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Abstract

We simulate first- and second-order context
overlap and show that Skip-Gram with Neg-
ative Sampling is similar to Singular Value
Decomposition in capturing second-order co-
occurrence information, while Pointwise Mu-
tual Information is agnostic to it. We sup-
port the results with an empirical study find-
ing that the models react differently when pro-
vided with additional second-order informa-
tion. Our findings reveal a basic property of
Skip-Gram with Negative Sampling and point
towards an explanation of its success on a va-
riety of tasks.

1 Introduction

The idea of second-order co-occurrence vectors
was introduced by Schütze (1998) for word sense
discrimination and has since then been extended
and applied to a variety of tasks (Lemaire and
Denhiere, 2006; Islam and Inkpen, 2006; Schulte
im Walde, 2010; Zhuang et al., 2018). The basic
idea is to represent a word w not by a vector of the
counts of context words it directly co-occurs with,
but instead by a count vector of the context words
of the context words, i.e., the second-order context
words of w. These second-order vectors are sup-
posed to be less sparse and more robust than first-
order vectors (Schütze, 1998). Moreover, captur-
ing second-order co-occurrence information can
be seen as a way of generalization. To see this,
cf. examples (1) and (2) inspired by Schütze and
Pedersen (1993).

(1) As far as the Soviet Communist Party and
the Comintern were concerned . . .

(2) . . . this is precisely the approach taken by the
British Government.

The nouns Party and Government have similar
meanings in these contexts, although they have
little contextual overlap: A frequent topic in the

British corpus used by Schütze and Pedersen is the
Communist Party of the Soviet Union, but gov-
ernments are rarely qualified as communist in the
corpus. Hence, there is little overlap in first-order
context words of Party and Government. How-
ever, their context words Communist and British
in turn have a greater overlap, because they are
frequently used to qualify the same nouns from
the political domain, as in Communist authorities
and British authorities. Hence, although Party and
Government may have no first-order context over-
lap, they do have second-order context overlap.
According to Schütze and Pedersen, capturing this
information corresponds to the generalization “oc-
curring with a political adjective.”

While most traditional count-based vector
learning techniques such as raw count vectors
or Point-wise Mutual Information (PPMI) do not
capture second-order co-occurrence information,
truncated Singular Value Decomposition (SVD)
has been shown to do so. Regarding the more
recently developed embeddings based on shallow
neural networks, such as Skip-Gram with Nega-
tive Sampling (SGNS), it is presently unknown
whether they capture higher-order co-occurrence
information. So far, this question has been ne-
glected as a research topic, although the answer is
crucial to explain performance differences: Levy
et al. (2015) show that SGNS performs similarly
to SVD and differently from PPMI across seman-
tic similarity data sets. If SGNS captures second-
order co-occurrence information, this provides a
possible explanation for the observed performance
differences.

We examine this question in two experiments:
(i) We create an artificial data set with target
words displaying context overlap in different or-
ders of co-occurrence and show that SGNS be-
haves similarly to SVD in capturing second-order
co-occurrence information. The experiment sup-
plies additional and striking evidence to prior
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work on SVD and introduces a method to further
investigate questions more precisely than done be-
fore. (ii) We transfer second-order context infor-
mation to the first-order level in a small corpus
and test the models’ reaction on a standard eval-
uation data set when provided with the additional
information. We find that SGNS and SVD, already
capturing second-order information, do not bene-
fit, whereas PPMI benefits.

2 Related Work

An early connection between second-order con-
text information and generalization can be found
in Schütze and Pedersen (1993). The authors
claim that SVD is able to generalize by us-
ing second-order context information as described
above. Later work supports this claim and
indicates that SVD even captures information
from higher orders of co-occurrence (Landauer
et al., 1998; Kontostathis and Pottenger, 2002;
Newo Kenmogne, 2005; Kontostathis and Pot-
tenger, 2006).

Since then, second-order co-occurrence infor-
mation has mainly been exploited for traditional
count-based vector learning techniques with dif-
ferent aims. Schütze (1998) had used second-
order vectors for word sense clustering. Vari-
ous studies model synonymy or semantic simi-
larity (Edmonds, 1997; Islam and Inkpen, 2006;
Lemaire and Denhiere, 2006) indicating that
second-order co-occurrence plays an important
role for these tasks.

The only works we are aware of exploring
second-order information for word embeddings
are Newman-Griffis and Fosler-Lussier (2017)
learning embeddings from nearest-neighbor
graphs and Zhuang et al. (2018) indicating that
a specific type of word embeddings may benefit
from second-order information. However, no
study investigated the question whether SGNS or
other word embeddings already capture higher-
order co-occurrence information, which may
make the integration of second-order information
superfluous.

3 Semantic Vector Spaces

We compare SGNS to two traditional count-based
vector space learning techniques: PPMI and SVD,
where the former does not capture second-order
information while the latter does. All methods are
based on the concept of semantic vector spaces:

A semantic vector space constructed from a cor-
pus C with vocabulary V is a matrix M , where
each row vector represents a word w in the vo-
cabulary V reflecting its co-occurrence statistics
(Turney and Pantel, 2010).

Positive Pointwise Mutual Information (PPMI).
For PPMI representations, we first construct a
high-dimensional and sparse co-occurrence matrix
M . The value of each matrix cell Mi,j represents
the number of co-occurrences of the word wi and
the context cj , #(wi, cj). Then, the co-occurrence
counts in each matrix cellMi,j are weighted by the
smoothed and shifted positive mutual information
of target wi and context cj reflecting their degree
of association. The values of the transformed ma-
trix are

MPPMI
i,j = max

{
log

(
#(wi, cj)

∑
c#(c)α

#(wi)#(cj)α

)
− log(k), 0

}
,

where k > 1 is a prior on the probability of
observing an actual occurrence of (wi, cj) and
0 < α < 1 is a smoothing parameter reducing
PPMI’s bias towards rare words (Levy and Gold-
berg, 2014; Levy et al., 2015). To our knowledge
PPMI representations have never been claimed to
capture higher-order co-occurrence information.

Singular Value Decomposition (SVD). Trun-
cated Singular Value Decomposition is an alge-
braic algorithm finding the optimal rank d fac-
torization of matrix M with respect to L2 loss
(Eckart and Young, 1936).1 It is used to obtain
low-dimensional approximations of the PPMI rep-
resentations by factorizingMPPMI into the product
of the three matricesUΣV >. We keep only the top
d elements of Σ and obtain

MSVD = UdΣp
d,

where p is an eigenvalue weighting parameter
(Levy et al., 2015). Ignoring V for MSVD re-
duces dimensionality while preserving the dot-
products between rows. While it is not clear
whether SVD generalizes better than other mod-
els in general (Gamallo and Bordag, 2011), its
sensitivity to higher orders of co-occurrence has
been shown empirically and mathematically (Kon-
tostathis and Pottenger, 2002; Newo Kenmogne,
2005; Kontostathis and Pottenger, 2006). Kon-
tostathis and Pottenger (2006) prove that the ex-

1We use ‘SVD’ to refer to the particular application of the
algebraic method described.
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istence of a non-zero value in a truncated term-to-
term co-occurrence matrix follows directly from
the existence of a higher-order co-occurrence in
the full matrix. They also show that there is
an empirical correlation between the magnitude
of the value and the number of higher-order co-
occurrences found for the particular term pair.

Skip-Gram with Negative Sampling (SGNS).
SGNS differs from the above techniques in that
it directly represents each word w ∈ V and each
context c ∈ V as a d-dimensional vector by im-
plicitly factorizing M = WC> when solving

argmax
θ

∑
(w,c)∈D

log σ(vc · vw) +
∑

(w,c)∈D′

log σ(−vc · vw),

where σ(x) = 1
1+e−x , D is the set of all ob-

served word-context pairs and D′ is the set of ran-
domly generated negative samples (Mikolov et al.,
2013a,b; Goldberg and Levy, 2014). The opti-
mized parameters θ are vci = Ci∗ and vwi = Wi∗
for w, c ∈ V , i ∈ 1, ..., d. D′ is obtained by draw-
ing k contexts from the empirical unigram distri-
bution P (c) = #(c)

|D| for each observation of (w, c),
cf. Levy et al. (2015). The final SGNS matrix is
given by

MSGNS = W.

Levy and Goldberg (2014) relate SGNS to SVD
by showing that under specific assumptions their
learning objectives have the same global opti-
mum. However, it is unknown whether SGNS is
also similar to SVD in capturing higher-order co-
occurrence information. The model architecture
suggests that this is possible: consider the two
context vectors ~c1, ~c2 in C of two words having
large context overlap (e.g. the vectors for Commu-
nist and British). ~c1, ~c2 will be similar, because the
dot product with the same target vectors in W will
be maximized (as ~c1, ~c2 frequently occur as con-
texts of the same target words). If ~c1, ~c2 are then
in turn each used to maximize the dot product with
two different new target vectors (e.g. the vectors
for Party and Government), these also tend to be
similar.

Model Training. For both experiments we use
the implementation of Levy et al. (2015), allowing
us to train all models on extracted word-context
pairs instead of the corpus directly. We follow pre-
vious work in setting the hyper-parameters (Levy
et al., 2015). For PPMI we set α = .75 and k = 5.

We set the number of dimensions d for SVD and
SGNS to 300. SGNS is trained with 5 negative
samples, 5 epochs and without subsampling. For
SVD we set p = 0.

Similarity Measure. For all methods we mea-
sure similarity between word vectors with Cosine
Distance (CD), where low CD means high simi-
larity. CD is based on cosine similarity, cos(~x, ~y),
which measures the cosine of the angle between
two non-zero vectors ~x, ~y with equal magnitudes
(Salton and McGill, 1983). CD is then defined as

CD(~x, ~y) = 1− cos(~x, ~y).

4 Experiment 1: Simulating
second-order context overlap

In order to see whether SGNS captures second-
order co-occurrence information, we artificially
simulate context overlap for first- and second-
order co-occurrence separately. This allows us
to simulate clear cases of overlap controlling for
confounding factors which are present in empiri-
cal data. We generate target-context pairs in such
a way that specific target words have either con-
text word overlap in first-order co-occurrence, or
by contrast in second order. We compare the be-
havior of PPMI, SVD and SGNS on three groups
of such target words (see Table 1):

first-order overlap (1ST): Target words T occur-
ring with the same context words C1 in the
first order, while in the second order all con-
text words from C1 have distinct context
words C2.

2nd-order overlap (2ND): Target words T oc-
curring with distinct context words C1 in the
first order, while all context words from C1
have the same context words C2.

no overlap (NONE): Target words T occurring
with distinct context words C1 in the first or-
der and also all context words inC1 have dis-
tinct context words C2.

As an example, consider the column 2ND in Ta-
ble 1. The target words T are a and b. Each has
distinct context words: a occurs only with c, d ∈
C1, while b occurs only with e, f ∈ C1. How-
ever, the first-order context words c, d, e, f ∈ C1
do have context overlap: c, d, e, f occur all with
u, v ∈ C2, i.e., they have the same second-order
context words.
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For each group we generate 10 target words (T ).
Per target word, each of C1, C2 is constructed by
first generating 1000 context words C, assigning
a sampling probability from a lognormal distri-
bution to each context word in C and then sam-
pling 1000 times from C.2 For the 1ST-group, the
set of context words C will be shared across tar-
get words, meaning that they have a context word
overlap. For the target words in the 2ND-group
this will not be the case, but instead their first-
order context words (C1) will have context over-
lap (see Table 1). In this way, we simulate con-
text overlap in first vs. second order. For the tar-
get words in the NONE-group, C will instead be
completely disjunct in both orders. Because co-
occurrence is symmetric (if a occurs with c, c also
occurs with a), for each pair (a,c) generated by
the above-described process, we also add the re-
verse pair (c,a). To make sure that the pairs from
the different groups (1ST, 2ND, NONE) do not in-
terfere with each other, each string generated for
a group is unique to the group. Finally, we mix
and randomly shuffle the pairs from all groups. In
this way, we generate 10 x 1000 x 1000 x 2 target-
context pairs for each group: 10 target words oc-
curring with 1000 context words inC1 where each
in turn occurs with 1000 context words inC2, plus
each of these pairs reversed.3

Our main hypothesis is that SGNS and SVD
will predict target words from the 2ND-group to
be more similar on average than target words from
the NONE-group (although both groups have no
first-order context overlap), while PPMI will pre-
dict similar averages for both groups.

Results. Figure 1 shows the average cosine dis-
tance between the target words in each of the three
target word groups with context overlap in differ-
ent orders (1ST, 2ND and NONE). As expected,
PPMI predicts the target words without contex-
tual overlap in any order (NONE) to be orthogonal
to each other (1.0). Further, PPMI is sensitive to
first-order overlap, but not at all to second-order
overlap (0.51 vs. 1.0). SVD also predicts orthog-
onality for the NONE-group (1.0) and shows sensi-
tivity to first-order overlap (0.34), but is extremely

2By sampling from a lognormal distribution we aim to
approximate the empirical frequency distribution of context
words. Context words receive probabilities by randomly sam-
pling 1000 values from f(x) = 1

x
√
2π

exp
(
− log(x)2

2

)
and

normalizing them to a probability distribution.
3Find the code generating the artificial pairs under:

https://github.com/Garrafao/SecondOrder.

order 1ST 2ND NONE

C1

a c
a d
b c
b d

a c
a d
b e
b f

a c
a d
b e
b f

C2

c u
c v
d w
d x

c u
c v
d u
d v

c u
c v
d w
d x

Table 1: Artificial co-occurrence pairs with context
overlap in different orders of co-occurrence (1ST, 2ND
and NONE). C1 and C2 give co-occurrence in first and
second order respectively. For each pair (a,c) shown
above we also add the reverse pair (c,a).

sensitive to second-order overlap: it predicts the
target words in 2ND to be perfectly similar to each
other (0.0), notwithstanding the fact that they have
no first-order context word overlap. SGNS shows
a similar behavior, although its vectors are dis-
tributed more densely: target words in NONE are
predicted to be least similar (0.79), while target
words in 1ST are more similar (0.11) and in 2ND

they are predicted to be completely similar (0.0).
We further hypothesize that the fact that for

SGNS and SVD the average cosine distance in 1ST

is higher than in 2ND is related to our choice to
make the context words C1 of the target words
in 1ST dissimilar to each other by assigning com-
pletely distinct context words C2 (see Table 1).
We test this hypothesis by creating a second artifi-
cial set of target-context pairs completely parallel
to the above-described set with the only difference
that 1ST has additional context overlap in C2. On
these targets words with overlap in both orders we
find that PPMI makes similar predictions (0.56) as
before, while for SVD and SGNS predictions drop
to 0.0, confirming our hypothesis.

Discussion. SGNS and SVD capture second-
order co-occurrence information. Notably, they
are more sensitive to the similarity of context
words than to the words themselves (2ND vs.
1ST), which means that they abstract over mere
co-occurrence with specific context words and
take into account the co-occurrence structure of
these words in the second order (and potentially
higher orders). PPMI does not have this property
and only measures context overlap in first order.

https://github.com/Garrafao/SecondOrder
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Figure 1: Results of simulation experiment. Values
give average cosine distances across target words with
different levels of context overlap. Pair-wise differ-
ences between group means (except PPMI 2ND vs.
NONE) are statistically significant according to a two-
sample bootstrap test (p < 0.001, adjusted through
Bonferroni correction for 9 tests, two-tailed).

5 Experiment 2: Propagating
second-order co-occurrence
information

We now propagate second-order information to
the first-order level by extracting second-order
word-context pairs and adding them to the first-
order pairs. We hypothesize that the additional
second-order information will impact PPMI rep-
resentations positively and stronger than SVD and
SGNS, because we saw that the latter already cap-
ture second-order information. We reckon that the
additional information is beneficial for PPMI in
two ways: (i) it helps to generalize as described
in (1) and (2), and (ii) it overcomes data sparsity
for low-frequency words. Note that these two as-
pects are often highly related: with only a limited
amount of data available it is more likely that sim-
ilar words do not have exactly the same, but still
similar context words. Generalization then helps
to overcome sparsity.

Corpus. We use ukWaC (Baroni et al., 2009),
a > 1B token web-crawled corpus of English.
The corpus provides part-of-speech tagging and
lemmatization. We keep only the lemmas which
are tagged as nouns, adjectives or verbs. In or-
der to assure we have low-frequency words in the
test data, we create a small corpus by randomly
choosing 1M sentences and shuffling them. The
final corpus contains roughly 10M tokens. Un-
der these sparse conditions we expect to observe

strong effects on model performance highlighting
the differences between the models.

5.1 Pair Extraction
We first extract first-order word-context pairs by
iterating over all sentences and extracting one
word context pair (w,c) for each token w and each
context word c surrounding w in a symmetric win-
dow of size 5 (BASE pairs). Then, we extract ad-
ditional second-order pairs in the following way:
For each word type t in the corpus, we build a
second-order vector ~v by summing over all of t’s
first-order context token count vectors (Schütze,
1998). Then we randomly sample n second-order
context tokens from ~v (with replacement) where
each context type ci has a sampling probability of

~vi∑
j=1 ~vj

and ~vi is ~v’s ith entry. We then exclude all

sampled context tokens c = t.4

We extract second-order pairs only for words
below a specific co-occurrence frequency thresh-
old f to test the impact on sparse words separately.
We experiment with f ∈ {2k,20k,200k}. We set
n globally to 200% of t’s co-occurrence frequency
to add a substantial amount of information. For
each of the second-order pairs we add the reverse
pair (c,w). Finally, the respective second-order
pairs are combined with the base pairs and ran-
domly shuffled. In this way, we generate roughly
22/99/218M (2/20/200k) second-order pairs from
57M base pairs. Then we train each model on each
of the combined pair files separately.

5.2 Results
We evaluate the obtained vector spaces on Word-
Sim353 (Finkelstein et al., 2002), a standard hu-
man similarity judgment data set, by measuring
the Spearman correlation of the cosine similarity
for target word pairs with human judgments. The
results are shown in Figure 2. As we can see, the
models show different reactions to the additional
second-order information: PPMI is the only model
benefiting (in one case), while SVD and SGNS
never benefit from the additional information and
are always impacted negatively. The strongest
negative impact can be observed for SVD (-0.17).
PPMI shows a clear improvement with rather low-
frequency words (20k). Adding second-order in-
formation for high-frequency words (200k) has a
strong negative impact for PPMI and SVD.

4Find the code under: https://github.com/
Garrafao/SecondOrder.

https://github.com/Garrafao/SecondOrder
https://github.com/Garrafao/SecondOrder
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Figure 2: Results of experiment 2. Values give correla-
tion (Spearman’s ρ) of model predictions with human
similarity judgments.

Discussion. The different reactions of PPMI vs.
SVD and SGNS partly confirm our hypothesis
which was based on the findings in experiment 1:
only PPMI benefits from additional second-order
information. However, we did not expect the ob-
served negative impacts, especially the strong per-
formance drop for SVD. Moreover, it is notable
that SVD on the base pairs shows a much higher
performance (0.51) than SGNS and PPMI (0.43,
0.41), which is not the case in less sparse condi-
tions (Levy et al., 2015). This indicates that SVD
makes much better use of the available informa-
tion and overcomes data sparsity in this way. It re-
mains for future research to determine how much
the exploitation of higher-order co-occurrence in-
formation contributes to this clear performance ad-
vantage.

6 Conclusion

We showed that SGNS captures second-order co-
occurrence information, a property it shares with
SVD and distinguishes it from PPMI. We further
tested the reaction of the models when provided
with additional second-order information, expect-
ing that only PPMI would benefit. We find this
confirmed, but also observe unexpectedly strong
negative impacts on SVD by the supposedly re-
dundant information. In general, SVD turns out
to have strong performance advantages over PPMI
and SGNS in the sparse experimental conditions
we created.

Our findings are relevant for a variety of al-
gorithms relying on the SGNS architecture (i.a.
Grover and Leskovec, 2016; Bamler and Mandt,

2017). Future work will look into the relation-
ship between the second-order sensitivity of SVD
and SGNS and their high performances across
tasks. In addition, we aim to use the introduced
method of generating artificial context overlap to
see which higher orders of co-occurrence SVD,
SGNS and other embedding types (Pennington
et al., 2014; Peters et al., 2018; Athiwaratkun
et al., 2018) capture. Because the aim of the study
was only to test the second-order sensitivity of dif-
ferent models, we did not focus on finding the best
way to provide this information. Given the re-
sults for PPMI, however, developing a smoother
way to provide second-order information to mod-
els seems to be a promising starting point for fur-
ther research.
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