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Abstract

While sequence-to-sequence models have
shown remarkable generalization power across
several natural language tasks, their construct
of solutions are argued to be less composi-
tional than human-like generalization. In this
paper, we present seq2attn, a new architecture
that is specifically designed to exploit atten-
tion to find compositional patterns in the input.
In seq2attn, the two standard components of
an encoder-decoder model are connected via
a transcoder, that modulates the information
flow between them. We show that seq2attn can
successfully generalize, without requiring any
additional supervision, on two tasks which are
specifically constructed to challenge the com-
positional skills of neural networks. The so-
lutions found by the model are highly inter-
pretable, allowing easy analysis of both the
types of solutions that are found and potential
causes for mistakes. We exploit this opportu-
nity to introduce a new paradigm to test com-
positionality that studies the extent to which a
model overgeneralizes when confronted with
exceptions. We show that seq2attn exhibits
such overgeneralization to a larger degree than
a standard sequence-to-sequence model.

1 Introduction

In recent years, deep artificial neural networks
have been at the root of many successes in a wide
variety of AI tasks, including sequential tasks, for
which encoder-decoder models are the de facto
standard (Cho et al., 2014; Sutskever et al., 2014).
These successes have also caused a renewed inter-
est in the types of solutions that they learn (Linzen
et al., 2018) and, in particular, have prompted the
question: to what extent can their high accuracy
be taken as evidence that they in fact understood
the task they are modeling. A number of recent
studies argues that it cannot, when ‘understand-
ing the task’ is explained as understanding the im-

plicit rules by which it is governed (e.g., Johnson
et al., 2017; Lake and Baroni, 2018; Liška et al.,
2018; Feng et al., 2018; Ravfogel et al., 2018).
More specifically, they argue that rather than un-
derstanding those implicit rules and being able to
compositionally apply them, RNN models exploit
biases in the data that are unrelated to the under-
lying system. While the latter strategy is remark-
ably effective when large amounts of training data
are available, the lack of understanding of the ac-
tual task leads to sample inefficiency, inability to
transfer knowledge between tasks and difficulty to
generalize to sequences that are drawn from the
same rule space, but differ distributionally from
the training data. Furthermore, the use of such
strategies, which deviate largely from human ap-
proaches, that are typically compositional (Lake
et al., 2015), makes it difficult to understand what
a model does and when it may make a mistake.

In this work, we propose a new component
that aims to address this particular weakness of
seq2seq models. This component, which is a re-
current attention module that can be integrated in
any form of encoder-decoder model, modulates
the information flow from encoder to decoder. We
test our module, which we dub seq2attn, in a re-
current encoder-decoder model. Using two tasks
that are designed such that their accuracy reflects
directly whether the underlying rule-based system
is learned – the lookup table task (Liška et al.,
2018) and SCAN (Lake and Baroni, 2018; Loula
et al., 2018) – we show that seq2attn strongly en-
courages rule-based behaviour, which is easily in-
terpreted by studying the attention patterns gen-
erated by the module. Additionally, we propose
a new testing paradigm based on overgeneraliza-
tion, that can be used to gain more insights in the
biases of a model which cannot be inferred from
task success alone.
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2 Related Work

2.1 Compositional datasets
The ability to learn and compositionally apply
symbolic rules is considered to be an important
prerequisite for understanding and modeling nat-
ural language. While (gated) recurrent neural net-
works are in principle capable of modeling com-
positional systems (e.g., Gers and Schmidhuber,
2001; Rodriguez, 2001), whether they in fact do
so when trained on large amounts of data to per-
form natural language processing tasks remains an
open question. Some positive results in this di-
rection have been presented (e.g., Hupkes et al.,
2018b), but a number of recent papers have ar-
gued that, rather than understanding the underly-
ing compositional structure of a problem, RNNs
rely on heuristics and exploit biases in the data.
Particularly relevant to the current work are the
studies of Lake and Baroni (2018) and Liška et al.
(2018), who both present data sets specifically de-
signed to reflect compositionality in their task ac-
curacy. Using their compositional tests, they show
that vanilla seq2seq models do not readily gener-
alize to solutions that exhibit an understanding of
the underlying rule system of the tasks.

2.2 Models
Some recent approaches attack the lack of com-
positional behaviour of RNNs by designing mod-
els that have compositionality explicitly built in,
for instance by equiping architectures with a se-
ries of specialized modules and a controller that
composes them (e.g., Andreas et al., 2016; John-
son et al., 2017). In this work, instead, we focus
on inducing compositional solutions in RNN mod-
els, that are less rigid and generally require fewer
supervision.

Our method draws inspiration from the work on
compositional learning of Hupkes et al. (2018a).
The authors introduce the concept of Attentive
Guidance, a training signal given to the attention
mechanism of a seq2seq model to induce more
compositional solutions. While they convincingly
show that seq2seq models with attention can in
fact implement such solutions (see Baan et al.
(2019) for an in-depth analysis), their model re-
quires attention annotation of the training data,
which may not always be available. In this work,
we address this problem by designing a model that
still aims to be compositional through the atten-
tion mechanism, but instead learns these patterns

fully automatically, obtaining similar or even im-
proved performance without the need of extra su-
pervision.

Another line of work which exploits attention
as a regularization technique is proposed by Hud-
son and Manning (2018), who introduce the Mem-
ory, Attention and Composition (MAC) cell. The
MAC cell consists of three components, whose
communication within one cell is restricted to us-
ing attention. An important limitation of the MAC
cell is that the number of reasoning steps needs
to be specified in advance. Our model, as vanilla
seq2seq models, doesn’t suffer from this limita-
tion.

3 Model

We propose seq2attn, a novel attention-centric
module that connects the encoder and decoder of a
seq2seq model.1 The core component of seq2attn
is the transcoder: a recurrent module that mod-
ulates the information flow between encoder and
decoder by generating sparse attention vectors us-
ing separate keys and values. Below, we demon-
strate and test how seq2attn can be used in combi-
nation with a vanilla encoder-decoder architecture.

3.1 Encoder

In our tests, we assume a standard recurrent en-
coder, that, given an input sequence {x1, . . . , xN}
and an embedding layer Eenc, generates a se-
quence of outputs and hidden states:

xenct = Eenc(xt) (1)

yenct ,henct = Senc(xenct ,henct−1) (2)

S is a recurrent state transition model, such as a
vanilla RNN, LSTM or GRU.

3.2 Transcoder

The transcoder is initialized with htrans0 = hencN

and uses the hidden states of the encoder to com-
pute context vectors ct that will be passed to the
decoder.

The input to the transcoder is the embedded out-
put of te decoder (Eq. 11):

xtranst = E trans(ŷt−1) (3)

ytranst ,htranst = Strans(xtranst ,htranst−1 ) (4)

1We will make our code available upon publication.
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Figure 1: Schematic of the seq2attn architecture. The input sequence is processed by the encoder (E), after which
the transcoder (T) generates context vectors, which are weighted means over the input embeddings.

The transcoder state is then used to query the
hidden states of the encoder. The resulting scores
are normalized using the Softmax function:

αt(s) = v>a ·ReLU(Wa · [henct ;htranst−1 ]) (5)

πt(s) =
expαt(s)∑N
i=1 expαt(i)

(6)

Using the Softmax distribution often results in
distributed vectors that attend to many input sym-
bols at the same time, while an ideal composi-
tional attention vector only focuses on the rele-
vant parts of the input. To force the transcoder
to be more selective in the information it se-
lects, we use Gumbel-Softmax, which allows us
to draw from the categorical distribution com-
puted in Eq. 6, with continuous relaxation (Jang
et al., 2017; Maddison et al., 2016). The Straight-
Through estimator is then used as a biased gradi-
ent estimator of the argmax operator:

ãt(s) =
exp log πt(s)+gs

τ∑N
i=1 exp

log πt(i)+gi
τ

(7)

at = ãt − ât + one hot(argmax(ãt)) (8)

The temperature τ can be interpreted as a measure
of uncertainty. ât is a copy of ãt which we do
not backpropagate through. At inference time the
stochasticity of Gumbel-Softmax is not needed,
and argmax is used as activation function.

The resulting attention weights are used to com-
pute the context vectors that will be passed to the
decoder:

ct =

N∑
i=1

at(i) · xenci (9)

Crucially, the context vector represents a weighted
average of the input embeddings of the encoder,
while the weights at(i) are depending on the hid-
den states of the encoder, thus introducing a sep-
aration between attention keys and values (similar
to, e.g., Mino et al., 2017; Vaswani et al., 2017).

3.3 Decoder
The decoder of a seq2seq model is commonly ini-
tialized with the final hidden state of the encoder.
However, as this state vector encodes the entire in-
put sequence, this type of initialization does not
urge compositional behavior of the decoder. When
seq2attn is used, the decoder should be initialized
with a fixed, learned initialization vector. In com-
bination with using input embeddings as attention
values (Eq. 9), this restricts the decoder to work
only with disentangled representations of the input
sequence, which encourages it to learn and process
the individual meaning of all input symbols.

To model outputs, the decoder uses the context
vector ct, its own embedded output (identical to
Eq. 3) and a vector hdect−1 that integrates the current
decoder hidden state with the context vector:

ydect , h̃dect = Sdec([ct; E trans(ŷt−1)],hdect−1) (10)

ŷt = argmax(Softmax(ydect )) (11)

Where hdect−1 is computed using an element-wise
multiplication of the context vector with the previ-
ous hidden state of the decoder:

hdect−1 = h̃dect−1 � ct (12)

This way of integrating the context vector with
the decoder, which we call full focus, makes the
output of the decoder at decoding step t more di-
rectly dependent on the current context vector ct.
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held-out
inputs

held-out
compositions

held-out
tables

Baseline 38.25 ± 0.04 43.28 ± 0.09 7.86 ± 0.02
Seq2attn 100 ± 0.00 100 ± 0.00 100 ± 0.00

Table 1: Average sequence accuracies and standard
deviations of the baseline and seq2attn models on all
lookup tables test sets.

4 Test Case 1: Lookup tables

Our first test-case is the lookup table task intro-
duced by Liška et al. (2018).

4.1 Task
The core of the lookup table composition domain
consists in sequentially applying simple lookup ta-
ble functions. The functions to be applied are bi-
jective mappings from the set of all n-bit bitstrings
onto itself. Following Liška et al. (2018), we focus
on 3-bit strings, resulting in 23 = 8 possible in-
puts and outputs. We create 8 random table lookup
functions, to which we refer with the names t1,
t2, . . . , t8. Given the simplicity of the functions,
the main challenge of the task resides in inferring
that the input sequences should be treated compo-
sitionally, rather than considered as a whole.

We borrow the setup presented in Hupkes et al.
(2018a), which differs slightly from the setup as
it was originally presented. In this setup, a typical
input output example could be 001 t1 t2→ 001
010 111. Computing the output for this example
requires the sequential application of t1 to 001,
and then t2 to the intermediate result. Since two
tables are to be applied in succession, we refer to
such an examples as a binary composition, as op-
posed to a unary composition in which only one
function has to be applied on the input. The input
bitstring and all intermediate outputs are included
in the target output sequence.

Liška et al. (2018) train models on all 8 inputs
for unary compositions and on 6 out of 8 input bit-
strings of all binary compositions. The remain-
ing 2 held-out inputs are used to test for gener-
alization. Following Hupkes et al. (2018a), we
do not include all 64 binary compositions in the
training set, but leave out some for testing. In par-
ticular, we create one test set that contains all bi-
nary compositions containing t7 or t8, which are
thus only seen in the training set as unary com-
positions. We call this condition held-out tables.
Of the remaining binary compositions, that con-
tain only functions in {t1, . . . , t6}, 8 randomly

held-out
inputs

held-out
compositions

held-out
tables

Baseline+G 34.17 ± 8.25 38.54 ± 12.39 8.16 ± 3.57
Baseline+E 82.50 ± 12.42 85.42 ± 12.39 31.08 ± 7.85
Baseline+F 85.83 ± 16.50 91.67 ± 11.79 30.03 ± 16.12
Baseline+T 43.33 ± 12.30 47.40 ± 15.33 3.99 ± 2.70

Baseline+GE 82.50 ± 12.42 83.85 ± 7.48 30.21 ± 3.32
Baseline+GF 69.17 ± 21.25 76.04 ± 13.28 4.69 ± 1.47
Baseline+GT 32.50 ± 8.90 45.31 ± 10.13 1.56 ± 1.53
Baseline+EF 85.00 ± 9.35 82.29 ± 18.46 24.13 ± 2.99
Baseline+ET 100.00± 0.00 100.00± 0.00 41.49 ± 3.30
Baseline+FT 68.33 ± 21.44 71.88 ± 23.00 19.44 ± 19.06

Baseline+GEF 74.17 ± 36.53 72.40 ± 37.94 37.33 ± 22.10
Baseline+GET 97.50 ± 3.54 98.44 ± 1.28 24.31 ± 17.87
Baseline+GFT 90.83 ± 3.12 91.15 ± 3.21 28.30 ± 7.23
Baseline+EFT 66.67 ± 47.14 66.67 ± 47.14 66.67 ± 47.14

Seq2attn 100.00± 0.00 100.00± 0.00 100.00± 0.00

Table 2: Mean sequence accuracies and standard
deviation on the lookup tables task of a baseline
seq2seq model with additional components of seq2attn.
G=Gumbel-Softmax, E=embeddings as attention val-
ues, F=full focus, T=transcoder.

selected compositions are held out from the train
set for all inputs, which form the held-out compo-
sitions test set. Lastly, we remove 2 of the 8 in-
puts for each binary composition independently to
form the held-out inputs test set, which is similar
to the generalization condition presented by Liška
et al. (2018).

4.2 Results

We first compare the seq2attn architecture to a
standard seq2seq model with an attention mech-
anism on generalization to new test examples. We
establish the optimal parameters for both models
using a grid search over a separate validation set.
Our search includes the type of RNN cell ({GRU,
LSTM}), the embedding and RNN sizes ({32, 64,
128, 256, 512, 1024}) and the dropout rate ({0,
0.2, 0.5}). The results are summarized in Table 3.
The mini-batch size (1) and optimizer (Adam with
default parameters (Kingma and Ba, 2014)) are
fixed. We train 10 models with the optimal pa-
rameters and report mean sequence accuracy. For
simplicity we will henceforth simply refer to this
as the accuracy.

Our experiments confirm the findings previ-
ously presented by Hupkes et al. (2018a) and
Liška et al. (2018): Vanilla seq2seq models do
not find generalizing solutions for the lookup ta-
ble task (Table 1, first row). Seq2attn, on the
other hand, generalizes perfectly to data outside
the training distribution. This first test confirms
our hypothesized compositional bias of seq2attn.
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4.3 Ablation Study

The difference between a traditional seq2seq and
the seq2attn model can be summarized as the use
of (i) a transcoder, (ii) the Gumbel-Softmax ac-
tivation for the attention vector, (iii) using input
embeddings as attention values and (iv) using full
focus. To assess the contributions of these com-
ponents, we take the seq2attn model with optimal
hyper-parameters as a base model, and increas-
ingly ablate components. The results of this study
(Table 2) indicate that, while some of the compo-
nents of seq2attn cause an increase in accuracy on
their own, no subset of them can match the perfor-
mance of the full seq2attn model.

4.4 Attention patterns

As the modeled output of the decoder is highly
dictated by the context vectors that it receives,
we can gain insights into the types of solutions
the models are forming by studying their attention
vectors. As illustrated in Figure 2, seq2attn learns
to generate a “correct” attention trace, attending to
the right input at the right time. Contrastingly, the
baseline fails to capture a systematic pattern and
produces a diffused attention instead or attends to
irrelevant inputs, indicating that it does not utilize
the attention mechanism to its full advantage.

4.5 Overgeneralization

The results for the lookup tables task indicate that
seq2attn performs much better than the baseline on
data containing held-out inputs, tables and compo-
sitions. The model is thus better able to infer the
compositional rules underlying the data. To fur-
ther explore seq2attn’s bias towards composition-
ality, we test its behaviour when confronted with
uncompositional examples, that do not adhere to
the previously mentioned rules. Where a model
unaware of the underlying task structure would
have little problems learning such exceptions – or
in fact, would not realise that they are exceptions
– a model with a strong compositional bias may
sometimes wrongly assume the exceptions also
adhere to the underlying system, and overgeneral-
ize an inferred rule. The extent to which a model
overgeneralizes can thus be seen as a proxy for the
strength of its compositional bias. Whether over-
generalization is actually preferentiable behavior
is depend on the task to be solved.

In the proposed setup, a small number of train-
ing instances are assigned adapted output targets.

We call these instances exceptions. The target out-
put sequences of the exceptions are changed such
that they can only be learned through memoriza-
tion. For the lookup table task, we adapt the train-
ing set such that one composition, t1 t2, is an
exception to the general rules for three out of the
eight existing input bitstrings. In the target output,
the third bitstring is replaced with a randomly se-
lected bitstring, thus changing the application of
table t2 in this context. Both the three adapted
samples and the other five unadapted samples for
t1 t2 are included in the training set.

While training a model, we monitor the output
sequences generated for these exceptions. The ac-
curacy on the original targets is reported to iden-
tify whether the model is processing the excep-
tions compositionally despite being exposed to the
adapted targets in the training set, i.e., whether the
model is overgeneralizing.

Figure 3 displays the accuracy on the original
targets of all eight inputs in composition t1 t2
over the first 30 training epochs. While both the
baseline and seq2attn learn to memorize the three
exceptions, only seq2attn shows a strong bias to
treat the inputs compositionally before memoriz-
ing the adapted targets. The performance goes as
high up as 8/8 between the fifth and fifteenth epoch
for differently initialized models, before dropping
to 5/8. This indicates that the rules are learned be-
fore the adapted instances are memorized as ex-
ceptions to these rules.

5 Test Case 2: SCAN

While the lookup table task provides an excellent
test case to evaluate the compositional abilities of
a neural network model, its simplicity limits the
conclusions that can be drawn about the usability
of seq2attn in more challenging domains. In this
section, we evaluate seq2attn on SCAN (Lake and
Baroni, 2018), a task involving mapping naviga-
tional commands to sequences of output actions.

5.1 Task

The input commands of the SCAN task are com-
posed of a small set of predefined atomic com-
mands (jump, walk, run and look), modifiers
(twice, thrice, around, opposite, left and right)
and conjunctions (after and and) that are com-
bined via a limited context free grammar, such
that there are no ambiguities. An example in-
put is jump after walk left twice, where the learn-
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(a) seq2seq (b) seq2seq (c) seq2attn

Figure 2: Examples of modeled attention patterns on held-out input examples of the lookup tables domain.

Baseline Seq2attn
Lookup tables 128, 512, 1, GRU, 0.5 256, 256, 1, GRU, 0.5
SCAN 200, 200, 2, LSTM, 0.5 512, 512, 1, GRU, 0.5

Table 3: Hyperparameters (embedding dimensions, RNN dimensions, RNN layers, RNN type, dropout rate) used
for both the seq2seq baseline and seq2attn model for both tasks.
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Figure 3: Average accuracies on original targets for
the eight inputs in composition t1 t2. As three of
these compositions are exceptions, we refer to accu-
racy higher than 5/8 as overgeneralization. The 95%
confidence interval is indicated.

ing agent has to mentally perform these actions
in a 2-dimensional grid and output the sequence
of actions it takes: “I TURN LEFT I WALK
I TURN LEFT I WALK I JUMP”. For full de-
tails of the data set and experiments, we refer to
Lake and Baroni (2018).

Lake and Baroni use three different train-test
distributions of the total of 20.910 examples. They
show that vanilla seq2seq models are able to al-
most perfectly generalize when the data is ran-
domly split in a training and testing set, but that
they are unfit for generalizing to longer test se-
quences and for one-shot learning to commands
seen only in their atomic form. Later, Loula et al.
(2018) proposed a new set of experiments based
on the same task, which they argue are better

suited for assessing systematic compositionality.
We focus on experiments 2 and 3 of their paper.

Experiment 2 contains four different train-test
distributions as there are four primitive commands
involved. For all four conditions, the test set is
the same. This test set consists of all examples
that contain “jump around right” in their input
sequences. The first condition, which is called
0 fillers, contains no subsequences of the form
“primitive around right” in the training set, where
primitive is either of the four primitives “jump”,
“look”, “run” or “walk”. This condition should
thus test whether a model can induce a compo-
sitional understanding of “jump around right” by
showing those symbols (“jump”, “around” and
“right”) only in different contexts. The next three
conditions, 1 filler, 2 fillers and 3 fillers, are con-
sidered increasingly easier. They retain the same
test set, but increasingly add more examples to the
train set of the template “primitive around right”.
1 filler adds all examples of this template where
primitive is “look”. 2 fillers and 3 fillers add
“walk” and “run” respectively.

As Loula et al. (2018) observed a great differ-
ence in performance between the 0 fillers and 1
filler conditions, they zoom in on these condi-
tions in experiment 3. The 0 fillers condition con-
tains 0 examples with the subsequence “primitive
around right” in the training set. The 1 filler con-
dition contains 1.100 of those, namely all exam-
ples which contain the subsequence “look around
right”. In experiment 3, they test a more smooth
and dense transition from the 0 fillers condition
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to the 1 filler conditions. They accomplish this by
taking the training set of the 0 fillers condition and
adding respectively 1, 2, 4, 8, 16, 32, 64, 128, 256,
512 and 1024 extra examples containing the sub-
sequence “look around right”, resulting in 11 new
training sets. The test set is again the same as in
experiment 2.

5.2 Results

We compare a baseline seq2seq to the seq2attn ar-
chitecture on these two tasks. First, we perform
a grid search using a random split of the data to
find the optimal parameters for seq2attn. The re-
sults of this are summarized in Table 3. As a base-
line, we used the model which Lake and Baroni
(2018) found to be overall best performing, which
is a seq2seq model with 2-layer LSTMs, 200 hid-
den units per layer and a dropout rate of 0.5. For
comparison to the seq2attn model, we also added
an attention mechanism, which was missing in the
original model. For all reported results we ran
these models 10 times with random weight initial-
ization. Since experiments 2 and 3 by Loula et al.
(2018) do not have validation sets for early stop-
ping, we ran all models for 50 epochs.

Firstly, we confirm the findings of Lake and Ba-
roni (2018) and Loula et al. (2018) (see Fig. 4,
left). A vanilla seq2seq with attention is able to
perform analogical generalization (95.19% accu-
racy): it requires examples of 1 filler only to gen-
eralize to other fillers of the same template. On
the other hand, it is not able to apply “right” and
“around” to a primitive verb in a productive way,
when they were never seen together (0.26% ac-
curacy, 0 fillers condition). When we look at
seq2attn, we notice how not only it is able to per-
form analogical generalization (94.32% accuracy,
1 filler) but, to a certain extent, it is also able to
generalize productively in the 0 fillers condition
(36.23% accuracy).

In Figure 4 (right) we report the results for ex-
periment 3 of Loula et al. (2018) where we con-
sider the 0 fillers condition of Experiment 2 and
progressively add extra training examples from
1 filler. As Loula et al. (2018) observed, per-
formance of a seq2seq model ramps up as more
samples are injected in the training set. Yet,
the fact that performance increases gradually and
takes long to peak (at 512 examples) suggests that
rather than systematically understanding the rule,
the model is piling up evidence for a very spe-

cific pattern. The situation is quite different for the
seq2attn model, whose performance spikes much
earlier, reaching a plateau at 16 examples already.
Interestingly, the performance peak is also at 512,
but with an improvement of just over 5 percentage
points over 16 examples vs. approximately 50 per-
centage points improvement in the case of base-
line. Seq2attn seems then to show evidence for an
opposite interpretation, namely for a network that,
to a certain extent, is able to induce the compo-
sitional rules. A property that is often linked to
sample efficiency (Lake and Baroni, 2018).

5.3 Analysis

In Figure 5, we now look at some attention pat-
terns for the 0 fillers condition. While base-
line models emit sparser and more informative
attentional patterns here than in the lookup ta-
ble task, they still are locally diffused and, more
importantly, do not maintain a systematic input-
output alignment, which suggests that the mod-
els are not understanding the rules of the task,
but use a pattern matching strategy instead. On
the contrary, seq2attn shows always fully sparse,
one-hot attention patterns. Figure 5c shows how
the model usually aligns outputs to their respec-
tive primitive commands or directions in the input
sequence, e.g., “I JUMP” aligns to “jump”, and
“I TURN RIGHT” aligns to “right”. A modifier
like “opposite” is used as an indicator to repeat the
last modeled directional action.

Seq2attn reaches an accuracy of 36.23% on the
0 fillers condition, which still leaves room for
improvement. However, the attentional patterns
quickly show the main cause of error. Figure 5b
shows how the model outputs “I TURN LEFT”
instead of “I TURN RIGHT” whenever it attends
to the input “around”. Whenever the model does
attend to “right”, as is the expected, optimal be-
havior, the output is correct. This behavior can
be easily explained by analyzing the data that the
model was trained on. The input “around” has
only been encountered within the context “prim-
itive around left” during training. Thus, within
this context, “around” and “left” could be used
synonymically by the transcoder to communicate
to the decoder to output “I TURN LEFT”. The
great majority of errors on this task by seq2attn
have the same cause. Although seq2attn still does
not perfectly solve the task, contrary to a standard
seq2seq model, it provides an immediate under-
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Figure 4: Mean sequence accuracies on experiment 2 (left) and 3 (right) of Loula et al. (2018). The bootstrapped
95% confidence intervals are indicated with error bars.

(a) seq2seq (b) seq2attn (c) seq2attn

Figure 5: Examples of attention patterns on the 0 fillers condition. Seq2attn models the output incorrectly when
the attention pattern is incorrect.

standing of the root of this.

5.4 Overgeneralization

To assess seq2attn’s overgeneralization abilities
for the SCAN task, we repeated experiment 3.
In addition to gradually adding samples indicat-
ing the correct interpretation of “primitive around
right”, we also added a single exception for “jump
around right” to the training set. The target for this
sequence, originally consisting of four repetitions
of “I TURN RIGHT I JUMP”, was modified to
consist of only two repetitions.

For all conditions of experiment 3, we added the
exception to the training set, trained multiple ran-
domly initialized models, and monitored the out-
put sequences generated for this exception over
the course of training. In Figure 6, we visualize
the distribution over the adapted and original tar-

gets for the conditions with 4 and 512 filler sam-
ples respectively. Note that the models have im-
plicit and explicit evidence for the correct appli-
cation of the rules for “primitive around right”:
explicit evidence through training examples con-
taining “look around right“ subsequences, and im-
plicit evidence through training samples including
“around” or “right” seen in different contexts.

Both models exhibit overgeneralization behav-
ior for SCAN. Generally, overgeneralization oc-
curs at the start of the training process and pre-
cedes memorization of the adapted target. How-
ever, the baseline model needs a substantially
larger amount of explicit evidence to overgener-
alize as much as the seq2attn model. The condi-
tion where 512 filler samples are included illus-
trates that the tendency to overgeneralize does not
necessarily relate to the overall task performance.
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memorization

5 10 15 20 25 30 35 40 45 50

(a) Baseline, 4 filler samples

overgeneralization

memorization

5 10 15 20 25 30 35 40 45 50

(b) Seq2attn, 4 filler samples

overgeneralization

memorization

5 10 15 20 25 30 35 40 45 50

epochs

(c) Baseline, 512 filler samples

overgeneralization
5 10 15 20 25 30 35 40 45 50

epochs

(d) Seq2attn, 512 filler samples

Figure 6: Mean sequence accuracy on the original target of “jump around right” of multiple models as training
progresses. The distribution was normalized for cases in which the output emitted was neither the original or the
adapted target.

For this condition, seq2attn and the baseline yield
similar sequence accuracies in the original setup of
experiment 3 (see Figure 6), but seq2attn overgen-
eralizes more frequently, indicating that seq2attn
has a stronger compositional bias.

6 Discussion

In search for a neural network architecture that ex-
hibits a bias towards systematic generalization, we
introduced seq2attn, a recurrent attention-centric
module that controls the information flow from
encoder to decoder. We installed this module in
a standard recurrent encoder-decoder architecture.
To quantify its capabilities in terms of system-
atic compositionality, we tested the model on the
lookup table and SCAN tasks.

On both tasks, we see significant improvements
compared to a standard recurrent seq2seq model,
providing evidence for a compositional bias in the
system. Furthermore, because the architecture re-
lies heavily on its attention mechanism, its solu-
tions can more easily be interpreted by looking
at the generated attention patterns. This provides
opportunities for analyzing what the model has
learned as well as for detecting potential biases in
the training set.

Although on the considered tasks, which are
specifically designed to evaluate compositionality,
seq2attn leads to clear improvements, its contri-
bution could not have been observed when con-
sidering a task for which the test accuracy is not
directly linked to compositionality, such as nat-

ural language modeling and translation. We ar-
gue that, for those cases, additional assessment
methods are needed to compare the compositional
skills of different models. We propose one such
method, which involves monitoring to what extent
a model overgeneralizes. We show how a model
with seq2attn, for both tasks, has a greater ten-
dency to overgeneralize than the baseline.

A possible limitation of the design of seq2attn
is that the flow of information from transcoder to
decoder is very rigid. Possible solutions could be
found in the use of less skewed activations than
the Gumbel-Softmax such as Sparsemax (Martins
and Astudillo, 2016), or allowing the transcoder to
communicate multiple embeddings using adaptive
computation time (Graves, 2016).

Importantly, seq2attn is not tied to a particular
type of seq2seq architecture. In future work, we
plan to install it into other popular seq2seq archi-
tectures such as convolutional seq2seq (Gehring
et al., 2017) and Transformer models (Vaswani
et al., 2017).
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