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Abstract
Contemporary debates on filter bubbles and
polarization in public and social media raise
the question to what extent news media of
the past exhibited biases. This paper specif-
ically examines bias related to gender in six
Dutch national newspapers between 1950 and
1990. We measure bias related to gender
by comparing local changes in word embed-
ding models trained on newspapers with di-
vergent ideological backgrounds. We demon-
strate clear differences in gender bias and
changes within and between newspapers over
time. In relation to themes such as sexuality
and leisure, we see the bias moving toward
women, whereas, generally, the bias shifts in
the direction of men, despite growing female
employment number and feminist movements.
Even though Dutch society became less strati-
fied ideologically (depillarization), we found
an increasing divergence in gender bias be-
tween religious and social-democratic on the
one hand and liberal newspapers on the other.
Methodologically, this paper illustrates how
word embeddings can be used to examine his-
torical language change. Future work will in-
vestigate how fine-tuning deep contextualized
embedding models, such as ELMO, might be
used for similar tasks with greater contextual
information.

1 Introduction

In recent years, public and academic debates about
the possible impact of filter bubbles and the role of
polarization in public and social media have been
widespread (Pariser, 2011; Flaxman et al., 2016).
In these debates, news media have been described
as belonging to particular political ideologies, pro-
ducing skewed views on topics, such as climate
change or immigration. These contemporary de-
bates raise the question to what extent newspapers
in the past operated in filter bubbles driven by their
own ideological bias.

This paper examines gender bias in historical
newspapers. By looking at differences in the
strength of association between male and female
dimensions of gender on the one hand, and words
that represent occupations, psychological states,
or social life, on the other, we examine the gen-
der bias in and between several Dutch newspapers
over time. Did certain newspapers exhibit a bias
toward men or women in relationship to specific
aspects of society, behavior, or culture?

Newspapers are an excellent source to study so-
cietal debates. They function as a transceiver;
both the producer and the messenger of pub-
lic discourse (Schudson, 1982). Margaret Mar-
shall (1995) claims that researchers can uncover
the “values, assumptions, and concerns, and ways
of thinking that were a part of the public dis-
course of that time” by analyzing “the arguments,
language, the discourse practices that inhabit the
pages of public magazines, newspapers, and early
professional journals.”

The period 1950-1990 is of particular interest
as Dutch society underwent clear industrialization
and modernization as well as ideological shifts
(Schot et al., 2010). After the Second World War,
Dutch society was stratified according to ideolog-
ical and religious “pillars”, a phenomenon known
as pillarization. These pillars can be categorized as
Catholic, Protestant, socialist, and liberal (Win-
tle, 2000). Newspapers were often aligned to
one of these pillars (Wijfjes, 2004; Rooij, 1974).
The newspaper Trouw, for example, has a dis-
tinct Protestant origin, while Volkskrant and De
Telegraaf can be characterized as, respectively,
Catholic and neutral. In recent years, the latter
transformed into a newspaper with clear conserva-
tive leanings. Newspaper historians have studied
the ideological backgrounds of Dutch newspapers
using traditional hermeneutic means to which this
study adds a computational analysis of language
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Figure 1: Female Employment Numbers

use related to gender.
The representation of gender in public discourse

is related to ideological struggles over gender
equality. Several feminist waves materialized in
the Netherlands. The origins of the first femi-
nist wave can be traced back to the mid-nineteenth
century and lasted until the interwar period. It took
until the 1960s for feminism to flare up again in
the Netherlands. In between, confessional parties
were vocal in their anti-feminist policies. During
the 1960s, the second feminist wave, also known
as ‘new feminism’, focused on gender equality in
areas such as work, education, sexuality, marriage,
and family (Ribberink, 1987).

The increasing equality between men and
women is reflected in growing female employ-
ment numbers, which increased from 27.5 per-
cent in 1950 to almost 35 percent in 1990 (Fig-
ure 1).1 Apart from Scandinavia, the Nether-
lands has the highest levels of equality in Europe.
Nonetheless, in terms of education and employ-
ment, women are still lagging behind and reports
of gender discrimination are not uncommon in the
Netherlands (Baali et al., 2018; Ministerie van
Onderwijs, 2009).

2 Related Work

Word embedding models can be used for a wide
range of lexical-semantic tasks (Baroni et al.,
2014; Kulkarni et al., 2015). Hamilton et
al. (2016) show how word embeddings can also be
used to measure semantic shifts by comparing the
contexts in which words are used to denote con-
tinuity and changes in language use. More recent
work focused on the role of bias in word embed-

1https://opendata.cbs.nl/statline/#/
CBS/nl/

dings, specifically bias related to politics, gender,
and ethnicity (Azarbonyad et al., 2017; Bolukbasi
et al., 2016; Garg et al., 2018). Gonen et al. (2019)
demonstrate that debiasing methods work, but ar-
gue that we should not remove them. Azarbonyad
et al. (2017) compare semantic spaces related to
political views in the UK parliament, effectively
comparing biases between embeddings. Garg et
al. (2018) turn to biases in embedding to study
shifts related to gender and ethnicity.

This study builds upon the work of Garg et
al. (2018), and applies it to the context of the
Netherlands—represented by Dutch newspapers.
We extend their method further by distinguish-
ing between sources, rather than using a compre-
hensive gold standard data set. We also incorpo-
rate external lexicons, such as the emotion lexi-
con from Cornetto, the Nederlandse Voornamen-
bank (database of Dutch first names), the Dutch
translation of LIWC (Linguistic Inquiry and Word
Count) and HISCO (Historical International Clas-
sification of Occupations) (Vossen et al., 2007;
Tausczik and Pennebaker, 2010; Boot et al., 2017;
Zijdeman et al., 2013; Bloothooft, 2010).

3 Data

The data set consists of six Dutch national news-
papers: NRC Handelsblad (NRC), Het Vrije Volk
(VV), Parool, Telegraaf, Trouw, and Volkskrant
(VK).2 These newspapers can be characterized ide-
ologically as liberal, social-democratic, liberal,
neutral/conservative, Protestant, and Catholic.

For the analysis, we rely on the articles and not
the advertisements in the newspapers. We prepro-
cess the text by removing stopwords, punctuation,
numerical characters, and words shorter than three
and longer than fifteen characters. The quality of
the digitized text varies throughout the corpus due
to imperfections in the original material and limi-
tations of the recognition software. Because of the
variations in OCR quality, we only retain words
that also appeared in a Dutch dictionary.

We use the Gensim implementation of
Word2Vec to train four embedding models per
newspaper, each representing one decade between
1950 and 1990.3 The models were trained
using C-BOW with hierarchical softmax, with
a dimensionality of 300, a minimal word count

2 The digitized newspapers were provided by the National
Library of the Netherlands. http://www.delpher.nl

3https://radimrehurek.com/gensim/

https://opendata.cbs.nl/statline/#/CBS/nl/
https://radimrehurek.com/gensim/
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Figure 2: Total number of words per embedding model

and context of 5, and downsampling of 10−5.4

Figure 2 shows that the size of the vocabulary
approximately doubles for some newspapers
between 1950 and 1990. The variance of the
targets words, however, was small (µ ≈ 0.003)
and constant (σ[1.3−9, 2.9−9]), indicating model
stability. Since we calculate bias relative to each
model, these differences in vocabulary size will
have little impact on shifts in bias.

To measure gender bias, we use three sets of
targets words. First, we extract a list of approxi-
mately 12.5k job titles from the HISCO data set.
Second, we select emotion words with a confi-
dence score of 1.0, a positive polarity above 0.5
(n = 476) and a negative polarity below -0.5
(n = 636) from Cornetto. Third, we rely on the
Dutch translation of LIWC2001, which contains
lists of words to measure psychological and cog-
nitive states (Pennebaker et al., 2001). We use the
following LIWC (sub)categories: Affective and
Emotional Processes; Cognitive Processes; Sen-
sory and Perceptual Processes; Social Processes;
Occupation; Leisure activity; Money and Finan-
cial Issues; Metaphysical Issues; and Physical
states.

4 Methodology

For the calculation of gender bias, we construct
two vectors representing the gender dimensions
(male, female). We do this by creating an aver-
age vector that includes words referring to male
(‘man’, ‘his’, ‘father’, etc.) or female as well as
the most popular first names in the Netherlands

4Code can be found here: https://github.com/
melvinwevers/historical_concepts and the
models here: http://doi.org/10.5281/zenodo.
3237380

Figure 3: Job titles with strong bias towards men and
women in De Volkskrant, 1980-1990

for the period 1950-1990.5 Next, we calculate
the distance between each gender vector and every
word in a list of target words, for example, words
that denote occupations: a greater distance indi-
cates that a word is less closely associated with
that dimension of gender. The difference between
the distances for both gender vectors represents
the gender bias: positive meaning a bias toward
women and negative toward men. Figure 3 shows
the biases related to forty job titles. Words above
the diagonal are biased towards men, and those un-
derneath the diagonal towards women.

Finally, after standardizing and centering the
bias values, we apply Bayesian linear regression
to determine whether the bias changed over time.
The linear model is formulated as:

µi = α+ β ∗ Yi + 󰂃,

with µi the bias for each decade (i) and Yi the
coefficient related to each decade (i). The likeli-
hood function is: X ∼ N (µ,σ) with priors de-
fined: α ∼ N (0, 2), β ∼ N (0, 2), and 󰂃 ∼
HalfCauchy(β = 1). For model training, we use
a No-U-Turn-Sampler (NUTS) (5k draws, 1.5k
tuning steps, Highest Posterior Density (HPD) of
.95).6 For the target words Job Titles, the proposed
model (Model B) outperforms a model that only

5The word lists for both vectors can be found in Appendix
A. The first names were harvested from https://www.
meertens.knaw.nl/nvb/

6HPD is the Bayesian equivalent of the frequentists con-
fidence interval in Frequentist credible interval. https:
//docs.pymc.io

https://github.com/melvinwevers/historical_concepts
http://doi.org/10.5281/zenodo.3237380
https://www.meertens.knaw.nl/nvb/
https://docs.pymc.io
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WAIC pWAIC dWAIC weight SE dSE

Model B 64624.8 2.9 0 0.99 201.6 0
Model A 64682.1 1.88 57.28 0.01 201.36 15.2

Table 1: Model Comparison

mean sd hpd 2.5 hpd 97.5 n eff Rhat

a -0.164 0.010 -0.185 -0.145 1315.073 1.000
bY 0.046 0.006 0.033 0.055 1261.437 0.999
sigma 1.001 0.005 0.992 1.010 1035.282 1.003

Table 2: Model B Summary

includes the intercept (Model A), indicating that
bias changes as a function of time (Table 1 & Ta-
ble 2).

We compute a linear model that combines all
newspapers for the target words Job Titles, Pos-
itive Emotions, Negative Emotions, and the se-
lected LIWC columns. Then, for the same cate-
gories, we compute individual linear models for
each newspaper. The resulting models are re-
ported in Appendix B.

5 Results

The combined linear models, including all news-
papers, generally display minimal shifts in bias.
While the effects are weak, they fall within a .95
HPD. Partly, the weak trends are related to oppos-
ing shifts in the individual newspapers, cancelling
each other out. Nonetheless, the bias associated
with the categories ‘TV’, ‘Music’, ‘Metaphysical
issues’, ‘Sexuality’ navigate toward women (0.22,
0.12, 0.15, 0.22), with all of them starting from a
position that was clearly oriented toward men (-
0.36, -0.20, -0.28, -0.39).7 Conversely, ‘Money’,
‘Grooming’, and Negative Emotion words move
toward men (-0.24, -0.17, -0.16), which in the
1950s were all more closely related to women
(0.33, 0.20, 0.19). For the Job Titles, we
see a slight move toward women (0.05), while
words from the LIWC category Occupation move
marginally in the direction of men (-0.05). This
suggests that job titles might be more closely re-
lated to women, while the notion of working grav-
itates toward men.

The linear models for the individual newspa-
pers demonstrate distinct differences between the
newspapers. First, Volkskrant is the most stable
newspapers with 56% of the categories not chang-
ing.8 When bias changes in this newspaper, it

7Numbers refer to the slope
8Lower confidence interval < 0 and upper > 0

Figure 4: Combined model ‘Sexuality’

moves toward women 9 out the 11 categories that
change. Telegraaf, NRC, and Parool generally
move toward men, respectively (84%, 92%, and
80%). The bias of Trouw and Vrije Volk, contrar-
ily, move toward women (both 72%).

A noteworthy result is that in all newspapers the
bias shifts toward men in the category ‘money’.
Moreover, they also all exhibit a move toward
women for the category ‘sexuality’, with the clear-
est shift in Volkskrant, Trouw, and Vrije Volk.

6 Discussion

While the newspaper discourse as a whole is fairly
stable, individual newspapers show clear diver-
gences with regard to their bias and changes in
this bias. We see that the newspapers with a
social-democratic (Vrije Volk) and religious back-
ground, either Catholic (Volkskrant) and Protes-
tant (Trouw) demonstrate the clearest shift in bias
toward women. The liberal/conservative newspa-
pers Telegraaf, NRC Handelsblad, and Parool, on
the contrary, orient themselves more clearly to-
ward men. Despite increasing female employment
numbers in the Netherlands, the association with
job titles moves only gradually toward women,
while words associated with working move to-
ward men. More detailed analysis of the individ-
ual trend within each decade is necessary to un-
tangle what exactly is taking place. For example,
which words show the biggest shift, and can we
identify groups of associated words of which par-
ticular words show divergent behavior? Method-
ologically, this paper shows how word embedding
models can be used to trace general shifts in lan-
guage related to gender. Nevertheless, certain cul-
tural expressions of gender are not captured by
distributional semantics represented through word
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Figure 5: Individual newspaper model ‘Sexuality’

embeddings, but rather in syntax, for example,
through the use of active of passive sentences. Fu-
ture work will investigate how fine-tuning state-
of-the-art embedding models, such as ELMO and
BERT, can be leveraged to gain more contextual
knowledge about words and their association with
gender (Peters et al., 2018).
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