, since
development is not directed. As a result, collabora-
tive KBs tend to be incomplete. Min et al. (2013)
show that in Freebase 93.8% of persons have no
place of birth assigned and for 78.5% of persons,
the nationality is missing. This motivates the task
of knowledge base completion (KBC), i.e., the ad-
dition of correct but missing facts to existing KBs.

A common approach for KBC is to learn dis-
tributed representations for entities and relations
that enable the generalization of existing connec-
tions in the KB to predict missing facts (Nickel
et al., 2011; Bordes et al., 2013; Yang et al., 2015).
A connection could be that the country of birth
is highly correlated to the nationality of a given
person. A fact about the country of birth could
therefore be used as evidence when predicting a
missing fact about the nationality. Such represen-
tation learning methods typically perform rather
well and are simple to train. However, they cru-
cially lack in the explainability that often comes
with more symbolic systems: they do not justify the
facts that they propose in a way that is transparent
to human reviewers of the system output. Explain-
ability of system outputs is increasingly recognized
as an important component in the practical use of
NLP, and more generally, AI systems (Holzinger
et al., 2017; Ras et al., 2018; Ribeiro et al., 2018).

In this paper, we propose a new KBC model,
the Context Path Model (CPM), which pro-
vides a path-based explanation for newly pro-
posed facts. For example, the path (e1,
city of birth, contained by, e2) states the country
the person e1 was born in. This path is in-
formative to assess the correctness of the triple
(e1, nationality, e2). To establish a relationship
between facts and paths, the CPM explicitly in-
cludes the paths from the context of a fact t into
the estimation of t’s correctness. As part of this
process, the CPM also estimates the paths’ rele-
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vance to identify those paths that provide the most
convincing evidence for or against the correctness
of the fact. The CPM is formulated as a wrapper
that can be applied on top of various KBC models
that learn a scoring function for individual facts.

We evaluate the CPM instantiated with the estab-
lished TransE model as fact scorer on the FB15K
dataset. We find that CPM, despite the added com-
plexity, performs almost as well as vanilla TransE
on scoring facts. The majority of paths assigned a
high relevance for a given fact are either equivalent
to the fact or provide strong evidence regarding its
correctness.1

2 Background and Related Work

2.1 Knowledge Base Completion (KBC)

Knowledge bases are often formalized as a directed
graph with labeled edges, here called knowledge
graph. A knowledge graph G is a set of n facts, or
edges, where each edge is defined as a triple t of the
form (e1, r, e2) with entities e1 and e2 and relation
r, G = {ti}ni=1. We denote the set of entities as
E and the set of relations as R. The task of KBC
can then be formalized as assessing the correctness
of a triple t /∈ G. As usual in studies of KBC, we
concentrate on the case where e1 and e2 are known,
i.e., we add edges, but not nodes, to the graph.

2.2 Representation Learning for KBC

An important current approach to KBC is to learn
distributed representations (vectors, matrices, ten-
sors) for entities and relations and define algebraic
combination operations to score the correctness of
novel triples t = (e1, r, e2). This includes models
like NTM (Socher et al., 2013), TransE (Bordes
et al., 2013), Bilinear (Nickel et al., 2011) and
Bilinear-diag (Yang et al., 2015).

For instance, TransE represents relations in the
same vector space as entities and models relations
as translation from e1 to e2. Given respective vector
representations e1, e2, r ∈ Rd, TransE predicts the
entity that stands in relation r to e1 as e1 + r. The
representations are learned using a max-margin
objective which minimizes the distance between
e2’s predicted and actual positions, ‖e1 + r− e2‖,
for correct facts, and maximizes it otherwise.

Research on novel neural architectures for KBC
is ongoing. Schlichtkrull et al. (2018) replace sim-

1The model and its annotated predictions for
FB15K are available at https://github.com/
JosuaStadelmaier/CPM

ple embedding lookups by Relational Graph Con-
volutional Networks which are used as an encoder
to learn globally optimized knowledge graph repre-
sentations. Shen et al. (2017) propose a dynamic
memory architecture that learns to perform infer-
ence and represents the current state of the art.

2.3 Modeling Paths for KBC

Several previous studies considered paths as infor-
mation sources. Lao and Cohen (2010) use random
walk probabilities for paths that connect e1 and
e2 as features for scoring the correctness of facts
(e1, r, e2). Gardner et al. (2014) generalize the ran-
dom walk approach with a relevance-based com-
ponent. Unlike the “full” KBC models discussed
above, however, these models do not represent enti-
ties as vectors, which prevents them from capturing
entity specific information and from letting entities
directly interact with relations.

Guu et al. (2015) show how vector space models
like TransE (Bordes et al., 2013), Bilinear (Nickel
et al., 2011) and Bilinear-diag (Yang et al., 2015)
can be generalized to not only scoring the correct-
ness of edges t = (e1, r, e2) but also the correct-
ness of paths p = (e1, r1, ..., rk, e2). They pro-
pose a training objective that incorporates paths
and demonstrate that it improves the performance
of KBC models on predicting paths and on predict-
ing single edges as well. In the case of TransE, the
relations r1, ..., rk of a path p can be represented
by their composition rp = r1 + ... + rk. The
distance computed by TransE can then be gener-
alized to paths as ‖e1 + rp − e2‖. The objective
proposed by Guu et al. encourages that e1 + rp
is learned to be close to the set of entities that are
reached when traversing the knowledge graph over
the edges r1, ..., rk, starting from e1.

PTransE, proposed by Lin et al. (2015), assesses
the correctness of t by considering paths that con-
nect e1 and e2 and assigns them scores that aim to
indicate how reliable these paths are for estimating
the correctness of t. They compute the reliability
scores by using a heuristic called path-constraint
resource allocation, which is based on the sizes of
entity sets that can be reached by following the re-
lations in a path step by step. They report improve-
ments in the KBC task over the standard TransE
model. This supports the idea of modeling paths
explicitly to capture the context of a triple. A simi-
lar approach by Toutanova et al. (2016) is based on
Bilinear-diag instead of TransE and comprises an

https://github.com/JosuaStadelmaier/CPM
https://github.com/JosuaStadelmaier/CPM
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efficient algorithm to incorporate paths.

2.4 Providing Explanations for KBC

One possibility to provide explanations for KBC
predictions is to generate logical rules. In the lit-
erature, these rules are often formalized as Horn
rules (Gusmão et al., 2018) such as (e1, r1, e2) ∧
(e2, r2, e3) → (e1, r3, e3). This rule claims that
the path with the relation sequence r1, r2 between
e1 and e2 implies the presence of the relation r3
between the two entities.

Galárraga et al. (2013) propose the system AMIE
which mines such rules. Their approach is to adapt
association rule mining to incomplete knowledge
bases. Rules are assigned confidence values that
state how likely the conclusion of the rule is a cor-
rect triple. While this can be used to predict and
explain new facts based on a single rule, there is
no clear way of combining several rules that all
have the same triple as conclusion. Furthermore,
these rules only make a statement about triples that
actually occur in the conclusion of a rule. The
rules found by Galárraga et al. always have a pos-
itive conclusion and therefore cannot provide ev-
idence for refuting triples. In contrast, represen-
tation learning can capture the characteristics of
individual entities and can take arbitrary triples as
input, provided that the involved entities and rela-
tions occur in the training set.

There are several studies that analyze learned
representations of neural KBC models like TransE
or Bilinear-diag to find Horn rules (Yang et al.,
2015) or paths in the knowledge graph (Zhang et al.,
2019). While similar in motivation to our model,
these approaches share the disadvantage of using a
pipeline approach: The rules or paths are extracted
post hoc and cannot be used by the representation
learning step to improve the consistency of its pre-
dictions, as would be desirable.

Xie et al. (2017) propose a neural KBC model
that provides an alternative kind of explainability:
it learns sparse attention vectors which capture ab-
stract concepts shared by multiple relations. Due
to the sparsity of attention vectors, the connections
can be visualized and interpreted.

3 Context Path Model

As stated in the introduction, the main idea of our
Context Path Model (CPM) is to capture the context
of a triple t = (e1, r, e2) in the shape of the paths
surrounding t. The role of the paths is as a data

source for estimating the correctness of t as well as
providing explanations for the estimate.

3.1 Motivation

Formally, we define a path of length k as a sequence
of the form (e1, r1, ..., rk, e2). Our fundamental in-
tuition is that the correctness of triples and paths in
their context can show different degrees of correla-
tion, as the following examples illustrate.

Example 1: The triple t1 = (e1, country
of birth, e2) and the path p1 = (e1, city of birth,
contained by, e2) are logically equivalent. Thus,
any KBC model of correctness should assign the
same score to p1 and t1: If a KB contains p1, it
should also contain t1. Conversely, the absence of
p1 can be taken as evidence against t1.

Example 2: The path p2 = (e1,
lived in country, neighboring country, e2) has a
weak connection with t1: it is not unlikely to have
lived in a country that adjoins the country of birth.
However, as countries very often have several
neighboring countries, p2 cannot provide strong
evidence either for or against the correctness of t1.

We currently concentrate on cases of positive
correlation, like Ex. 1, where either the presence
of p is evidence in favor of t, or the absence of p is
evidence against t. 2 Even though negative corre-
lation (e.g., the presence of p providing evidence
against t) is in principle also informative, it is more
difficult to capture empirically, since it requires
learning exclusion relationships among paths.

3.2 Definition of the Context Path Model

To capture those connections, a KBC model needs
to score the correctness of paths as well as deter-
mine their relevance as indicator for the correctness
of triples t, that is, the strength of the correlation
of the correctness scores of p and t.

We denote the set of paths that are used to model
the context of a triple t, its context paths as Pt (see
Section 3.4 for details). Based on Pt, the CPM
estimates the correctness of t, c(t, Pt), as follows:

c(t, Pt) =
∑
p∈Pt

ρ(t, p)

Z(t, Pt)
· c(p), (1)

Z(t, Pt) =
∑
p∈Pt

ρ(t, p). (2)

2Absence of paths from a KB is a weaker indicator than
presence, since paths can be missing either because they are
actually incorrect, or because at least one of its constituent
edges are erroneously missing.
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Thus, the correctness of a triple t is a weighted
average of the correctness scores c(p) of its context
paths, with the weights given by the normalized
relevance scores ρ(t, p) of paths p for t, that is, the
correlation between the correctness of t and p.

Since we want c(p) to be interpretable as the
probability of p being correct, we restrict the range
of c(p) to [0, 1]. We only require ρ(t, p) to be
non-negative, since the division by Z(t, Pt) di-
rectly yields normalized relevance scores. The
property of c(p) being normalized carries over to
c(t, Pt) which also has a range of [0, 1]. Appropri-
ate choices for c(p) and ρ(t, p) are discussed in the
following subsubsections.

Applied to Ex. 1 from above, the path p1 =
(e1, city of birth, contained by, e2) should be as-
signed a high relevance score ρ(t1, p1). If p1 is
correct, c(p1) should be close to 1. A high rel-
evance score combined with a high correctness
scores pushes c(t1, Pt1) towards 1. If p1 is not cor-
rect, c(p1) should be close to 0. In this case a high
relevance score is combined with a low correctness
score, which pushes c(t1, Pt1) towards 0. Both ef-
fects match the intended meaning of c(t1, Pt1) to
represent the correctness of t1. In Ex. 2, the path p2
has a low relevance for t1 and should be assigned
a low relevance score ρ(t1, p2). Since correctness
scores are restricted to [0, 1], the effect of c(p2) on
c(t1, Pt1) is small, whether c(p2) is high or low.
This properly models that the correctness of p2 has
little effect on the correctness of t1.

The CPM can serve as a source of explanations
for its predictions by considering the context paths
that have the highest relevance scores for a triple
t. By normalizing relevance scores by Z(t, Pt)
(Equation 2), we obtain the normalized weight with
which the correctness of a context path contributes
to the correctness score of the triple. Furthermore,
if c(p) ≈ 1, p represents evidence in favor of the
correctness of t, and if c(p) ≈ 0, p is evidence
against the correctness of t.

3.2.1 Estimating Context Paths Correctness
The first major parameter of the CPM is the context
path correctness score c(p), which is required to
have two properties: It needs to be able to model
paths and its output has to lie in [0, 1]. The first
property is fulfilled by all composable KBC models
like TransE (Bordes et al., 2013), Bilinear (Nickel
et al., 2011) and Bilinear-diag (Yang et al., 2015),
that is, models which can produce a functional
representation rp for a path p as a function of the

representation of its edges. Regarding the second
property, models that are distance-based and do
not directly fulfill it, can be adapted as follows.
Since they are composable, we can compute the
distance between the end of the path, e2, and the
path representation applied to the start of the path,
as dist(e2, f(e1, rp)), and map it to [0, 1] via a
logistic transformation σ of the negated distance.

For the example of the TransE model (Bordes
et al., 2014), the path representation is simply a
translation defined by the addition of the relation
vectors, rp =

∑
ri∈p ri and f = λx, y . x + y.

The correctness score for a path is then defined as
a transformation of the distance:

c(p) = σ(−‖e1 + rp − e2‖22 + bᵀ1rp) (3)

where b1 ∈ Rd is a path-specific bias parameter.
This model has d · (|R|+ |E|+ 1) parameters.

3.2.2 Estimating Context Path Relevance
The second major parameter of the CPM is the con-
text path relevance score ρ(t, p). To our knowledge,
no such models have been proposed in the litera-
ture, so we propose a simple model which is again
inspired by the translation-based TransE model. To
estimate ρ for a path p = (e1, r1, ..., rk, e2) and a
triple t, we represent the path as sequence of rela-
tions r1, ..., rk in order to abstract away from the
entities e1 and e2 and learn general regularities.3

We represent each relation r by one vector ar ∈ Rd

in order to recognize patterns in the compositional
path representation rp that indicate how relevant
the path p is for the relation r. The exponential
function is applied to obtain non-negative scores:

ρ(t, p) = exp(aᵀ
rrp + bᵀ2r) (4)

where b2 ∈ Rd is a bias parameter to enable re-
lation specific scaling of aᵀ

rrp. This model has
d · (|R|+ 1) parameters.

3.3 Training the Context Path Model
We split the training process into two steps to first
learn the parameters of c(p) and then the param-
eters of ρ(t, p). Learning ρ(t, p) and c(p) jointly
could lead to c(p) being influenced by the relevance
of p for t, which is undesirable since we want to
guarantee that c(p) is interpretable in terms of the
correctness of p.

3We define ρ as a generic function of t and p to indicate
that extensions of the CPM could also make use of the entity
representations.
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Training c(p). Following the training regimen of
Guu et al. (2015), we first train c(p) on the edges of
the knowledge graph G before training it on longer
paths. This gives the model the opportunity to build
up paths from meaningful edges.

We train c(p) on a standard contrastive cross-
entropy loss that provides a good fit for the proba-
bilistic interpretation of c(p) that we aim for:

−
∑
p∈P

log c(p)

|P |
−

∑
p′∈P ′

log(1− c(p′))
|P ′|

(5)

where P is the set of correct paths and P ′ a set of
corrupted paths. For single edge training, we use
P = G. In the subsequent path training, we sample
a set of positive informative paths P as described
below in Section 3.4.

We also need to generate a set of negative sam-
ples P ′, which we generate in the same way as
Guu et al. (2015) by type-matched corruption–
see Section 4.2 for a discussion. Given a path
p = (e1, r1, . . . , rk, e2), let F(p) be the set of final
entities of p that can be reached when traversing G
via the relations r1, . . . , rk starting from e1. We are
guaranteed to corrupt p if we replace e2 with any
entity e′2 /∈ F(p) but matches the type of rk, i.e.,
e′2 ∈ D2(rk), with the right domain D2(r) defined
as:

D2(r) = {e2 | ∃e1 : (e1, r, e2) ∈ G} (6)

Analogously, we define I(p) as the set of initial
entities of p. We corrupt e1 by replacing it with
an entity in D1(r1) \ I(p), where D1(r) is the
analogous left domain of r. In the case of TransE,
the parameters to be updated are all ei, rj as well
as b1 (cf. Equation (3)).

Training ρ(t, p). The relevance scores ρ(t, p)
use a similar cross-entropy loss based on c(t, Pt):

−
∑
t∈G

log c(t, Pt)

|G|
−

∑
t′∈G′

log(1− c(t′, Pt′))

|G′|
(7)

where G, the KB, is the set of correct triples and
G′ is a set of triples with either e1 or e2 corrupted
as above. The objective aims to assign correct
triples a score of 1 and incorrect triples a score
of 0, which, together with the fixed semantics of
c(p), encourages ρ(t, p) to estimate the relevance
of paths p for t. Only the parameters of ρ, namely
ar and b2 (compare Equation (4)) are updated.

3.4 Selecting Context Paths

The final part of the Context Path Model (CPM) is
the selection of informative context paths. Since
the number of paths grows exponentially in the
path length, it is infeasible to include all paths in
the CPM. We now propose several criteria to limit
the set of informative context paths Pt for a given
triple t = (e1, r, e2) to keep the model tractable.

Closed paths. Paths that connect the two entities
of a triple express a semantic relation between them.
We therefore restrict paths to start with e1 and end
with e2, i.e., to be closed paths.

Limited length. We limit path lengths to k ≤ 3.
This effectively reduces the number of potential
paths and keeps the paths between e1 and e2 rela-
tively easy to understand.

Filtering redundant paths. To be able to tra-
verse edges of the knowledge graph in both direc-
tions, we need to add the inverse edge (e2, r−1, e1)
for each edge (e1, r, e2) ∈ G to the knowledge
graph G. This has the unwanted consequence
that we obtain redundant paths which comprise
two successive, mutually inverse relations like (e1,
country of birth, contains, contains−1, e2) which
is judged to be highly relevant for country of birth
but for trivial reasons.

We consider the domains D1(ri) and D2(ri)
(compare Equation (6)) to filter out trivial paths
effectively. A path (e1, r1, ..., rk, e2) is defined as
trivial if e1 occurs in any domain of r1, ..., rk ex-
cept D1(r1) or e2 in any domain except D2(rk).

This general definition has the benefit of cap-
turing cases of redundant paths caused by rela-
tions in the KB that are semantically, but not for-
mally, inverses – such as the relations contains and
contained by. It can also be too strict: E.g., the
context path p = (e1, mother of , mother of , e2)
for the triple t = (e1, grandmother of , e2) is ex-
cluded if the mother of e2 participates in the rela-
tion grandmother of . This does however not pose
a major problem in practice.

Negative context paths. The paths described so
far can only be used by the CPM as positive evi-
dence for the correctness of a triple. However, the
CPM can also use incorrect (i.e., correctly absent)
paths as negative evidence (i.e., as evidence that
triples are incorrect). We now describe how such
paths can be found.
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Entities 14,951
Relations 1,345

Triples
Train 483,142

Validation 50,000
Test 59,071

Paths of length 2
Train 3,110,893
Test 81,124

Paths of length 3
Train 3,711,317
Test 101,717

Table 1: Statistics on the FB15K dataset

Assuming the first three criteria described above,
let Pr be the set of correct context paths correspond-
ing to all triples (e1, r, e2) for a fixed relation r. Let
furthermore Sr be the set of relation sequences oc-
curring in paths p = (e1, r1, ..., rk, e2) ∈ Pr. We
can then define the set of context paths Pt:

Pt = {p | (r1, ..., rk) ∈ Sr∧I(p)∪F(p) 6= ∅} (8)

In addition to the positive informative paths de-
scribed so far, Pt contains incorrect paths that con-
nect e1 and e2 by corrupted relation sequences that
conform to the criteria described above. The use
of relation sequences that occur in context paths of
other facts about the same relation makes it more
likely that incorrect paths are relevant for t.

4 Experimental Evaluation

4.1 Dataset
We evaluate our approach on the FB15K dataset
extracted by Bordes et al. (2013) from the FreeBase
knowledge base. Table 1 shows the statistics of
this dataset, including the number of context paths
according to the definition in Section 3.4.

4.2 Experimental Setup
We instantiate the edge scoring model of CPM with
the TransE model (Bordes et al., 2013), as shown in
Eq. (3). We follow the two-step training regimen as
described in Section 3.3. We train 100-dimensional
vectors for all representations learned by the model
(cf. Section 3.2). Optimization proceeds by apply-
ing the gradient-based optimizer Adam (Kingma
and Ba, 2015) to minibatches of size 300. We use
the learning rate of 0.001 for all parts of the model
with the exception of c(p) during path training,
where we use 0.0001 based on performance on the
validation set.

Choice of negative samples. Since KBs ideally
contain only correct information, KBC methods
generally need to generate incorrect samples syn-
thetically. This is generally done by corrupting
either the first entity e1 or the last entity e2 in a
path p to obtain negative samples N (p). Negative
samples are used as parts of the ranking problems
both at train time (cf. Section 3.3) and at test time.
The generation of negative samples is therefore a
crucial part of the experimental setup. Unfortu-
nately, there is little consensus on the details of the
process in the literature. We discuss the two major
approaches below.

The first approach, random corruption, corrupts
paths by replacing e1 or e2 by random entities from
the KB (Bordes et al., 2013; Yang et al., 2015). The
advantage of this approach is that a large number
of negative samples can be generated easily – at
the same time, most corrupted paths are arguably
not particularly plausible confounders, as when a
person is replaced by a country or a record. An al-
ternative approach, type-matched corruption (Guu
et al., 2015), employs only confounders seen with
the same sequence of relations as the original entity
(cf. Section 3.3 for a formal definition). This gen-
erally ensures that the confounders are plausible.
On the downside, there are typically fewer such
confounders.

For our study, we adopt the type-matching cor-
ruption setup, which we find more appropriate in
the context of explainable KBC. For negative sam-
ples with incorrect types, the most natural reason
for rejection is simply the domain mismatch, while
the type-matching setting requires the models to
capture fine-grained semantics within domains.

As a result, the evaluation numbers that we re-
port are not directly comparable to numbers ob-
tained with the random corruption approach, and
tend to be higher. This is because the smaller num-
bers of negative samples lead to simpler ranking
problems. The average size ofN (t) for FB15k test
triples t is 1,738 in the type-matching setting and
29,543 in the setting without type-matching. As
negative samples from the training can end up in
N (t) for test triples t, the average number of un-
seen negative samples in N (t) is 765 in our setup.

We exclude negative samples that result in cor-
rect paths from the training or validation set. Simi-
larly, context paths sampled for training or valida-
tion are excluded from the test set.
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Model Training H@10 MQ

TransE Edges 90.2 97.5
TransE Paths 84.2 (-6.7%) 97.1 (-0.4%)
CPM Paths 83.1 (-7.9%) 96.7 (-0.8%)
CPM\t Paths 80.0 (-11.3%) 96.2 (-1.3%)

Table 2: Results for Evaluation 1 (fact correctness).
Numbers in brackets give relative deterioration com-
pared to TransE (edge). CPM\t is the CPM ignoring
all information about the target triple itself.

4.3 Evaluation 1: Fact Correctness
We carry out three evaluations. We start with
the traditional task of predicting individual facts
(edges). We directly define the evaluation metrics
for paths rather than facts for re-use in Evaluation 2
at the path level. The metrics apply to edges be-
cause they are paths of length 1.

Evaluation metric. We apply the commonly
used ranking metric hits at 10 (H@10), which is
defined as the percentage of correct paths that are
ranked within the top 10 of their respective neg-
ative samples. Additionally, we use the metric
mean quantile (MQ), proposed by Guu et al. (2015),
which computes the share of incorrect paths ranked
lower than the correct path:

MQ =
1

|P |
∑
p∈P

|{p′ ∈ N (p) | c(p′) < c(p)}|
|N (p)|

(9)

In contrast to H@10, MQ accounts for the size of
N (p). For 1 ≤ |N (p)| ≤ 9, H@10 always outputs
1. In the fact correctness evaluation, this is the case
for 1.5% of used test facts. We exclude 1143 facts
with |N (p)| = 0 from the test set because both
H@10 and MQ always output 1 in these cases.

Results. Table 2 presents the results of the rank-
ing evaluation for fact prediction. We compare the
full CPM model against TransE, the edge scorer
“inside” our CPM (cf. Section 4.2), in both its edge-
trained and path-trained versions4 (cf. Section 3.3).
We also consider CPM\t, a variant of the CPM
that excludes t from Pt, that is, does not use any
information about the predicted triple. This model
examines to which degree the correctness of triples
t can be predicted purely on the basis of its KB
context. This gives us four models to compare.

4TransE can be seen as a special case of the CPM when all
paths except for the triple itself are assigned a relevance of 0.
The reported TransE scores are measured on the instantiation
of c(·) with TransE.

Edge training Path training

Length H@10 MQ H@10 MQ

1 90.2 97.5 84.2 97.1
2 73.4 94.1 82.7 97.5
3 54.0 89.0 64.4 93.3

Table 3: Results for Evaluation 2 (path correctness),
varying path length and training regimen. Best results
for each length shown in boldface.

We find that the CPM performs somewhat worse
than the best model overall, the edge-trained
TransE, for both metrics: the drop is noticeable
for H@10, and mild for MQ. We believe that the
drop is primarily due to two factors: First, path
training gives rise to a different optimization prob-
lem from edge training, which appears to be more
difficult on the FB15K dataset.5 In fact, as the
second row shows, training the original TransE on
paths leads to a comparable drop in H@10. Second,
the bad results for CPM\t, which are still substan-
tially worse than for the plain CPM, indicate that,
unsurprisingly, the most important source of infor-
mation for the prediction of a single triple is the
semantics of the triple itself. In other words, the
contextual component that CPM adds does not pro-
vide additional support to single edge prediction
at the technical level (we consider the produced
justifications in the third evaluation).

In sum, CPM introduces a mild loss of quality
in the prediction of individual facts. Given that the
CPM has a more complex objective – modeling the
correctness of facts/paths as well as modeling justi-
fications – we see this nevertheless as a promising
first evaluation result.

4.4 Evaluation 2: Path Correctness

The second evaluation concentrates on the CPM
and its performance on the task it is designed for,
namely predicting the correctness of longer paths.
Table 3 shows results separated by path length
(1 through 3). The results for path length 1 are, by
definition, identical to the corresponding conditions
in Evaluation 1, with an advantage for single-edge
training. This effect reverses for the longer paths:
while the edge-trained model loses substantially
in quality because it fails to capture dependencies
among edges, the path-trained model holds up well

5Path training appears to be beneficial on other datasets,
as reported by Guu et al. (2015).
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for longer paths. We see these results as valida-
tion of our choice of a path-based training regimen
(Section 3.3).

4.5 Evaluation 3: Path Relevance
Our third evaluation focuses on relevance, that is,
the relation between paths and the triples that they
are supposed to provide evidence for or against.
Since our goal is to use these paths as human-
interpretable justifications for the triples, we per-
form a small annotation study of the CPM output.

Dataset. We manually select 24 relations for an-
notation whose relevance can arguably be judged
without in-depth expertise of specific domains. The
selected relations account for 13.2% of the facts in
the test set. For each relation, we randomly sam-
ple two correct facts from the test set and obtain
incorrect facts by corrupting either e1 or e2. This
results in 48 positive and 48 negative facts. We
furthermore exclude 17 triples for which no path
(other than the trivial t itself) was found with a
normalized relevance score of at least 10%. For the
remaining 79 triples, we annotate all paths with a
normalized relevance score of at least 5% – again,
with the exception of t itself. We also do not con-
sider paths with relations from the FB15K domains
dataworld and commons because they encode only
KB-specific meta information. This results in on
average 2.45 context paths annotated per triple, ac-
counting for 80% of the assigned relevance scores.

Annotation. As motivated in Section 3.1, the rel-
evance of context paths Pt describes how strongly
their correctness is correlated with the correctness
of t. In the annotation we distinguish between three
levels (categories) of relevance:

1. Equivalent: The correctness of p is logically
equivalent to the correctness of t.

2. Probable: The path p being correct makes
the correctness of t significantly more likely,
or p being incorrect makes the correctness of t
significantly less likely. However, p provides
no guarantee for the (in-)correctness of t.

3. Unrelated: The correctness of p and t are not
strongly correlated. This class comprises all
cases that are not in category 1 or 2.

Qualitative Analysis. Table 4 shows examples
of the three annotated categories, both for positive
cases (presence of p supports t) and negative cases

(absence of p casts doubt in t). Negative cases are
marked with asterisks (∗), and since all absent paths
are corrupted versions of paths in the KB, the point
of corruption is marked as well.

The ’equivalent’ category shows two cases
of equivalence between two Freebase relations
– one positive (profession is supported by peo-
ple with profession−1) and one negative (is-
lands in group is implausible if not accompanied
by island group−1) – as well as one case of mu-
tual entailment (the CAF has a football league iff
there is a team that is a football team and plays in
the CAF). The ’probable’ category contains cases
of defeasible inferences – e.g., Hindi is the most
widely spoken language in India, but only by just
over half of the population. The ’unrelated’ cat-
egory, finally, shows some paths that are largely
irrelevant for their facts (e.g., someone is born in
a place vs. someone often eats at a restaurant that
uses the same currency as the birth place). The
examples demonstrate that CPM is indeed capable
of capturing meaningful relations between triples
and the paths in its context.

Quantitative Analysis. Table 5 shows that just
over half of all pairs we consider falls into the
’equivalent’ category. These pairs are assigned a
mean relevance of 0.47, and their share of the total
sum of relevance scores is 72%. Another quarter
of the annotated pairs falls into the ’probable’ cate-
gory, with a considerably lower mean relevance of
0.15, and a share of 15% of the relevance scores.
The final quarter of pairs makes up the ’unrelated’
category, with similar mean relevance and share of
relevance scores.

We see this outcome as rather positive: about
half of the paths identified by the CPM are equiva-
lent to the triple in question, with another quarter
providing probable evidence. Furthermore, the rel-
evance scores manage very well to separate the
’equivalent’ and ’probable’ categories. The sepa-
ration between ’probable’ and ’unrelated’ is weak,
but may be due to our exclusion of the lowest-
relevance paths from annotation (see above): these
would arguably mostly be mostly ’unrelated’ and
thus decrease the mean relevance for this category.

5 Conclusion

This paper has considered the generation of expla-
nations for predictions of facts in knowledge base
completion (KBC). Our contribution is the Context
Path Model (CPM), which provides explanations
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Triple Context path
eq

ui
va

le
nt

(Jon Favreau, profession, Film director) (Jon Favreau, people with profession−1, Film director)
(Football, leagues,
Confed. of African Football)

(Football, teams, Zimbabwe national football team,
league participation/team−1, Confed. of African Football)

∗(Hawaiian Islands, islands in group,
Ireland)

∗(Hawaiian Islands [corrupted from: British Isles], island group−1,
Ireland)

pr
ob

ab
le (Feroz Khan, languages, Hindi) (Feroz Khan, nationality, India, countries spoken in−1, Hindi)

(Naval Postgraduate School, containedby,
USA)

(Naval Postgraduate School, headquarters/state, California,
representatives, Richard Nixon, nationality, USA)

un
re

la
te

d (Nashua, people born here, Mandy Moore) (Nashua, currency, US Dollar, liabilities in currency−1, Starbucks,
eats at−1, Mandy Moore)

∗(Jared Harris, parents, Aaron Spelling) ∗(Jared Harris, award nominee−1, Mad Men [corrupted from
Beverly Hills, 90210], tv program creator, Aaron Spelling)

Table 4: Examples of triple–path pairs, with entities in boldface, and simplified freebase relations. Incorrect
triples/paths marked with ∗, and point of corruption marked.

Annotation category equiv. prob. unrel.

Number of pairs 98 49 47
Share of pairs 51% 25% 24%

Mean Relevance ρ 0.47 0.15 0.12
Share of total

∑
ρ 72% 15% 13%

Table 5: Statistics for annotated triple–path pairs

by identifying context paths which are highly corre-
lated with the fact: if the path is in the KB, then the
triple should be as well; conversely, if the path is
not in the KB, then the triple should not be either.

We demonstrate the usefulness of our model by
instantiating its fact scorer with a simple but ef-
fective KBC model, TransE (Bordes et al., 2013).
We find that the performance of the CPM is close
to TransE, and manual evaluation confirms that
most of the paths the model uses as explanation are
meaningful and provide evidence for assessing the
correctness of facts. This shows the potential of
using paths as explanations for KBC predictions.

Beyond the KBC setting, the output of the CPM
can also arguably be useful for a structural analysis
of knowledge bases, for example the systematic
identification of equivalences among relations or
between relations and paths, to improve the consis-
tency of the KB, e.g., by replacing equivalent paths
by a canonical version.

The current study has three main limitations.
First, we only apply the CPM to TransE. Future
work should investigate the practical usefulness of
the CPM for other composable KBC models like
Bilinear-diag. Second, we use strong heuristics
to limit the set of paths under consideration; fu-

ture work should attempt to relax these. Third, the
current CPM can only capture paths that are sym-
metrically (cor-)related with the fact in question,
corresponding to strict or probabilistic entailment.
A promising avenue for future work is to general-
ize the model to asymmetrical relations, i.e., find
paths that represent (just) necessary or sufficient
conditions for a fact, in order to enable a more com-
prehensive analysis of the inferential structures in
KBs (Hitzler et al., 2009).
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