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Abstract

Recently, several methods have been proposed
to explain the predictions of recurrent neu-
ral networks (RNNs), in particular of LSTMs.
The goal of these methods is to understand the
network’s decisions by assigning to each in-
put variable, e.g., a word, a relevance indicat-
ing to which extent it contributed to a partic-
ular prediction. In previous works, some of
these methods were not yet compared to one
another, or were evaluated only qualitatively.
We close this gap by systematically and quan-
titatively comparing these methods in differ-
ent settings, namely (1) a toy arithmetic task
which we use as a sanity check, (2) a five-class
sentiment prediction of movie reviews, and be-
sides (3) we explore the usefulness of word
relevances to build sentence-level representa-
tions. Lastly, using the method that performed
best in our experiments, we show how specific
linguistic phenomena such as the negation in
sentiment analysis reflect in terms of relevance
patterns, and how the relevance visualization
can help to understand the misclassification of
individual samples.

1 Introduction

Recurrent neural networks such as LSTMs
(Hochreiter and Schmidhuber, 1997) are a stan-
dard building block for understanding and gener-
ating text data in NLP. They find usage in pure
NLP applications, such as abstractive summa-
rization (Chopra et al., 2016), machine transla-
tion (Bahdanau et al., 2015), textual entailment
(Rocktäschel et al., 2016); as well as in multi-
modal tasks involving NLP, such as image cap-
tioning (Karpathy and Fei-Fei, 2015), visual ques-
tion answering (Xu and Saenko, 2016) or lip read-
ing (Chung et al., 2017).

As these models become more and more
widespread due to their predictive performance,
there is also a need to understand why they took

a particular decision, i.e., when the input is a se-
quence of words: which words are determinant
for the final decision? This information is crucial
to unmask “Clever Hans” predictors (Lapuschkin
et al., 2019), and to allow for transparency of the
decision-making process (EU-GDPR, 2016).

Early works on explaining neural network pre-
dictions include Baehrens et al. (2010); Zeiler and
Fergus (2014); Simonyan et al. (2014); Springen-
berg et al. (2015); Bach et al. (2015); Alain and
Bengio (2017), with several works focusing on ex-
plaining the decisions of convolutional neural net-
works (CNNs) for image recognition. More re-
cently, this topic found a growing interest within
NLP, amongst others to explain the decisions of
general CNN classifiers (Arras et al., 2017a; Ja-
covi et al., 2018), and more particularly to explain
the predictions of recurrent neural networks (Li
et al., 2016, 2017; Arras et al., 2017b; Ding et al.,
2017; Murdoch et al., 2018; Poerner et al., 2018).

In this work, we focus on RNN explanation
methods that are solely based on a trained neu-
ral network model and a single test data point1.
Thus, methods that use additional information,
such as training data statistics, sampling, or are
optimization-based (Ribeiro et al., 2016; Lund-
berg and Lee, 2017; Chen et al., 2018) are out
of our scope. Among the methods we consider,
we note that the method of Murdoch et al. (2018)
was not yet compared against Arras et al. (2017b);
Ding et al. (2017); and that the method of Ding
et al. (2017) was validated only visually. More-
over, to the best of our knowledge, no recurrent
neural network explanation method was tested so
far on a toy problem where the ground truth rele-

1These methods are deterministic, and are essentially
based on a decomposition of the model’s current prediction.
Thereby they intend to reflect the sole model’s “point of
view” on the test data point, and hence are not meant to pro-
vide an averaged, smoothed or denoised explanation of the
prediction by additionally exploiting the data’s distribution.
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vance value is known.
Therefore our contributions are the follow-

ing: we evaluate and compare the aforementioned
methods, using two different experimental setups,
thereby we assess basic properties and differences
between the explanation methods. Along-the-way
we purposely adapted a simple toy task, to serve
as a testbed for recurrent neural networks explana-
tions. Lastly, we explore how word relevances can
be used to build sentence-level representations,
and demonstrate how the relevance visualization
can help to understand the (mis-)classification of
selected samples w.r.t. semantic composition.

2 Explaining Recurrent Neural Network
Predictions

First, let us settle some notations. We suppose
given a trained recurrent neural network based
model, which has learned some scalar-valued pre-
diction function fc(·), for each class c of a clas-
sification problem. Further, we denote by x =
(x1,x2, ...,xT ) an unseen input data point, where
xt represents the t-th input vector of dimensionD,
within the input sequence x of length T . In NLP,
the vectors xt are typically word embeddings, and
x may be a sentence.

Now, we are interested in methods that can ex-
plain the network’s prediction fc(x) for the in-
put x, and for a chosen target class c, by assign-
ing a scalar relevance value to each input variable
or word. This relevance is meant to quantify the
variable’s or word’s importance for or against a
model’s prediction towards the class c. We denote
by Rxi (index i) the relevance of a single vari-
able. This means xi stands for any arbitrary in-
put variable xt,d representing the d-th dimension,
d ∈ {1, ..., D}, of an input vector xt. Further, we
refer to Rxt (index t) to designate the relevance
value of an entire input vector or word xt. Note
that, for most methods, one can obtain a word-
level relevance value by simply summing up the
relevances over the word embedding dimensions,
i.e. Rxt =

∑
d∈{1,...,D}Rxt,d .

2.1 Gradient-based explanation

One standard approach to obtain relevances is
based on partial derivatives of the prediction func-
tion: Rxi =

∣∣∂fc
∂xi

(x)
∣∣, or Rxi =

(∂fc
∂xi

(x)
)2 (Di-

mopoulos et al., 1995; Gevrey et al., 2003; Si-
monyan et al., 2014; Li et al., 2016).

In NLP this technique was employed to visual-

ize the relevance of single input variables in RNNs
for sentiment classification (Li et al., 2016). We
use the latter formulation of relevance and denote
it as Gradient. With this definition the relevance
of an entire word is simply the squared L2-norm
of the prediction function’s gradient w.r.t. the word
embedding, i.e. Rxt = ‖∇xt fc(x)‖22 .

A slight variation of this approach uses partial
derivatives multiplied by the variable’s value, i.e.
Rxi = ∂fc

∂xi
(x) · xi. Hence, the word relevance is a

dot product between prediction function gradient
and word embedding: Rxt = (∇xt fc(x))T xt

(Denil et al., 2015). We refer to this variant as
Gradient×Input.

Both variants are general and can be applied to
any neural network. They are computationally ef-
ficient and require one forward and backward pass
through the net.

2.2 Occlusion-based explanation

Another method to assign relevances to single
variables, or entire words, is by occluding them
in the input, and tracking the difference in the net-
work’s prediction w.r.t. a prediction on the orig-
inal unmodified input (Zeiler and Fergus, 2014;
Li et al., 2017). In computer vision the occlusion
is performed by replacing an image region with
a grey or zero-valued square (Zeiler and Fergus,
2014). In NLP word vectors, or single of its com-
ponents, are replaced by zero; in the case of re-
current neural networks, the technique was applied
to identify important words for sentiment analysis
(Li et al., 2017).

Practically, the relevance can be computed in
two ways: in terms of prediction function dif-
ferences, or in the case of a classification prob-
lem, using a difference of probabilities, i.e. Rxi =
fc(x)−fc(x|xi=0), orRxi = Pc(x)−Pc(x|xi=0),

where Pc(·) = exp fc(·)∑
k exp fk(·) . We refer to the

former as Occlusionf-diff, and to the latter as
OcclusionP-diff. Both variants can also be used to
estimate the relevance of an entire word, in this
case the corresponding word embedding is set to
zero in the input. This type of explanation is
computationally expensive and requires T forward
passes through the network to determine one rele-
vance value per word in the input sequence x.

A slight variation of the above approach uses
word omission (similarly to Kádár et al., 2017) in-
stead of occlusion. On a morphosyntactic agree-
ment experiment (see Poerner et al., 2018), omis-
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sion was shown to deliver inferior results, there-
fore we consider only occlusion-based relevance.

2.3 Layer-wise relevance propagation

A general method to determine input space rele-
vances based on a backward decomposition of the
neural network prediction function is layer-wise
relevance propagation (LRP) (Bach et al., 2015).
It was originally proposed to explain feed-forward
neural networks such as convolutional neural net-
works (Bach et al., 2015; Lapuschkin et al., 2016),
and was recently extended to recurrent neural net-
works (Arras et al., 2017b; Ding et al., 2017;
Arjona-Medina et al., 2018).

LRP consists in a standard forward pass, fol-
lowed by a specific backward pass which is de-
fined for each type of layer of a neural network
by dedicated propagation rules. Via this backward
pass, each neuron in the network gets assigned a
relevance, starting with the output neuron whose
relevance is set to the prediction function’s value,
i.e. to fc(x). Each LRP propagation rule redis-
tributes iteratively, layer-by-layer, the relevance
from higher-layer neurons to lower-layer neurons,
and verifies a relevance conservation property2.
These rules were initially proposed in Bach et al.
(2015) and were subsequently justified by Deep
Taylor decomposition (Montavon et al., 2017) for
deep ReLU nets.

In practice, for a linear layer of the form zj =∑
i ziwij+bj , and given the relevances of the out-

put neurons Rj , the input neurons’ relevances Ri
are computed through the following summation:
Ri =

∑
j

zi·wij

zj + ε·sign(zj) ·Rj , where ε is a stabilizer
(small positive number); this rule is commonly re-
ferred as ε-LRP or ε-rule3. With this redistribution
the relevance is conserved, up to the relevance as-
signed to the bias and “absorbed” by the stabilizer.

Further, for an element-wise nonlinear activa-
tion layer, the output neurons’ relevances are re-
distributed identically onto the input neurons.

In addition to the above rules, in the case of
a multiplicative layer of the form zj = zg · zs,
Arras et al. (2017b) proposed to redistribute zero
relevance to the gate (the neuron that is sigmoid

2Methods based on a similar conservation principle in-
clude contribution propagation (Landecker et al., 2013),
Deep Taylor decomposition (Montavon et al., 2017), and
DeepLIFT (Shrikumar et al., 2017).

3Such a rule was employed by previous works with recur-
rent neural networks (Arras et al., 2017b; Ding et al., 2017;
Arjona-Medina et al., 2018), although there exist also other
LRP rules for linear layers (see e.g. Montavon et al., 2018)

activated) i.e. Rg = 0, and assign all the rele-
vance to the remaining signal neuron (which is
usually tanh activated) i.e. Rs = Rj . We call this
LRP variant LRP-all, which stands for “signal-
take-all” redistribution. An alternative rule was
proposed in Ding et al. (2017); Arjona-Medina
et al. (2018), where the output neuron’s relevance
Rj is redistributed onto the input neurons via:
Rg =

zg
zg+zs

Rj and Rs = zs
zg+zs

Rj . We re-
fer to this variant as LRP-prop, for “proportional”
redistribution. We also consider two other vari-
ants. The first one uses absolute values instead:
Rg =

|zg |
|zg |+|zs|Rj and Rs = |zs|

|zg |+|zs|Rj , we
call it LRP-abs. The second uses equal redistri-
bution: Rg = Rs = 0.5 · Rj (Arjona-Medina
et al., 2018), we denote it as LRP-half. We further
add a stabilizing term to the denominator of the
LRP-prop and LRP-abs formulas, it has the form
ε · sign(zg + zs) in the first case, and simply ε in
the latter.

Since the relevance can be computed in one for-
ward and backward pass, the LRP method is ef-
ficient. Besides, it is general as it can be ap-
plied to any neural network made of the above lay-
ers: it was applied successfully to CNNs, LSTMs,
GRUs, and QRNNs (Poerner et al., 2018; Yang
et al., 2018)4.

2.4 Contextual Decomposition

Another method, specific to LSTMs, is contextual
decomposition (CD) (Murdoch et al., 2018). It
is based on a linearization of the activation func-
tions that enables to decompose the LSTM for-
ward pass by distinguishing between two contri-
butions: those made by a chosen contiguous sub-
sequence (a word or a phrase) within the input se-
quence x, and those made by the remaining part
of the input. This decomposition results in a fi-
nal hidden state vector hT (see the Appendix for
a full specification of the LSTM architecture) that
can be rewritten as a sum of two vectors: βT and
γT , where the former corresponds to the contribu-
tion from the “relevant” part of interest, and the
latter stems from the “irrelevant” part. When the
LSTM is followed by a linear output layer of the
form wTc hT + bc for class c, then the relevance of
a given word (or phrase) and for the target class c,
is given by the dot product: wTc βT .

4Note that in the present work we apply LRP to stan-
dard LSTMs, though Arjona-Medina et al. (2018) showed
that some LRP rules for product layers can benefit from si-
multaneously adapting the LSTM architecture.
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Method Relevance Formulation Redistributed Quantity (
∑

iRxi) Complexity

Gradient Rxi =
(∂fc
∂xi

(x)
)2 ‖∇x fc(x)‖22 Θ(2 · T )

Gradient×Input Rxi = ∂fc
∂xi

(x) · xi (∇x fc(x))T x Θ(2 · T )

Occlusion Rxi = fc(x)− fc(x|xi=0) - Θ(T 2)

LRP backward decomposition of the neurons’ relevance fc(x) Θ(2 · T )
CD linearization of the activation functions fc(x) Θ(T 2)

Table 1: Overview of the considered explanation methods. The last column indicates the computational complexity
to obtain one relevance value per input vector, or word, where T is the length of the input sequence.

The method is computationally expensive as it
requires T forward passes through the LSTM to
compute one relevance value per word. Although
it was recently extended to CNNs (Singh et al.,
2019; Godin et al., 2018), it is yet not clear how to
compute the CD relevance in other recurrent archi-
tectures, or in networks with multi-modal inputs.

See Table 1 for an overview of the explanation
methods considered in the present work.

2.5 Methods not considered

Other methods to compute relevances include In-
tegrated Gradients (Sundararajan et al., 2017). It
was previously compared against CD in Murdoch
et al. (2018), and against the LRP variant of Ar-
ras et al. (2017b) in Poerner et al. (2018), where
in both cases it was shown to deliver inferior
results. Another method is DeepLIFT (Shriku-
mar et al., 2017), however, according to its au-
thors, DeepLIFT was not designed for multiplica-
tive connections, and its extension to recurrent net-
works remains an open question5. For a compar-
ative study of explanation methods with a main
focus on feed-forward nets, see Ancona et al.
(2018)6. For a broad evaluation of explanations,
including several recurrent architectures, we refer
to Poerner et al. (2018). Note that the latter didn’t
include the CD method of Murdoch et al. (2018),
and the LRP variant of Ding et al. (2017), which
we compare here.

5Though Poerner et al. (2018) showed that, when using
only the Rescale rule of DeepLIFT, and combining it with
the product rule proposed in Arras et al. (2017b), then the
resulting explanations perform on-par with the LRP method
of Arras et al. (2017b)

6Note that in order to redistribute the relevance through
product layers, Ancona et al. (2018) simply relied on standard
gradient backpropagation. Such a redistribution scheme is
not appropriate for methods such as LRP, since it violates
the relevance conservation property, hence their results for
recurrent nets are not conclusive.

3 Evaluating Explanations

3.1 Previous work

How to generally and objectively evaluate expla-
nations, without resorting to ad-hoc evaluation
procedures that are domain and task specific, is
still active research (Alishahi et al., 2019; Be-
linkov and Glass, 2019).

In computer vision, it has become common
practice to conduct a perturbation analysis (Bach
et al., 2015; Samek et al., 2017; Shrikumar et al.,
2017; Lundberg and Lee, 2017; Ancona et al.,
2018; Chen et al., 2018; Morcos et al., 2018):
hereby a few pixels in an image are perturbated
(e.g. set to zero or blurred) according to their rel-
evance (most relevant or least relevant pixels are
perturbated first), and then the impact on the net-
work’s prediction is measured. The higher the im-
pact, the more accurate is the relevance.

Other studies explored in which way relevances
are consistent or helpful w.r.t. human judgment
(Ribeiro et al., 2016; Lundberg and Lee, 2017;
Nguyen, 2018). Some other works relied solely
on the visual inspection of a few selected rel-
evance heatmaps (Li et al., 2016; Sundararajan
et al., 2017; Ding et al., 2017).

In NLP, Murdoch et al. (2018) proposed to
measure the correlation between word relevances
obtained on an LSTM, and the word impor-
tance scores obtained from a linear Bag-of-Words.
However, the latter model ignores the word order-
ing and context, which the LSTM can take into
account, hence this type of evaluation is not ad-
equate7. Other evaluations in NLP are task spe-
cific. For example Poerner et al. (2018) use the
subject-verb agreement task proposed by Linzen
et al. (2016), where the goal is to predict a verb’s

7The same way Murdoch et al. (2018) try to “match”
phrase-level relevances with n-gram linear classifier scores
or human annotated phrases, but again this might be mislead-
ing, since the latter scores or annotations ignore the whole
sentence context.
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number, and use the relevances to verify that the
most relevant word is indeed the correct subject
(or a noun with the predicted number).

Other studies include an evaluation on a syn-
thetic task: Yang et al. (2018) generated random
sequences of MNIST digits and train an LSTM to
predict if a sequence contains zero digits or not,
and verify that the explanation indeed assigns a
high relevance to the zero digits’ positions.

A further approach uses randomization of the
model weights and data as sanity checks (Adebayo
et al., 2018) to verify that the explanations are in-
deed dependent on the model and data. Lastly,
some evaluations are “indirect” and use relevances
to solve a broader task, e.g. to build document-
level representations (Arras et al., 2017a), or to
redistribute predicted rewards in reinforcement
learning (Arjona-Medina et al., 2018).

3.2 Toy Arithmetic Task

As a first evaluation, we ask the following ques-
tion: if we add two numbers within an input se-
quence, can we recover from the relevance the
true input values? This amounts to consider
the adding problem (Hochreiter and Schmidhuber,
1996), which is typically used to test the long-
range capabilities of recurrent models (Martens
and Sutskever, 2011; Le et al., 2015). We use it
here to test the faithfulness of explanations. To
that end, we define a setup similar to Hochre-
iter and Schmidhuber (1996), but without explicit
markers to identify the sequence start and end, and
the two numbers to be added. Our idea is that, in
general, it is not clear what the ground truth rele-
vance for a marker should be, and we want only
the relevant numbers in the input sequence to get a
non-zero relevance. Hence, we represent the input
sequence x = (x1,x2, ...,xT ) of length T , with
two-dimensional input vectors as:

( 0 0 0 na 0 0 0 nb 0 0 0
n1 ... na−1 0 na+1 ... nb−1 0 nb+1 ... nT

)

where the non-zero entries nt are random real
numbers, and the two relevant positions a and b are
sampled uniformly among {1, ..., T} with a < b.

More specifically, we consider two tasks that
can be solved by an LSTM model with a hidden
layer of size one (followed by a linear output layer
with no bias8): the addition of signed numbers (nt

8We omit the output layer bias since all considered expla-
nation methods ignore it in the relevance computation, and
we want to explain the “full” prediction function’s value.

is sampled uniformly from [−1,−0.5]∪ [0.5, 1.0])
and the subtraction of positive numbers (nt is sam-
pled uniformly from [0.5, 1.0]9). In the former
case the target output y is na + nb, in the latter
it is na − nb. During training we minimize Mean
Squared Error (MSE). To ensure that train/val/test
sets do not overlap we use 10000 sequences with
lengths T ∈ {4, ..., 10} for training, 2500 se-
quences with T ∈ {11, 12} for validation, and
2500 sequences with T ∈ {13, 14} as test set.
For each task we train 50 LSTMs with a validation
MSE < 10−4, the resulting test MSE is < 10−4.

Then, given the model’s predicted output ypred,
we compute one relevance value Rxt per input
vector xt (for the occlusion method we compute
only Occlusionf-diff since the task is a regression;
we also don’t report Gradient results since it per-
forms poorly). Finally, we track the correlation
between the relevances and the two input numbers
na and nb. We also track the portion of relevance
assigned to the relevant time steps, compared to
the relevance for all time steps. Lastly, we cal-
culate the “MSE” between the relevances for the
relevant positions a and b and the model’s output.
Our results are compiled in Table 2.

Interestingly, we note that on the addition task
several methods perform well and produce a rele-
vance that correlates perfectly with the input num-
bers: Gradient×Input, Occlusion, LRP-all and
CD (they are highlighted in bold in the Table).
They further assign all the relevance to the time
steps a and b and almost no relevance to the rest
of the input; and present a relevance that sum up
to the predicted output. However, on subtraction,
only Gradient×Input and LRP-all present a corre-
lation of near one with na, and of near minus one
with nb. Likewise these methods assign only rele-
vance to the relevant positions, and redistribute the
predicted output entirely onto these positions.

The main difference between our addition and
subtraction tasks, is that the former requires only
summing up the first dimension of the input vec-
tors and can be solved by a Bag-of-Words ap-
proach (i.e. by ignoring the ordering of the in-
puts), while our subtraction task is truly sequen-
tial and requires the LSTM model to remember
which number arrived first, and which number ar-
rived second, via exploiting the gating mechanism.

Since in NLP several applications require the
9We avoid small numbers by using 0.5 as a minimum

magnitude only to simplify learning, since otherwise this
would encourage the model weights to grow rapidly.
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ρ(Rxa , na) ρ(Rxb
, nb) E[

|Rxa |+|Rxb
|∑

t |Rxt |
] E[((Rxa + Rxb

) − ypred)
2]

(in %) (in %) (in %) (“MSE”)
Toy Task Addition

Gradient×Input 99.960 (0.017) 99.954 (0.019) 99.68 (0.53) 24.10−4 (8.10−4)
Occlusion 99.990 (0.004) 99.990 (0.004) 99.82 (0.27) 20.10−5 (8.10−5)
LRP-prop 0.785 (3.619) 10.111 (12.362) 18.14 (4.23) 1.3 (1.0)
LRP-abs 7.002 (6.224) 12.410 (17.440) 18.01 (4.48) 1.3 (1.0)
LRP-half 29.035 (9.478) 51.460 (19.939) 54.09 (17.53) 1.1 (0.3)
LRP-all 99.995 (0.002) 99.995 (0.002) 99.95 (0.05) 2.10−6 (4.10−6)
CD 99.997 (0.002) 99.997 (0.002) 99.92 (0.06) 4.10−5 (12.10−5)

Toy Task Subtraction

Gradient×Input 97.9 (1.6) -98.8 (0.6) 98.3 (0.6) 6.10−4 (4.10−4)
Occlusion 99.0 (2.0) -69.0 (19.1) 25.4 (16.8) 0.05 (0.08)
LRP-prop 3.1 (4.8) -8.4 (18.9) 15.0 (2.4) 0.04 (0.02)
LRP-abs 1.2 (7.6) -23.0 (11.1) 15.1 (1.6) 0.04 (0.002)
LRP-half 7.7 (15.3) -28.9 (6.4) 42.3 (8.3) 0.05 (0.06)
LRP-all 98.5 (3.5) -99.3 (1.3) 99.3 (0.6) 8.10−4 (25.10−4)
CD -25.9 (39.1) -50.0 (29.2) 49.4 (26.1) 0.05 (0.05)

Table 2: Statistics of the relevance w.r.t. the input numbers na and nb and the predicted output ypred, on toy
arithmetic tasks. ρ denotes the correlation and E the mean. Each statistic is computed over 2500 test data points.
Reported are the mean (and standard deviation in parenthesis) over 50 trained LSTM models.

word ordering to be taken into account to accu-
rately capture a sentence’s meaning (e.g. in senti-
ment analysis or in machine translation), our ex-
periment, albeit being an abstract numerical task,
is pertinent and can serve as a first sanity check to
check whether the relevance can reflect the order-
ing and the value of the input vectors.

Hence we view our toy task as a minimal and
unambiguous test (which besides being sequen-
tial, also exhibits a linear input-output relation-
ship) that acts as a necessary (though not suffi-
cient) requirement for a recurrent neural network
explanation method to be trustworthy in a more
complex setup, where the ground truth relevance
is less clear.

For the Occlusion method, the unreliability is
probably due to the fact that the neural network
has always seen two “relevant” input numbers in
the input sequence during training, and therefore
gets confused when one of these inputs is missing
at the time of the relevance computation (“out-of-
sample” effect). For CD, the weakness may come
from the saturation of the activations, in particu-
lar of the gates, which makes their linearization
induced by the CD decomposition inaccurate.

3.3 5-Class Sentiment Prediction
As a sentiment analysis dataset, we use the Stan-
ford Sentiment Treebank (Socher et al., 2013)
which contains labels (very negative −−, nega-
tive −, neutral 0, positive +, very positive ++)
for resp. 8544/1101/2210 train/val/test sentences
and their constituent phrases. As a classifier we
employ the bidirectional LSTM from Li et al.

(2016)10, which achieves 82.9% binary, resp.
46.3% five-class, accuracy on full sentences.

Perturbation Experiment. In order to evalu-
ate the selectivity of word relevances, we perform
a perturbation experiment aka “pixel-flipping“ in
computer vision (Bach et al., 2015; Samek et al.,
2017), i.e. we remove words from the input sen-
tences according to their relevance, and track the
impact on the classification performance. A sim-
ilar experiment has been conducted in previous
NLP studies (Arras et al., 2016; Nguyen, 2018;
Chen et al., 2018); and besides, such type of ex-
periment can be seen as the input space pendant
of ablation, which is commonly used to identify
“relevant” intermediate neurons, e.g. in Lakretz
et al. (2019). For our experiment we retain test
sentences with a length≥ 10 words (i.e. 1849 sen-
tences), and remove 1, 2, and 3 words per sen-
tence11, according to their relevance obtained on
the original sentence with the true class as the tar-
get class. Our results are reported in Table 3. Note
that we distinguish between sentences that are ini-
tially correctly classified, and those that are ini-
tially falsely classified by the LSTM model. Fur-
ther, in order to condense the “ablation” results in
a single number per method, we compute the ac-
curacy decrease (resp. increase) proportionally to
two cases: i) random removal, and ii) removal ac-

10https://github.com/jiweil/Visualizing-
and-Understanding-Neural-Models-in-NLP

11In order to remove a word we simply discard it from the
input sentence and concatenate the remaining parts. We also
tried setting the word embeddings to zero, which gave us sim-
ilar results.

https://github.com/jiweil/Visualizing-and-Understanding-Neural-Models-in-NLP
https://github.com/jiweil/Visualizing-and-Understanding-Neural-Models-in-NLP
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Accuracy Change (in %) random Grad. Grad.×Input LRP-prop LRP-abs LRP-half LRP-all CD Occlusionf-diff OcclusionP-diff

decreasing order (std<16) 0 35 66 15 -1 -3 97 92 96 100
increasing order (std<5) 0 -18 31 11 -1 3 49 36 50 100

Table 3: Average change in accuracy when removing up to 3 words per sentence, either in decreasing order of
their relevance (starting with correctly classified sentences), or in increasing order of their relevance (starting
with falsely classified sentences). In both cases, the relevance is computed with the true class as the target class.
Results are reported proportionally to the changes for i) random removal (0% change) and ii) removal based on
OcclusionP-diff (100% change). For all methods, the higher the reported value the better. We boldface those methods
that perform on-par with the occlusion-based relevances.

cording to OcclusionP-diff. Our idea is that random
removal is the least informative approach, while
OcclusionP-diff is the most informative one, since
the relevance for the latter is computed in a sim-
ilar way to the perturbation experiment itself, i.e.
by deleting words from the input and tracking the
change in the classifier’s prediction. Thus, with
this normalization, we expect the accuracy change
(in %) to be mainly rescaled to the range [0, 100].

When removing words in decreasing order of
their relevance, we observe that LRP-all and CD
perform on-par with the occlusion-based rele-
vance, with near 100% accuracy change, followed
by Gradient×Input which performs only 66%.

When removing words in increasing or-
der of their relevance (which mainly corre-
sponds to remove words with a negative rele-
vance), OcclusionP-diff performs best, followed by
Occlusionf-diff and LRP-all (both around 50%),
then CD (36%). Unsurprisingly, Gradient per-
forms worse than random, since its relevance is
positive and thus low relevance is more likely to
identify unimportant words for the classification
(such as stop words), rather than identify words
that contradict a decision, as noticed in Arras et al.
(2017b). Lastly Occlusionf-diff is less informative
than OcclusionP-diff, since the former is not nor-
malized by the classification scores for all classes.

This analysis revealed that methods such as
LRP-all and CD can detect influential words sup-
porting (resp. contradicting) a specific classifica-
tion decision, although they were not tuned to-
wards the perturbation criterion, as opposed to Oc-
clusion (which can be seen as the brute force ap-
proach to determine the inputs the model is the
most sensitive to), whereas gradient-based meth-
ods are less accurate in this respect. Remarkably
LRP-all only require one forward and backward
pass to provide this information.

Sentence-Level Representations. In addition
to testing selectivity, we explore if the word rel-

evance can be leveraged to build sentence-level
representations that present some regularities akin
word2vec vectors. For this purpose we lin-
early combine word embeddings using their re-
spective relevance as weighting12. For methods
such as LRP and Gradient×Input that deliver also
relevances for single variables, we perform an
element-wise weighting, i.e. we construct the sen-
tence representation as:

∑
tRxt � xt. For ev-

ery method we report the best performing vari-
ant from previous experiments, i.e. OcclusionP-diff,
Gradient×Input, CD and LRP-all. Additionally
we report simple averaging of word embeddings
(we call it Avg). Further, for LRP, we consider an
element-wise reweighting of the last time step hid-
den layer hT by its relevance, since LRP delivers
also a relevance for each intermediate neuron (we
call it LRP hT ). We also tried using hT directly:
this gave us a visualization similar to Avg. The re-
sulting 2D whitened PCA projections of the test
set sentences are shown in Fig. 1.

Qualitatively LRP delivers the most structured
representations, although for all methods the first
two PCA components explain most of the data
variance. Intuitively it makes also sense that the
neutral sentiment is located between the positive
and negative sentiments, and that the very nega-
tive and very positive sentiments depart from their
lower counterparts in the same vertical direction.

The advantage of having such regularities
emerging via PCA projection, is that the sen-
tence/phrase semantics might be investigated visu-
ally, without requiring any nonlinear dimensional-
ity reduction like t-SNE (typically used to explore
the representations learned by recurrent models,
e.g. in Cho et al., 2014; Li et al., 2016). Such rep-
resentations might also be useful in information
retrieval settings, where one could retrieve simi-

12W.l.o.g. we use here the true class as the target class,
since the classifier’s 5-class performance is very low. In a
practical use-case one would use the predicted class instead.
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Avg (82% - 4%) Occlusion (82% - 4%) Gradient×Input (75% - 4%)

CD (76% - 4%) LRP (84% - 3%) LRP hT (68% - 7%)

0
+
++

Figure 1: PCA projection of sentence-level representations built on top of word embeddings that were linearly
combined using their respective relevance. Avg corresponds to simple averaging of word embeddings. For LRP
hT the last time step hidden layer was reweighted by its relevance. In parenthesis we indicate the percentage of
variance explained by the first two PCA components (those that are plotted) and by the third PCA component. The
resulting representations were roughly ordered (row-wise) from less structured to more structured.

lar sentences/phrases by employing standard eu-
clidean distance.

4 Interpreting Single Predictions

Next, we analyze single predictions using the
same task and model as in Section 3.3, and illus-
trate the usefulness of relevance visualization with
LRP-all, which is the method that performed well
in both our previous quantitative experiments.

Semantic Composition. When dealing with
real data, one typically has no ground truth rel-
evance available. And the visual inspection of
single relevance heatmaps can be counter-intuitive
for two reasons: the relevance is not accurately
reflecting the reasons for the classifier’s decision
(the explanation method is bad), or the classi-
fier made an error (the classifier doesn’t work as
expected). In order to avoid the latter as much
as possible, we automatically constructed bigram
and trigram samples, which are built solely upon
the classifier’s predicted class, and visualize the
resulting average relevance heatmaps for differ-
ent types of semantic compositions in Table 4.
For more details on how these samples were con-
structed we refer to the Appendix, note though that
in our heatmaps the negation <not>, the intensi-
fier <very> and the sentiment words act as place-
holders for words with similar meanings, since the
representative heatmaps were averaged over sev-

eral samples. In these heatmaps one can see that,
to transform a positive sentiment into a negative
one, the negation is predominantly colored as red,
while the sentiment word is highlighted in blue,
which intuitively makes sense since the explana-
tion is computed towards the negative sentiment,
and in this context the negation is responsible for
the sentiment prediction. For sentiment intensifi-
cation, we note that the amplifier gets a relevance
of the same sign as the amplified word, indicat-
ing the amplifier is supporting the prediction for
the considered target class, but still has less im-
portance for the decision than the sentiment word
itself (deep red colored). Both previous identified
patterns also reflect consistently in the case of a
negated amplified positive sentiment.

Understanding Misclassifications. Lastly, we
inspect heatmaps of misclassified sentences in Ta-
ble 5. In sentence 1, according to the heatmap, the
classifier didn’t take the negation never into ac-
count, although it identified it correctly in sentence
1b. We postulate this is because of the strong sen-
timent assigned to fails that overshadowed the
effect of never. In sentence 2, the classifier obvi-
ously couldn’t grasp the meaning of the words pre-
ceding must-see. If we use a negation instead,
we note that it’s taken into account in the case
of neither (2b), but not in the case of never
(2c), which illustrates the complex dynamics in-
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Composition Predicted Heatmap Relevance # samples

1. “negated positive sentiment” − <not> <good> 2.5 0.3 -1.4 0.5 213

2. “amplified positive sentiment” ++ <very> <good> 1.1 0.3 4.5 0.7 347

3. “amplified negative sentiment” −− <very> <bad> 0.8 0.2 4.3 0.6 173

4. “negated amplified positive sentiment” − <not> <very> <good> 2.74 0.54 -0.34 0.17 -2.00 0.40 1745

Table 4: Typical heatmaps for various types of semantic compositions (indicated in first column), computed with
the LRP-all method. The LSTM’s predicted class (second column) is used as the target class. The remaining
columns contain the average heatmap (positive relevance is mapped to red, negative to blue, and the color intensity
is normalized to the maximum absolute relevance), the corresponding word relevance mean (and std as subscript),
and the number of bigrams (resp. trigrams) considered for each type of composition.

No Predicted Heatmap

1 −− it never fails to engage us . 

1a + engages us .

1b − never engages us . 

1c −− fails to engage us . 

2 ++ ecks this one off your must-see list . 

2a ++ a must-see film . 

2b −− neither a must-see film . 

2c ++ never a must-see film . 

Table 5: Misclassified test sentences (1 and 2), and
manually constructed sentences (1a-c, 2a-c). The
LSTM’s predicted class (second column) is used as the
target class for the LRP-all heatmaps.

volved in semantic composition, and that the clas-
sifier might also exhibit a bias towards the types of
constructions it was trained on, which might then
feel more “probable” or “understandable” to him.

Besides, during our experimentations, we em-
pirically found that the LRP-all explanations are
more helpful when using the classifier’s predicted
class as the target class (rather than the sample’s
true class), which intuitively makes sense since it’s
the class the model is the most confident about.
Therefore, to understand the classification of sin-
gle samples, we generally recommend this setup.

5 Conclusion

In our experiments with standard LSTMs, we find
that the LRP rule for multiplicative connections
introduced in Arras et al. (2017b) performs con-
sistently better than other recently proposed rules,
such as the one from Ding et al. (2017). Further,
our comparison using a 5-class sentiment predic-
tion task highlighted that LRP is not equivalent to
Gradient×Input (as sometimes inaccurately stated
in the literature, e.g. in Shrikumar et al., 2017)
and is more selective than the latter, which is
consistent with findings of Poerner et al. (2018).

Indeed, the equivalence between Gradient×Input
and LRP holds only if using the ε-rule with no
stabilizer (ε = 0), and if the network contains
only ReLU activations and max pooling as non-
linearities (Kindermans et al., 2016; Shrikumar
et al., 2016). When using other LRP rules, or if the
network contains other activations or product non-
linearities (such as this is the case for LSTMs),
then the equivalence does not hold (see Montavon
et al. (2018) for a broader discussion).

Besides, we discovered that a few methods such
as Occlusion (Li et al., 2017) and CD (Murdoch
et al., 2018) are not reliable and get inconsistent
results on a simple toy task using an LSTM with
only one hidden unit.

In the future, we expect decomposition-based
methods such as LRP to be further useful to an-
alyze character-level models, to explore the role
of single word embedding dimensions, and to dis-
cover important hidden layer neurons. Compared
to attention weights (such as Bahdanau et al.,
2015; Xu et al., 2015; Osman and Samek, 2019),
decomposition-based explanations take into ac-
count all intermediate layers of the neural network
model, and can be related to a specific class.
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Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Kocisky, and Phil Blunsom. 2016.
Reasoning about Entailment with Neural Attention.
In International Conference on Learning Represen-
tations (ICLR).

Wojciech Samek, Alexander Binder, Grégoire Mon-
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A Appendix

A.1 Long-Short Term Memory (LSTM)
model

All LSTMs used in the present work have the fol-
lowing recurrence form (Hochreiter and Schmid-
huber, 1997; Gers et al., 1999), which is also the
most commonly used in the literature (Greff et al.,
2017):

it = sigm
(
Wi ht−1 + Ui xt + bi

)
ft = sigm

(
Wf ht−1 + Uf xt + bf

)
ot = sigm

(
Wo ht−1 + Uo xt + bo

)
gt = tanh

(
Wg ht−1 + Ug xt + bg

)
ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

where x = (x1, x2, ..., xT ) is the input sequence,
sigm and tanh are element-wise activations, and
� is an element-wise multiplication. The matrices
W ’s, U ’s, and vectors b’s are connection weights
and biases, and the initial states h0 and c0 are set to
zero. The resulting last time step hidden vector hT
is ultimately fed to a fully-connected linear output
layer yielding a prediction vector f(x), with one
entry fc(x) per class.

The bidirectional LSTM (Schuster and Paliwal,
1997) we use for the sentiment prediction task,
is a concatenation of two separate LSTM mod-
els as described above, each of them taking a dif-
ferent sequence of word embedding vectors as in-
put. One LSTM takes as input the words in their
original order, as they appear in the input sen-
tence/phrase. The other LSTM takes as input the
same word sequence but in reversed order. Each of
these LSTMs yields a final hidden vector, say h→T
and h←T . The concatenation of these two vectors
is then fed to a fully-connected linear output layer,
retrieving one prediction score fc(x) per class.

A.2 Layer-wise Relevance Propagation
(LRP) implementation

We employ the code released by the authors
(Arras et al., 2017b) (https://github.com/
ArrasL/LRP for LSTM), and adapt it to work
with different LRP product rule variants.

In the toy task experiments, we didn’t find it
necessary to add any stabilizing term for numer-
ical stability (therefore we use ε = 0 for all LRP

rules). In the sentiment analysis experiments, we
use ε = 0.001 (except for the LRP-prop variant
where we use ε = 0.2, we tried the following val-
ues: [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 1.0] and took
the lowest one to achieve numerical stability).

A.3 Contextual Decomposition (CD)
implementation

We employ the code released by the au-
thors (Murdoch et al., 2018) (https:
//github.com/jamie-murdoch/
ContextualDecomposition), and adapt
it to work with a bidirectional LSTM. We also
made a slight modification w.r.t. the author’s latest
available version (commit e6575aa from March
30, 2018). In particular in file sent util.py
we changed line 125 to: if i>=start and
i<stop, to exclude the stop index, and call
the function CD with the arguments start=k
and stop=k+1 to compute the relevance of the
k-th input vector, or word, in the input sequence.
This consistently led to better results for the CD
method in all our experiments.

A.4 Toy task setup
As an LSTM model we consider a unidirectional
LSTM with a hidden layer of size one (i.e. with
one memory cell ct), followed by a linear out-
put layer with no bias. Since the input is two-
dimensional, this results in an LSTM model with
17 learnable parameters. The weights are ran-
domly initialized with the uniform distribution
U(−1.0, 1.0), and biases are initialized to zero.
We train the model with Pytorch’s LBFGS opti-
mizer, with an initial learning rate of 0.002, for
1000 optimizer steps, and reduce the learning rate
by a factor of 0.95 if the error doesn’t decrease
within 10 steps. We also clip the gradient norm
to 5.0. With this setting around 1/2 of the trained
models on addition and 1/3 of the models for sub-
traction converged to a good solution with a vali-
dation MSE < 10−4.

A.5 Semantic composition: generation of
representative samples

In a first step, we build a list of words with a posi-
tive sentiment (+), resp. a negative sentiment (−),
as identified by the bidirectional LSTM model. To
that end, we predict the class of each word con-
tained in the model’s vocabulary, and select for
each sentiment a list of 50 words with the highest
prediction scores. This way we try to ensure that

https://github.com/ArrasL/LRP_for_LSTM
https://github.com/ArrasL/LRP_for_LSTM
https://github.com/jamie-murdoch/ContextualDecomposition
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the considered sentiment words are clearly identi-
fied by the model as being from the positive senti-
ment (+), resp. the negative sentiment (−) class.

In a second step, we build a list of negations and
amplifiers. To that end, we start by considering the
same lists of 39 negations and 69 amplifiers as in
Strohm and Klinger (2018), from which we retain
only those that are classified as neutral (class 0)
by the LSTM model, which leaves us with a list of
8 negations and 29 amplifiers. This way we dis-
card modifiers that are biased towards a specific
sentiment, since our goal is to analyze the compo-
sitional effect of modifiers.

Then, for each type of considered semantic
composition (see Table 4), we generate bigrams
resp. trigrams by using the previously defined lists
of modifiers and sentiment words.

For compositions of type 1 (“negation of pos-
itive sentiment”), we note that among the con-
structed bigrams 60% are classified as nega-
tive (−) by the LSTM model, 26% are predicted as
neutral (0), and for the remaining 14% of bigrams
the negation is not identified correctly and the cor-
responding bigram is classified as positive (+). In
order to remove negations that are ambiguous to
the classifier, we retain only those negations which
in at least 40% of the cases predict the bigram as
negative. These negations are: [’neither’, ’never’,
’nobody’, ’none’, ’nor’]. Then we average the re-
sults over all bigrams classified as negative (−).

For compositions of type 2 and 3 we proceed
similarly. For type 2 compositions (“amplifica-
tion of positive sentiment”), we note that 29% of
the constructed bigrams are classified as very pos-
itive (++), and for type 3 compositions (“amplifi-
cation of negative sentiment”), 24% are predicted
as very negative (−−), while the remaining bi-
grams are of the same class as the original sen-
timent word (thus the amplification is not identi-
fied by the classifier). Here again we retain only
unambiguous modifiers, which in at least 40%
of the cases amplified the corresponding senti-
ment. The resulting amplifiers are: [’completely’,
’deeply’, ’entirely’, ’extremely’, ’highly’, ’in-
sanely’, ’purely’, ’really’, ’so’, ’thoroughly’, ’ut-
terly’, ’very’] for type 2 compositions; and [’com-
pletely’, ’entirely’, ’extremely’, ’highly’, ’really’,
’thoroughly’, ’utterly’] for type 3 compositions.
Then we average the results over the correspond-
ing bigrams which are predicted as very posi-
tive (++), resp. very negative (−−).

For type 4 compositions (“negation of ampli-
fied positive sentiment”), we construct all possi-
ble trigrams with the initial lists of negations, am-
plifiers and positive sentiment words. We keep
for the final averaging of the results only those
trigrams where both the effect of the amplifier,
and of the negation are correctly identified by the
LSTM model. To this end we classify the corre-
sponding bigram formed by combining the ampli-
fier with the positive sentiment word, and keep the
corresponding sample if this bigram is predicted
as very positive (++). Then we average the re-
sults over trigrams predicted as negative (−) (this
amounts to finally retain 1745 trigrams).

We also tried to investigate the following com-
position: “negation of negative sentiment”, sim-
ilarly to compositions of type 1. However, we
found that only 1% of the constructed bigrams
are classified as neutral (0), and that the remain-
ing bigrams are classified as negative (−) (81%)
or even very negative (−−) (18%). This means, in
most cases, negating a negative sentiment doesn’t
change the classifier’s prediction, i.e. the negation
is not detected by the LSTM model. Therefore
we did not retain this type of composition for con-
structing representative heatmaps. That the im-
pact of negation is not symmetric across different
sentiments was also observed in previous works
(Socher et al., 2013; Li et al., 2016), and is prob-
ably due to the fact that some type of semantic
compositions are more frequent than others in the
training data (and more generally, in natural lan-
guage) (Fraenkel and Schul, 2008).


