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Abstract

We train a diachronic long short-term memory
(LSTM) part-of-speech tagger on a large cor-
pus of American English from the 19th, 20th,
and 21st centuries. We analyze the tagger’s
ability to implicitly learn temporal structure
between years, and the extent to which this
knowledge can be transferred to date new sen-
tences. The learned year embeddings show
a strong linear correlation between their first
principal component and time. We show that
temporal information encoded in the model
can be used to predict novel sentences’ years
of composition relatively well. Comparisons
to a feedforward baseline suggest that the tem-
poral change learned by the LSTM is syntactic
rather than purely lexical. Thus, our results
suggest that our tagger is implicitly learning to
model syntactic change in American English
over the course of the 19th, 20th, and early
21st centuries.

1 Introduction

We define a diachronic language task as a stan-
dard computational linguistic task where the in-
put includes not just text, but also information
about when the text was written. In particular, di-
achronic part-of-speech (POS) tagging is the task
of assigning POS tags to a sequence of words
dated to a specific year. Our goal is to determine
the extent to which such a tagger learns a repre-
sentation of syntactic change in modern American
English.

Our method approaches this problem using neu-
ral networks, which have seen considerable suc-
cess in a diverse array of natural language process-
ing tasks over the last few years. Prior work using
deep learning methods to analyze language change
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has focused more on lexical, rather than syntactic,
change (Hamilton et al., 2016; Dubossarsky et al.,
2017; Jo et al., 2017). One of these works, Jo et al.
(2017), measured linguistic change by evaluating
a language model’s perplexity on novel documents
from different years.

Previous work focusing on syntactic change uti-
lized mathematical simulations rather than empir-
ically trained models. Niyogi and Berwick (1995)
attempted to build a mathematical model of syn-
tactic change motivated by theories of language
contact and acquisition. They found that their
model predicted both gradual and sudden changes
in a parameterized grammar depending on the
properties of the languages in contact. In partic-
ular, they used their simulation to study how verb-
second (V2) order was gained and lost throughout
the history of the French language. For several
toy languages, their model found that contact be-
tween languages with and without V2 would lead
to gradual adoption of V2 syntax by the entire pop-
ulation.

We use the Corpus of Historical American En-
glish (COHA) (Davies, 2010-), an LSTM POS
tagger, and dimensionality reduction techniques
to investigate syntactic change in American En-
glish during the 19th through 21st centuries. Our
project takes the POS tagging task as a proxy for
diachronic syntax modeling and has three main
goals:

1. Assess whether a temporal progression is en-
coded in the network’s learned year embed-
dings.

2. Verify that the represented temporal change
reflects syntax rather than simply word fre-
quency.

3. Determine whether our model can be used to
date novel sentences.
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2 Materials and Methods

2.1 Data

2.1.1 Corpus of Historical American English
The COHA corpus is composed of documents dat-
ing from 1810 to 2009 and contains over 400 mil-
lion words. The genre mix of the texts is bal-
anced in each decade, and includes fiction works,
academic papers, newspapers, and popular maga-
zines. Because of computational constraints, we
randomly selected 50,000 sentences from each
decade for a total of 1,000,000 sentences. We se-
lected an equal number of sentences from each
decade to ensure a temporally balanced corpus.
We put 90% of these into a training set and 10%
into a test set. We also cut off all sentences at a
maximum length of 50 words. We chose 50 words
as our limit to avoid unnecessarily padding a large
percentage of sentences. Only 6.95% of sentences
in the full COHA corpus exceeded 50 words.

Texts in COHA are annotated with word,
lemma, and POS information. The POS labels
come in three levels of specificity, with the most
specific level containing several thousand POS
tags. We used the least specific label for our
model, which still had 423 unique POS tags.

2.1.2 Word Embeddings
Our model utilized pre-trained 300-dimensional
Google News (Mikolov et al., 2013) word embed-
dings that were learned using a standard word2vec
architecture. When there was no embedding avail-
able for a word in the corpus, we assigned the
word an embedding vector drawn from a nor-
mal distribution, so that different unknown words
would have different embeddings. Due to compu-
tational constraints, we only included embeddings
for the 600,000 most common words in the vo-
cabulary. Other words were replaced by a special
symbol UNK.

2.2 Methods

2.2.1 Network Architecture
We used a single-layer LSTM model.1 For a given
sentence from a document composed in the year
with embedding t, the model’s input for the ith

word in the sentence is the concatenation of the
word’s embedding xi and t. For example, consider
a sentence hello world! written in 2000. The input

1https://github.com/viking-sudo-rm/
DiachronicPOSTagger

corresponding to hello would be the concatenation
of the embedding for hello and the embedding of
the year 2000. A diagram of this architecture can
be seen in Figure 1.

An interesting feature of our approach is that a
single model can learn information about differ-
ent time frames. Thus, in principle, learning from
sentences in any year can inform predictions about
sentences in neighboring years.

The word embeddings were loaded statically. In
contrast, year embeddings were Xavier-initialized
and learned dynamically by our network. Thus,
we did not explicitly enforce that the year embed-
dings should encode any temporal progression.

We gave both the word embeddings and year
embeddings a dimensionality of 300. We picked
the size of our LSTM layer to be 512. Due to
the size of our training set and our limited com-
putational resources, we ran our network for just
one training epoch. Manual tweaking of the learn-
ing rate and batch size revealed that the network’s
performance was not particularly sensitive to their
values. Ultimately, we set the learning rate to
0.001 and the batch size to 100. We did not in-
corporate dropout or regularization into our model
since we did not expect overfitting, as we only
trained for a single epoch.

In order to calibrate the performance of our
LSTM, we trained the following ablation models:

• An LSTM tagger without year input

• A feedforward tagger with year input

• A feedforward tagger without year input

All taggers were trained with identical hyper-
parameters to the original LSTM. For the feedfor-
ward models, the LSTM layer was replaced by a
feedforward layer of size 512. The lack of recur-
rent connections in the feedforward models makes
it impossible for these models to consider inter-
actions between words. Thus, these models serve
as a baseline that only considers relationships be-
tween single words and their POS tags–not syntax.

2.2.2 Analyzing Year Embeddings
We aimed to evaluate the extent to which the
learned year embeddings encode a temporal
trend. We reduced the year embeddings to
one-dimensional space using principal component
analysis (PCA). We chose PCA because it is a
widely used dimensionality reduction technique

https://github.com/viking-sudo-rm/DiachronicPOSTagger
https://github.com/viking-sudo-rm/DiachronicPOSTagger
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Figure 1: LSTM architecture. The input to the LSTM at each step is the concatenation of the current word’s
embedding and the corresponding document’s year embedding. Each output is the predicted POS tag for the
current word.

that requires no hyperparameter tuning. We cal-
culated the correlation between the first principal
component of the embeddings and time.

Both the LSTM and feedforward models cap-
ture lexical information. However, due to its re-
current connections, the LSTM model is also in-
formed by syntax. To evaluate whether the rela-
tionship between years and learned embeddings
was due to syntax or simply word choice, we com-
puted the correlation between the first principal
component of the embeddings and time for both
the LSTM and feedforward models. The differ-
ence between the LSTM and feedforward R2 val-
ues reflects the degree to which the LSTM’s repre-
sentation of time is informed by syntactic change.

2.2.3 Temporal Prediction
We evaluated the ability of our model to predict
the years of composition of new sentences. Be-
cause this task is difficult for a single sentence,
we evaluated model performance at the aggregate
level, bucketing test sentences by either year or
decade. As the year grouping is much more nar-
row, model performance when these buckets are
used should be worse. We report both year and
decade metrics to evaluate the extent to which our
model is effective at different levels of specificity.
We used our model to compute the perplexity of
each sentence in a given bucket at every possible

year (1810-2009). We then fit a curve to perplex-
ity as a function of year using locally weighted
scatterplot smoothing (LOWESS). These curves
provide clear interpretable visualizations that dis-
count extraneous noise. We took the year cor-
responding to the LOWESS curve’s global mini-
mum as the predicted year of composition for the
sentences in the bucket.

We compared the effectiveness of the LSTM
and the feedforward taggers for temporal predic-
tion. For decade buckets, we quantified the predic-
tive power of each model by calculating the aver-
age distance across decades between each decade
bucket’s middle year and predicted year of com-
position. Similarly, for year buckets, we measured
the average distance between the predicted and ac-
tual years of composition. For both metrics, the
naive baseline model assigns each bucket a pre-
dicted year of 1910 (the middle year in the data
set), which results in a metric value of 50.0 for
both decade and year buckets.

3 Results

3.1 Tagger Performance

Our LSTM POS tagger with year input achieves
95.5% test accuracy after training for one epoch
(see Table 1). While we are not focused on achiev-
ing state-of-the-art POS tagging performance, this
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Feedforward LSTM
Year 82.6 95.5

No Year 77.8 95.3

Table 1: Test accuracies for all architectural variants.
The networks differed in whether year information was
included as input and whether the hidden layer had
LSTM or feedforward connections.

Feedforward LSTM
Year 82.6 95.6

No Year 77.7 95.4

Table 2: Training accuracies for all architectural vari-
ants.

relatively high test accuracy suggests that the tag-
ger is legitimate. The LSTM without year input
performed marginally worse with a 95.3% test ac-
curacy (see Table 1). These results suggest that
temporal information slightly aids tagging.

The feedforward taggers with and without year
input had test accuracies of 82.6% and 77.8%, re-
spectively (again, see Table 1). As feedforward
networks, unlike LSTMs, do not take into account
relations between words, it makes sense that their
POS tagging performance is much lower. Addi-
tionally, these results bolster the idea that year in-
put improves tagging performance.

To justify not implementing dropout, regular-
ization, or other techniques to combat overfitting,
we calculated the training set accuracies of each
model. For each type of the model, the training set
accuracy was comparable to the test set accuracy
(see Table 2). Thus, our models did not overfit.

3.2 Analyzing Year Embeddings

When we plotted the LSTM-learned year embed-
dings using one-dimensional PCA, a clear linear
relationship (R2 = 0.89) between the years and
the first principal component emerged (see Fig-
ure 2). These results suggest that the most signif-
icant information in the year embeddings encodes
the relative position of each year within a chrono-
logical sequence. As the first principal compo-
nent seems to encode temporal information well,
we did not see a need to investigate additional
principal components. This strong linear correla-
tion suggests that, at the aggregate level, change is
monotonic and gradual over time. Even if specific
changes do not occur monotonically, the aggrega-
tion of these changes allows the network to learn a

Figure 2: The first principal component of the LSTM
year embeddings correlate strongly with time (R2 =
0.89).

Figure 3: The first principal component of the feedfor-
ward year embeddings shows a weaker temporal trend
than that of the LSTM (R2 = 0.68).
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Baseline Feedforward LSTM
Decade 50.0 26.6 12.5

Year 50.0 37.5 21.9

Table 3: Average distance between each time period’s
center and the year that minimizes the perplexity value
of the corresponding LOWESS curve. For the decade-
level metric, the “center” is the middle year of the
decade (1815 for 1810s). For the year-level metric, the
“center” is the year itself (1803 for 1803).

Figure 4: The 1840s LOWESS curve for the LSTM.
The year 1848 corresponds to the minimum perplexity.

monotonic representation of change.
The feedforward network’s temporal correla-

tion was weaker (R2 = 0.68) (see Figure 3). The
discrepancy between the LSTM and feedforward
R2 values indicates that the LSTM does not only
identify effects of lexical change, but also syntac-
tic change.

3.3 Temporal Prediction

For both year and decade buckets, the LSTM pre-
dicted the years of composition of new sentences
much better than the feedforward neural network
or the baseline (see Table 3). We also confirmed
our hypothesis that for both types of models the
prediction error for decade buckets would be lower
than for year buckets. Examples of some of the
LSTM perplexity curves can be seen in Figures
4, 5, 6, 7, and 8. Examples of some of the feed-
forward curves can be seen in Figures 9 and 10.
For all decades, the feedforward year of composi-
tion predictions tended to be skewed towards the
middle years of the data set (late 1800s and early
1900s). These findings suggest that the represen-
tation of syntactic change learned by the LSTM
can be leveraged to date new text.

We examined sample sentences whose years
of composition were predicted well. We sam-

Figure 5: The 1880s LOWESS curve for the LSTM.
The LSTM’s prediction for this decade is weaker than
for the other selected decades. The year corresponding
to the minimum perplexity is 1859.

Figure 6: The 1920s LOWESS curve for the LSTM.
The year 1929 corresponds to the minimum perplexity.

Figure 7: The 1960s LOWESS curve for the LSTM.
The year 1961 corresponds to the minimum perplexity.
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Figure 8: The 2000s LOWESS curve for the LSTM.
The year 2009 corresponds to the minimum perplexity.

Figure 9: The 1820s LOWESS curve for the feedfor-
ward tagger. For this decade, the feedforward net-
work is somewhat off as the year 1883 corresponds to
the minimum perplexity. For the feedforward network,
there is an evident bias across decades towards the late
1800s and early 1900s, which are the middle years of
the data set.

Figure 10: The 1980s LOWESS curve for the feedfor-
ward tagger. The feedforward network does not per-
form well for this decade. The year corresponding to
the minimum perplexity, 1903, is somewhat far from
the 1980s. Again there is an evident bias in prediction
towards the middle years of the data set.

pled 1,000 test data set sentences. Of sentences
longer than five words, we examined the ten sen-
tences with the smallest errors (distance between
the LSTM-predicted year of composition and the
actual year of composition). For each of these sen-
tences, we also calculated the error assigned to the
sentence by the feedforward model in order to de-
termine the extent to which syntax aided these pre-
dictions. These ten sentences are detailed in Ta-
ble 4. Generally for these sentences, the feedfor-
ward error was comparable to or larger than the
LSTM error, which suggests that syntactic infor-
mation improved prediction for these sentences.

Sentence 1 (again, see Table 4) was one of
seven sentences whose year of composition was
predicted perfectly. This sentence’s predicted year
of composition was the same as its actual year of
composition (1817). It makes sense that this sen-
tence was predicted well since its syntax is qualita-
tively archaic. For example, it uses the uninflected
subjunctive form shine whereas modern American
English would prefer shines.

4 Conclusion

Through our PCA analysis of the year embed-
dings, we found that the LSTM learned to rep-
resent years in a chronological sequence without
any biases imposed by initialization or architec-
ture. The LSTM also effectively predicted the year
of composition of novel sentences. Relative per-
formance on these tasks indicates that the LSTM
learns a stronger representation of time than the
feedforward baseline. Therefore, the diachronic
knowledge learned by the LSTM must encompass
syntactic–not just lexical–change.

One conceptual puzzle with our results is how
to reconcile the continuous notion of change repre-
sented by our model with the discreteness of natu-
ral language grammar. Some theories explain con-
tinuous grammatical change by positing that, at
any given time, speakers have multiple grammars,
or multiple options for syntactic parameters within
a grammar (Aboh, 2015). The relative probabili-
ties of different options can change gradually, per-
mitting continuous grammatical change. Further
work could use similar methods to examine how
neural networks represent patterns of change in
specific grammatical constructions. This analysis
could evaluate the degree to which individual syn-
tactic changes–rather than aggregate measures of
change–are continuous.
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Year Error
Sentence Pred True FF LSTM
1. it is of great consequence, that we adorn the religion we profess,
and that our light shine more and more that we grow in grace as we
advance in years, and that we do not resemble the changing wind or
the inconstant wave.

1817 1817 86 0

2. what extenuations or omissions had vitiated his former or recent
narrative; how far his actual performances were congenial with the
deed which was now to be perpetrated, i knew not.

1827 1827 0 0

3. that an unlimited power of making gifts could be narrowed down,
by any process of reasoning, to the idea of a grant to an indian, a
reward loan informer, and much less to a mere sale for money.

1833 1833 16 0

4. “amiable, generous, kindhearted woman! thou wert anxious to
procure for thy poor, afflicted, aged mother, all the repose which
her advanced life seemed to require, to wipe away the tear from her
dimmed eye and farrowed cheek, and as far as

1817 1817 10 0

5. count when shall we meet again? ther. 1821 1821 11 0
6. in some instances, upon killing them after a full year’s depriva-
tion of all nourishment, as much as three gallons of perfectly sweet
and fresh water have been found in their bags.

1838 1838 21 0

7. that’s a good way to think about me. 1996 1996 12 0
8. the contention between the wife of abraham and her egyptian
handmaid, has already been the subject of animadversion; but
although their histories are considerably blended, some features in
the character of the latter, and some affecting circumstances of her
life, have been hitherto omitted,

1816 1817 0 1

9. but what happens when your erotic adventure is stifled by an
unwelcome companion, such as a roommate? masturbating in a
UNK situation does pose some problems, but where there is a will,
there is a way.

2003 2002 22 1

10. it is UNK in truth we are an united people it is true but we are,
family united only for external objects; for our common defence,
and for the purpose of a common commerce; sharing, in com mop,
the UNK and privations of war

1826 1827 3 1

Table 4: Sentences whose years of composition were predicted best by the LSTM model. The table includes the
actual and predicted years of composition, and the feedforward and LSTM error measures.
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