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Abstract

Diachronic word embeddings play a key role
in capturing interesting patterns about how
language evolves over time. Most of the ex-
isting work focuses on studying corpora span-
ning across several decades, which is under-
standably still not a possibility when working
on social media-based user-generated content.
In this work, we address the problem of study-
ing semantic changes in a large Twitter cor-
pus collected over five years, a much shorter
period than what is usually the norm in di-
achronic studies.

We devise a novel attentional model, based
on Bernoulli word embeddings, that are con-
ditioned on contextual extra-linguistic (social)
features such as network, spatial and socio-
economic variables, which are associated with
Twitter users, as well as topic-based features.
We posit that these social features provide an
inductive bias that helps our model to over-
come the narrow time-span regime problem.
Our extensive experiments reveal that our pro-
posed model is able to capture subtle semantic
shifts without being biased towards frequency
cues and also works well when certain con-
textual features are absent. Our model fits
the data better than current state-of-the-art dy-
namic word embedding models and therefore
is a promising tool to study diachronic seman-
tic changes over small time periods.

1 Introduction

Natural language changes over time due to a wide
range of linguistic, psychological, sociocultural
and encyclopedic causes (Blank and Koch, 1999;
Grzega and Schoener, 2007). Studying the seman-
tic change of a word helps us understand more
about the human language and build temporally
aware models, that are especially complementary
to the work done in the digital humanities and his-

Figure 1: The diachronic embedding computed by our
proposed model for the word ‘BATACLAN’ reveals
how the term’s usage changed over the years. We list
the most similar five words (with English translation in
paranthesis) in each year by cosine similarity. The y-
axis corresponds to “meaning”, a one dimensional PCA
projection of the embeddings.

torical linguistics. Recently, diachronic word em-
beddings based on distributional hypothesis (Har-
ris, 1954) have been used to automatically study
semantic changes in a data-driven fashion from
large corpora (Kim et al., 2014; Hamilton et al.,
2016; Rudolph and Blei, 2018). We refer the
reader to Kutuzov et al. (2018) who survey the re-
cent methods in this field and establishes the chal-
lenges that lie ahead.

Currently, we find the literature on this prob-
lem to be focused on English corpora, spanning
across several decades. This has not only cre-
ated a gap in extending the diachronic word em-
beddings for a wider scope of languages, but also
to datasets spanning across few successive years
which are common in digital humanities and so-
cial sciences. In this work, we study French text
from Twitter collected over just five years, which
provides a challenging platform to build models
that can capture semantic drifts in a noisy, subtly
evolving language corpus.

Figure 1 shows an instance of the evolution of
the word ‘Bataclan’ (a theatre in Paris that was at-
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tacked by terrorists on November 2015) from the
French corpus. It also shows that such embed-
ding representations mostly capture the dominant
sense of a word when used in synchrony and can
therefore only reflect the evolution of the dominant
sense when used diachronically, yet leaving open
the question of whether small, subtle changes can
be captured (Tahmasebi et al., 2018).

We hypothesize that the current state-of-the-art
models lack inductive biases to fit data accurately
in this setting. We build on the observation by
Jurafsky (2018) that “it’s important to consider
who produced the language, in what context, for
what purpose, and make sure that the models are
fit to the data”. Hence, we propose a novel model
extending on Dynamic Bernoulli word Embed-
dings (Rudolph and Blei, 2018) (DBE) which ex-
ploits the inductive bias by conditioning on a num-
ber of contextualized features such as network,
spatial and socio-economic variables, which are
associated with Twitter users, as well as topic-
based features.

We perform qualitative studies and show that
our model can: (i) accurately capture the subtle
changes caused due to cultural drifts, (ii) learn a
smooth trajectory of word evolution despite ex-
ploiting various inductive biases. Our quantitative
studies illustrate that our model can: (i) capture
better semantic properties, (ii) be less sensitive to
frequency cues compared to DBE model, (iii) act
as better features for 2 out of 4 tweet classification
tasks. Through an ablation study, we find in addi-
tion that our model can: (iv) work with a reduced
set of contextualized features, (v) follow the test of
law of prototypicality (Dubossarsky et al., 2015).
In sum, we believe our model is a promising tool
to study diachronic semantic changes over small
time periods. 1

Our main contributions are as follows:
• Our work is the first to study diachronic word

embeddings for tweets from French language
to the best of our knowledge. Unlike previ-
ous works, we consider dataset from a narrow
time horizon (five years).
• We propose a novel, attentional, diachronic

word embedding model that derives inductive
biases from several contextualized, socio-
demographic, features to fit the data accu-
rately.

1Code to reproduce our experiments is publicly ac-
cessible at https://github.com/ganeshjawahar/
social_word_emb

• Our work is also the first to estimate the use-
fulness of the diachronic word embeddings
for downstream task like tweet classification.

2 Related Work

Kim et al. (2014) introduced prediction-based
word embedding models to track semantic shifts
across time. They extended SkipGram model with
Negative Sampling (SGNS) (Mikolov et al., 2013)
by training a model on current year after initial-
izing the word embeddings from trained model of
previous year. This initialization ensures the word
vectors across time slices are grounded in same se-
mantic space. Kulkarni et al. (2015) and Hamil-
ton et al. (2016) utilize ad hoc alignment tech-
niques like orthogonal Procrustes transformations
to map successive model pairs together. These ap-
proaches have an impractical demand of having
enough data in each time slice to learn high quality
embeddings.

The work done by Bamler and Mandt (2017),
Yao et al. (2018) and Rudolph and Blei (2018) pro-
posed to learn word embeddings across all time
periods jointly along with their alignment in a sin-
gle step. Rudolph and Blei (2018) represent word
embeddings as sequential latent variables, natu-
rally accommodating for time slices with sparse
data and assuring word embeddings are grounded
across time. Our proposed model builds upon this
work to condition on several inductive biases, us-
ing contextual extra-linguistic (social) and topic-
based features, to accurately fit dataset from a nar-
row time horizon.

3 Contextualized Features

Natural language text is inherently contextual, de-
pending on the author, the period and the intended
purpose (Jurafsky, 2018). For instance, features
based on authors’ demography although incom-
plete can explain some of the variance in the
text (Garten et al., 2019). While diachronic word
embeddings’ ability to capture semantic shifts is
interesting because of its flexibility, we postulate
that there is a need to capture contextualized in-
formation about tweets such as the characteristics
of their authors (including spatial, network, socio-
economic, interested topics) and meta-information
such as their topic. To extract features, we make
use of the largest French Twitter corpus to date
proposed in Abitbol et al. (2018). In this section
we will describe the set of contextualized feature

https://github.com/ganeshjawahar/social_word_emb
https://github.com/ganeshjawahar/social_word_emb
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we propose to inject to our diachronic word em-
bedding model (see Section 4).

3.1 Spatial

Users from similar geographical areas tend to
share similar properties in terms of word usage
and language idiosyncrasies. Among others, Hovy
and Purschke (2018) for German and Abitbol et al.
(2018) for French, confirmed regional variations
in geolocated users’ content in social media. The
latter work found the southern part of France to
use a more standard language than the northern
part. To exploit these geographic variations, we
identify geolocated users (∼ 100K) and asso-
ciate each of them to their respective region (out
of 22 regions) and department (out of 96 depart-
ments) within the French territory. We learn a
latent embedding for each region and department
which captures the spatial information with differ-
ent levels of granularity.

3.2 Socioeconomic

Users from similar socioeconomic status tend to
share similar online behavior in terms of circa-
dian cycles. Specifically, Abitbol et al. (2018)
found that people of higher socioeconomic sta-
tus are active to a greater degree during the day-
time and also use a more standard language. Na-
tional Institute of Statistics and Economic Studies
(INSEE) of France provided the population level
salary for each 4 hectare square patch across the
whole French territory, estimated from the 2010
tax return in France. We also use IRIS dataset
provided by French government which has more
coarse grained annotation for socioeconomic sta-
tus. This information is mapped with the ge-
ographical coordinates of users’ home location
from Twitter so we can roughly ascertain the eco-
nomic status of every geolocated users. We create
9 socioeconomic classes by binning the income
and ensuring that the sum of income is the same
for each class. We learn a latent embedding for
each such class, which thus captures the variation
caused by status homophily.2

3.3 Network

Users who are connected to each other in social
networks are usually believed to share similar in-

2Some statistical pretreatments were applied to the data
by INSEE before its public release to uphold current privacy
laws and due to the highly sensitive nature of the disclosed
data.

terests. We construct a co-mention network from
the set of geolocated users as nodes and edges
connecting those users who have mentioned each
other at least once. We run the LINE model (Tang
et al., 2015) to embed the nodes in the graph using
the connectivity information and use the resulting
node embedding as fixed features.

3.4 Interest

Interest feature corresponds to the set of important
topics a user cares about. We obtain this informa-
tion by composing a user document capturing all
the words used in their posts, ranking the words
in the document by the tf-idf score and selecting
the top 50 of them. We then construct the user
vector by summing the vectors (obtained by run-
ning word2vec on the entire corpus or geolocated
tweets) corresponding to the top 50 words. We use
the user vectors as fixed features.

3.5 Knowledge

Knowledge features keep track of the way the user
writes and as such, it is also a summary of their
content in Twitter. We learn a latent embedding
for each geolocated user.

3.6 Topic

This feature associated with a tweet corresponds
to the topic a tweet belongs to. Since the avail-
able corpus does not have any annotation about
the topic of the tweet, we exploit the distant
supervision-based idea proposed by Magdy et al.
(2015) to filter geolocated tweets with an accom-
panying YouTube video link. We then use the
YouTube public API to obtain the category of the
video, which is then associated to the topic of
the tweet. We learn a latent embedding for each
YouTube category.

4 Proposed model

In this section we will first briefly discuss the ‘Dy-
namic Bernoulli Embeddings’ model (DBE) and
then provide the details of our proposal, which
uses DBE model as its backbone.

4.1 Dynamic Bernoulli Embeddings (DBE)

The DBE model is an extension of the ‘Exponen-
tial Family Embeddings’ model (EFE, (Rudolph
et al., 2016)) for incorporating sequential changes
to the data representation. Let the sequence of
words from a corpus of text be represented by
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(xi, . . . , xN ) from a vocabulary V . Each word
xi ∈ 0, 1V corresponds to a one-hot vector, having
1 in the position corresponding to the vocabulary
term and 0 elsewhere. The context ci represents
the set of words surrounding a given word at po-
sition i.3 DBE builds on Bernoulli embeddings,
which provides a conditional model for each entry
in the indicator vector xiv ∈ 0, 1, whose condi-
tional distribution is

xiv|xci ∼ Bern(ρiv), (1)

where ρiv ∈ (0, 1) is the Bernoulli probability and
xci is the collection of data points indexed by the
context positions. Each index (i, v) in the data rep-
resents two parameter vectors, the embedding vec-
tor ρ(t)v ∈ RK and the context vector αv ∈ RK .
The natural parameter of the Bernoulli is given by,

ηiv = ρᵀv(
∑
j∈ci

∑
v′

αv′xjv′). (2)

Since each observation xiv is associated with a
time slice ti (which is a year, in our case 4), DBE
learns a per-time-slice embedding vector ρ(ti)v for
every word in the vocabulary. Thus, equation 2
becomes,

ηiv = ρ(ti)ᵀv (
∑
j∈ci

∑
v′

αv′xjv′). (3)

DBE lets the context vectors shared across the
time slices to ground the successive embedding
vectors in the same semantic space. DBE assumes
a Gaussian random walk as a prior on the embed-
ding vectors to encourage smooth change in the
estimates of each term’s embedding,

αv, ρ
(0)
v ∼ N (0, λ−10 I)

ρ(t)v ∼ N (ρ(t−1)v , λ−1I).
(4)

4.2 Proposed model
In this work, we argue that the DBE model fails
to accurately fit the data spanning across fewer
years as it discards other explanatory variables
(besides time) about the complicated processes in
the language in terms of evolution and construc-
tion. These variables, which we defined in Sec-
tion 3 as contextualized features, carry useful sig-
nals to understand subtle changes such as cultural

3We use 2 words before and after the focal word to deter-
mine context for all our experiments.

4Our preliminary investigation with different time span
units can be found in Appendix A.6.

drifts. Our proposed model extends DBE by utiliz-
ing these contextualized features as inductive bi-
ases.

In our setting, we represent a tweet as tk =
(xi, . . . , xN ) belonging to user ul. Each tuple
(i, c) is associated with a set of contextualized fea-
tures based on either ul or tk, fi,m ∈ Rdm(m =
1, . . . , |F |) (where |F | corresponds to the number
of contextualized features). Each contextualized
feature not only follows a different distribution but
also has different degrees of noise (e.g., sparsity
of co-mention network, geolocation inaccuracy).
Hence, it is harder to unify them in a single model.
We propose three ways to introduce inductive bias
to the DBE model.
Unweighted sum: The simplest approach is to
project all the feature embeddings to a common
space and sum them up. This approach is not ag-
nostic to the embedding vector xi in question and
consider all the contextualized features equally.
Incorporating this approach, equation 3 now be-
comes:

ηiv = (ρ(ti)v +

|F |∑
m=1

wmfi,m)

ᵀ

(
∑
j∈ci

∑
v′

αv′xjv′), (5)

where wm corresponds to the learnable weights
corresponding to the linear projection of fi,,m with
size as K × dm. Note that K denotes the dimen-
sion of both context and target embedding.
Self-attention: Considering all the features
equally would be wasteful for certain embedding
vector xi. Henceforth, we propose to let the net-
work decide the important contextualized features
based on self attention. This approach gives a pro-
vision to our model to handle the effect of spuri-
ous contextual signals by paying no attention. In-
corporating this approach, equation 5 will now be-
come:

ηiv = (ρ(ti)v +

|F |∑
m=1

αmwmfi,m)

ᵀ

(
∑
j∈ci

∑
v′

αv′xjv′), (6)

where αm are the scalar weights corresponding
to the self-attention mechanism:

αm = g(fi,m) = φ(a wmfi,m + b) (7)

where a ∈ RK and b ∈ R are learnable parame-
ters while φ is a softmax.
Contextual attention: We can also make the at-
tention mechanism to be context-dependent, that
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DBE Context Attn.

2014 2015 2016 2017 2018 2014 2015 2016 2017 2018

jdd rocard macron macron macron jdd attali macron macron macron
brunet lévy matignon rugy élysée brunet lévy matignon hollande élysée

frédéric attali lejdd.fr hollande matignon dupont cnrs fustige rugy elysee
elysee montel medef elysée pétain frédéric monarchie renoncement mélenchon élection
dupont monarchie élysée bayrou interpelle révélée rocard medef présidentielle emmanuelmacron

Table 1: Embedding neighborhood of ‘EMMANUEL’ obtained by finding closest word in each time period sorted
by decreasing similarity. All named entities are italicized. Interesting words identified by the proposed model are
bolded.

DBE Context Attn.

2014 2015 2016 2017 2018 2014 2015 2016 2017 2018

genesio huitiémes estac ogcnice asnl malcuit sampaoli pyeongchang ogcnice asnl
génésio lafont pyeongchang amical tricolore seri huitiémes estac asnl eswc
raggi génésio tgvmax slovaquie pariez tousart donnarumma çu.e bleuets carrasso
zambo pyeongchang u20 asnl affrontera raggi lafont ndombele slovaquie tricolore
malcuit sampaoli lrem bleuets carrasso asensio sertic auproux mennel euro2016

Table 2: Embedding neighborhood of EQUIPEDEFRANCE ‘French Team’ in obtained by finding the closest word
in each time period sorted by decreasing similarity. All named entities are italicized. Interesting words identified
by the model are bolded.

is, dependent on the embedding vector. Equation 7
then becomes:

αm = g(ρi) = φ(amρi + b) (8)

where am ∈ RK corresponds to the learnable at-
tention parameter specific to a contextualized fea-
ture fm.

We fit the diachronic embeddings with the
pseudo log likelihood, the sum of log conditionals.
Particularly, we regularize the pseudo log likeli-
hood with the log priors, followed by maximiza-
tion to obtain a pseudo MAP estimate. Our objec-
tive function can be summarized as,

L(ρ, α) = Lpos + Lneg + Lprior (9)

The likelihoods are given by:

Lpos =
|T |∑
k=1

N∑
i=1

V∑
v=1

xivlogσ(ηiv),

Lneg =

|T |∑
k=1

N∑
i=1

∑
v∈Si

log(1− σ(ηiv)),

(10)

where Si correspond to the negative samples
drawn at random (Mikolov et al., 2013) and σ(.)
denote the sigmoid function, which maps natural
parameters to probabilities. The prior is given by,

Lprior = −
λ0
2

∑
v

‖αv‖2 −
λ0
2

∑
v

∥∥∥ρ(0)v

∥∥∥2
− λ

2

∑
v,t

∥∥∥ρ(t)v − ρ(t−1)v

∥∥∥2 . (11)

Language evolution is a gradual process and the
random walk prior prevents successive embedding
vectors ρ(t−1)v and ρ(t)v from drifting far apart.

The objective function established in equation 9
is learned using stochastic gradients (Robbins
and Monro, 1985) with the help of Adam opti-
mizer (Kingma and Ba, 2014). Negative sam-
ples are resampled at each gradient step. Pseudo
code for training our model can be found in Ap-
pendix A.1.

5 Experiments and Results

In this section we discuss the experimental proto-
col, qualitative and quantitative evaluation to un-
derstand the performance of our model.

5.1 Protocol

Data: We use the French twitter dataset proposed
in Abitbol et al. (2018), which is the largest col-
lection of French tweets to date. The original
dataset consists of 190M French tweets posted
by 2.5M of users between June 2014 and March
2018. To be able to use socio-geographic fea-
tures and assess the validity of our model, we
only considered tweets from users whose home
location could be identified to be in Metropolitan
France. This filtering step resulted in a data set
of 18M tweets from 110K users spread across 5
years. This data set was then enriched using output
from the constituency-based Stanford parser in its
off-the-shelf French settings (Green et al., 2011)
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and from the dependency-based parser of Jawahar
et al. (2018). We lowercased all the tweets, re-
moved hashtags, mentions, URLs, emoticons and
punctuations. We used 80% of the tweets from
each year to train our model, split the rest equally
to create validation (10%) and test set (10%). Fi-
nally, we pick the most frequent 50K words from
the train set to create our vocabulary.
Baseline models: We compare our pro-
posed model with three baseline models: (i)
Word2vec (Mikolov et al., 2013)5 - We use the
SGNS version of Word2vec trained independently
for each year with the embedding size as 100,
window as 2 and the rest maintained to default;
ii) HistWords (Hamilton et al., 2016)6 - We use
the SGNS version which is effective for datasets
of different sizes and employ similar settings as
the previous baseline; (iii) DBE (Rudolph and
Blei, 2018)7 - We use the dynamic Bernoulli
embedding model (backbone of our model)
with the recommended settings. We have three
variants of our proposed model: no attention
model (unweighted sum), self attention model
and contextual attention model. Hyperparameter
settings to reproduce our results can be found in
Appendix A.2.

5.2 Qualitative Study
Embedding neighborhood: The goal of di-
achronic word embedding model is to automati-
cally discover the changes in the usage of a word.
The current usage at time t of a word w can be
obtained by inspecting the nearby words of the
word represented by ρ(t)w . From Table 1, we can
observe that ‘EMMANUEL’ (first name of cur-
rent French president) is associated with his last
name (‘macron’) and office location (‘élysée’) by
both DBE and proposed model. However, pro-
posed model is able to capture interesting neigh-
borhood by bringing words such as ‘élection’,
‘présidentielle’ and ‘mélenchon’ closer to ‘EM-
MANUEL’8. Table 2 presents words of interest
associated by our proposed model to the French
football team like ‘euro2016’.
Smoothness of the embedding trajectories:

5https://radimrehurek.com/gensim/
models/word2vec.html

6https://nlp.stanford.edu/projects/
histwords/

7https://github.com/mariru/dynamic_
bernoulli_embeddings

8Emmanuel Macron became the president of France on
May 2017. Jean-Luc Mélenchon stood fourth.

Since language evolution is a gradual process,
the trajectory for a word tracked by a model
should be changing smoothly. There are excep-
tions for words undergoing cultural shifts where
the changes can be subtle and rapid. We plot
the trajectory by computing the cosine similarity
between word (e.g., MACRON) and its known,
changed usage (e.g., PRESIDENT). Figure 2
shows that models relying on Bernoulli embed-
dings have smooth trajectories for known relations
compared to other models. Despite fusing differ-
ent, possibly noisy contextualized features, the tra-
jectory tracked by our proposed model and DBE
are comparably smooth.
t-SNE: Alternatively, we can overlay the embed-
dings from all the time slices and visualize them
using dimensionality reduction technique like t-
SNE (Maaten and Hinton, 2008). From Figure 3,
we see a similar result where most of the words
modeled by our proposed model has experienced
consistent change with time.

5.3 Quantitative Study

Log Likelihood: We can evaluate models by
held-out Bernoulli probability (Rudolph and Blei,
2018). Given a held-out position, a better model
assigns higher probability to the observed word
and lower probability to the rest. We report
Leval = Lpos+Lneg in Table 3. Contextual atten-
tion based model which smartly utilizes the con-
textualized features provides better fits to the data
compared to the rest. Interestingly, the other vari-
ants of our proposed model performs poorly com-
pared to the DBE model which suggests the im-
portance of utilizing attention appropriately. Since
all the competing methods produce Bernoulli con-
ditional likelihoods (Equation 1), where n is the
number of negative samples. We keep n to be 20
for all the methods to peform a fair comparison.
Semantic Similarity: Certain tweets are tagged
with a ‘category’ to which it belongs (as discussed
in Section 3.6). Similar to Yao et al. (2018), we
create the ground truth of word category based on
the identification of words in years that are excep-
tionally numerous in one particular category. In
other words, if a word is most frequent in a cate-
gory, we tag the word with that category and form
our ground truth. For each category c and each
word w in year t, we find the percentage of occur-
rences p in each category. We collect such word-
time-category 〈w,t,c〉 triplets, avoid duplication by

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://nlp.stanford.edu/projects/histwords/
https://nlp.stanford.edu/projects/histwords/
https://github.com/mariru/dynamic_bernoulli_embeddings
https://github.com/mariru/dynamic_bernoulli_embeddings
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Figure 2: Smoothness of word embedding trajectories vs. baseline models. High values correspond to similarity.
Notice that for Word2vec model, we do not plot the results for time periods where at least one of the word of
interest occurs below the minimum frequency threshold.

Model log lik. SS Senti Htag Topic Conv.

Word2vec Nil 0.034 71.54 37.32 34.98 70.04
HistWords Nil 0.042 73.69 36.75 36.85 70.17
DBE -7.708 0.065 73.00 41.83 40.01 70.98
No Attn. -8.059 0.058 73.22 42.11∗ 39.61 71.21∗
Self Attn. -7.840 0.061 73.18 42.19∗ 39.67 71.10
Context Attn. -7.425 0.068 73.19 41.88 39.65 71.15

Table 3: Quantitative results based on log likelihood, semantic similarity and tweet classification. Higher numbers
are better for all the tasks. Statistically significant differences to the best baseline for each task based on bootstrap
test are marked with an asterisk. Note that we could not perform statistical significance studies for log likelihood
experiment due to the large size of the test set and semantic similarity experiment due to the nature of clustering
evaluation.
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Figure 3: t-SNE visualization of mid-frequency (be-
tween 2000-2500) words for our contextual attention
model.
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Figure 4: Synthetic Evaluation. preplacement vs MRR.

keeping the year of largest strength for each w
and s combination, and remove triplets where p is
less than 35%. Finally, we pick top 200 words by
strength from each category and create a dataset
of 3036 triplets across 15 categories, where each
word-year pair is essentially strongly linked to its
true category. We evaluate the purity of clustering
results by using Normalized Mutual Information
(NMI) metric. From Table 3, we find a similar
trend in the performance of our proposed model.

As we see in Section 6.3, the reason our contextual
attention based model excels in this task is due to
its superiority in capturing semantic properties of
a word.
Synthetic Linguistic Change: We can syntheti-
cally introduce the linguistic shift by introducing
changes to the corpus and then evaluate if the di-
achronic word embedding model is able to detect
those artificial drifts accurately. We follow the
work done by Kulkarni et al. (2015) to duplicate
our data belonging to the 2018 year 6 times (along
with the extra-linguistic information), perturb the
last 3 snapshots and use the diachronic embedding
model to rank all the words according to their p-
values. We then calculate the Mean Reciprocal
Rank (MRR) for the perturbed words and expect it
to be higher for models that can identify the words
that have changed. To perturb the data, we sam-
ple a pair of words from the vocabulary exlcud-
ing stop words, replace one of the word with the
other with a replacement probability preplacement

and repeat this step 100 times. We employ two
types of perturbation - syntactic (where the both
the words that are sampled in each step have the
same most frequent part of speech tag) and fre-
quent (where there is no restriction for the words
being sampled at each step). From Figure 4, we
find that DBE model is sensitive to the frequency
cues from the data and fails to model subtle se-
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Figure 5: Change in the word’s usage correlated with
distance for different numbers of clusters between the
2014 and 2018 year.

mantic shifts (e.g. for words which has evolved in
its meaning without substantial change in its syn-
tactic functionality).

Tweet Classification: We find that the existing
work skips evaluating the diachronic word embed-
dings for a downstream NLP task. In this work
we propose to test if the diachronic word embed-
dings can be used as features to build a temporally-
aware tweet classifier.9 We obtain a representation
for a tweet by summing the embeddings for the
words (belonging to the year in which tweet was
posted) present in the tweet. We then train a lo-
gistic regression model and compute the F-score
on the held-out instances. We establish four tweet
classification tasks — Sentiment Analysis, Hash-
tag Prediction, Topic Categorization and Conver-
sation Prediction (predict if a tweet will receive
a reply or not) through distant supervision meth-
ods. Details of the task and dataset collection can
be found in Appendix A.3. From Table 3, we
find that our proposed model provides competi-
tive performance with the baseline models for sen-
timent analysis and topic categorization while it
outperforms them for the hashtag and conversa-
tion prediction tasks by a statistically significant
margin (computed using bootstrap test (Efron and
Tibshirani, 1994)). Note that there is no single
best model that works for every tweet classifica-
tion tasks.

6 Analysis

In this section we perform extended analysis of
our proposed model to gain more insights about
its functionality.

9https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html
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Figure 6: Importance score for each contextualized fea-
ture.

6.1 Ablation Study
We perform ablation studies of the proposed
model by considering different set of contextual-
ized features as inductive biases, illustrated in Ta-
ble 4. It is interesting to find that our model can
work with a limited set of contextualized features
in practice.

6.2 Law of Prototypicality
Dubossarsky et al. (2015) state that the likelihood
of change in a word’s meaning correlates with its
position within its center. They define the proto-
typicality measure based on the word’s distance
from its cluter centroid (e.g., sword is a more pro-
totypical exemplar than spear or dagger) and the
prototypicality score reduces when the word un-
dergoes change in its meaning. For all our mod-
els, we correlate the distance of word vector corre-
sponding to 2014 and 2018 year with the distance
the 2014 (2018) year vector moved from its cluster
center. We then check if there is a positive correla-
tion (r > .3). From Figure 5, we observe that there
exists a positive correlation for all the variants of
our model when compared to a prototypical or ac-
tual cluster centroid. Interestingly, when the clus-
ter sizes are small (< 250), the word’s meaning
change is correlated with a prototypical exemplar
more than a actual exemplar. On the other hand,
this correlation direction gets reversed when the
cluster sizes are greater than 250 and there exists
more semantic areas.

6.3 Interpretation via Probing Tasks
Our tweet classification experiments (Section 5.3)
demonstrated the usefulness of diachronic word
embeddings as features in building a diachronic
tweet classifier. Understanding the underlying
properties of the tweet embeddings that enable it
to outperform competing models is hard. This is
why, following Conneau et al. (2018), we inves-

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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Task log lik. SS Senti Htag Topic Conv.

spatial -7.610 0.059 73.10 42.19 39.61 71.14
income -7.600 0.067 72.98 42.18 39.64 71.10
interest -7.724 0.061 73.06 42.21 39.75 71.41
spatial & income -7.510 0.059 73.21 42.08 39.67 71.22
spatial & interest -7.396 0.059 73.11 42.14 39.77 71.23
income & interest -7.410 0.059 73.27 42.30 39.75 71.11
spatial & income & network -7.447 0.062 73.35 42.19 39.66 71.06
spatial & interest & network -7.429 0.064 73.16 42.15 39.64 71.17
interest & income & network -7.522 0.061 73.11 42.16 39.82 71.15
interest & income & network & spatial -7.489 0.060 73.10 41.95 39.62 71.22
interest & income & network & spatial & knowledge -7.438 0.059 73.21 41.90 39.70 71.28
interest & income & network & spatial & topic -7.426 0.064 73.16 41.94 39.65 71.22

Table 4: Ablation Results for contextual attention model based on log likelihood, semantic similarity and tweet
classification.

Model/Task SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
(Task type) (Surface) (Surface) (Syntactic) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic) (Semantic) (Semantic)

non diachronic
Word2vec 84.07 22.65 50.34 37.27 50.69 75.99 84.40 82.88 64.40 49.79
HistWords 83.40 34.08 47.51 40.43 49.92 77 84.99 83.31 64.29 50.46

diachronic
DBE 73.48 46.97 43.64 31.41 50.46 73.34 82.57 82.02 64.85 50.05
No Attn. 75.51 46.82 48.28 32.78 49.15 73.45 82.39 82.07 65.65 49.17
Self Attn. 74.82 47.37 47.77 32.49 50.19 73.16 82.38 82.18 64.51 50.18
Context Attn. 75.47 46.03 47.31 33.08 49.98 73.05 82.10 81.81 65.76 49.59

Table 5: Probing task accuracies. See Conneau et al. (2018) for the details of probing tasks and classifier used.

tigate that question by setting a diagnostic classi-
fier that probes for important linguistic features on
parsed output we mentioned earlier. Those probes
are based on various prediction tasks (word con-
tent, sentence length, subject or object number de-
tection, etc.) described in (Conneau et al., 2018)
and succinctly in our Appendix A.5. In 7 out of 9
tasks the use of contextual features seems to be
detrimental, but the relative performance differ-
ence between our proposed models and the base-
line are negligible for 5 of them. This suggests that
the addition of contextualized features does not
hurt the syntactic and semantic information cap-
tured by our models. Interestingly, all dynamic
embeddings models are able to perform twice bet-
ter in the word prediction task than a Word2vec
baseline but it is unclear if those models capture
language usage or actual topic prediction within a
degraded language modeling task.

6.4 Interpretation via Erasure
Alternatively, we can directly compute the impor-
tance of a contextualized feature by observing the
effects on the model of erasing (setting the weights
to 0) the particular feature (Li et al., 2016). By
subtracting the erased model performance on the
test set from that of the original model perfor-
mance and post normalization, we can establish
the importance score for each feature against each
version of our proposed model. Figure 6 empha-

sizes our finding that all contextualized features
(except interest) are equally important to the per-
formance of each variant of our proposed model.

7 Conclusion

In this work, we proposed a new family of di-
achronic word embeddings models that utilize var-
ious contextualized features as inductive biases to
provide better fits to a social media corpus. Our
wide range of quantitative and qualitative studies
highlight the competitive performance of our mod-
els in detecting semantic changes over a short time
range. In the future, we will consider the tempo-
ral nature of some of our contextualized features
when incorporating them into our models. For ex-
ample, the static social network we built can be
dynamically evolving and more susceptible to ac-
curately model underlying phenomenon.

Acknowledgments

We thank our anonymous reviewers for provid-
ing insightful comments and suggestions. This
work was funded by the ANR projects ParSiTi
(ANR-16-CE33-0021), SoSweet (ANR15-CE38-
0011-01) and the Programme Hubert Curien Mai-
monide project which is part of a French-Israeli
Cooperation program.



44

References

Jacob Levy Abitbol, Márton Karsai, Jean-Philippe
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A Appendices

A.1 Pseudo code for the training algorithm

Pseudo code for training our proposed model is
presented in Algorithm 1.

Algorithm 1 : Training algorithm for the pro-
posed diachronic word embedding model

Input: Tweets Xt of size mt from T time slices, contextual features fm,
context size c, embedding sizeK, number of negative samplesn, number of
minibatch fractions m, initial learning rate η, precision λ, vocabulary size
V , smoothed unigram distribution ρ̂.
for v from 1 to V do

Initialize αv and ρ(T )
v withN (0, 0.01)

end for
form from 1 to |F | do

if fm is learnable then
Initialize fm with U(0, 1)

end if
end for
for number of passes over the data do

for number of minibatch fractions m do
for t from 1 to T do

for i from 1 to mt
m do

Sample c+1 consecutive words from a random tweetX(t)

and construct: C(t)
i =

∑
j∈ci

∑
v′ αv′xjv′

Compute contextualized features: F
(t)
i =∑|F |

m=1 αmwmfi,m Draw a set S
(t)
i of n nega-

tive samples from ρ̂.
end for

end for
Update the parameters θ = α, ρ, fm, w, a, b by ascending the
stochastic gradient

∇θ
{∑T

t=1m
∑mt

m
i=1

(∑V
v=1 x

(t)
iv logσ((ρ

(t)
v +

F
(t)
i )TC

(t)
i )

+
∑
xj∈S

(t)
i

∑V
v=1 log(1− σ((ρ

(t)
v + F

(t)
i )TC

(t)
i )

−λ02
∑
v ‖αv‖

2 − λ0
2

∑
v

∥∥∥ρ(0)v ∥∥∥2
−λ2

∑
v,t

∥∥∥ρ(t)v − ρ(t−1)
v

∥∥∥2}.
end for

end for
We utilize Adam (Kingma and Ba, 2014) to set rate η.

A.2 Hyperparameter settings

We follow the hyperparameter search space pro-
vided by Rudolph and Blei (2018) to find the best
configuration of our model. Before training our
model, we initialize the parameters with one epoch
fit of non-diachronic Bernoulli embedding model
(as defined in Equation 2 in the paper). We then
train our model for 9 more epochs. We fix the em-
bedding dimension to 100, context size to 2 and
number of negative samples to 20. We select the
initial learning rate η ∈ [0.01, 0.1, 1, 10], mini-
batch size m ∈ [0.001N, 0.0001N, 0.00001N ]
(where N is the number of training records), the
precision on context vectors and initial dynamic
embeddings λ ∈ [1, 10] (λ0 = λ/1000). We use
the conditional likelihood metric (as discussed in
Section 5.3) to sweep over the search space and
select the best hyperparameters.

http://arxiv.org/abs/1811.06278
http://arxiv.org/abs/1811.06278
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A.3 Tweet Classification Details

We will list down the details of tweet classification
tasks where the data comes from our corpus.
• Sentiment Analysis - This is a binary task to

classify the sentiment of the tweet. Following
Go et al. (2009), we create a balanced dataset
by tagging a tweet as positive (negative) if it
contains only positive (negative) emoticons.
We remove the emoticons from the tweets to
avoid bias.
• Hashtag Prediction - This multiclass classi-

fication task is to identify the hashtag present
in the tweet. Following Weston et al. (2014),
we identify the most frequent 100 hashtags
from the corpus, keep the tweets that contain
exactly one occurrence of the frequent hash-
tag, remove the hashtag from the tweet and
predict them.
• Topic Categorization - This multiclass clas-

sification task is to identify the topical cate-
gory to which a tweet belongs to. Following
Magdy et al. (2015), we filter the tweets that
has a YouTube video associated with it, query
the video category using the public YouTube
API and associate that to the topical category
of the tweet.
• Conversation Prediction - This binary task

is to classify if a tweet will receive a reply or
not. Following Elazar and Goldberg (2018),
we tag the tweet as a conversational tweet if
it has at least a mention (‘@’) in it, otherwise
it’s a non-conversational tweet. We remove
the mentions from the tweets to avoid bias.

A.4 Ablation Results

We perform ablation studies of the no attention
and self attention variant of the proposed model
by considering different set of contextualized fea-
tures as inductive biases, illustrated in Table 6.

A.5 Probing Task Description

In this section we will describe briefly the set of
probing tasks (proposed in Conneau et al. (2018))
used in our study.
• SentLen - The goal for the classification task

is to predict the tweet length which has been
binned in 6 categories with lengths rang-
ing in the following intervals: (5 − 8), (9 −
12), (13−16), (17−20), (21−25), (26−28).
• WC - This classification task is about predict-

ing which of the target words appear on the

given tweet.
• TreeDepth - In this classification task the

goal is to predict the maximum depth of the
tweet’s syntactic tree (with values ranging
from 5 to 12).
• TopConst - The goal of this classification

task is to predict the sequence of top con-
stituents immediately below the sentence (S)
node. The classes are given by the 19
most common top-constituent sequences in
the corpus, plus a 20th category for all other
structures.
• BShift - In this binary classification task the

goal is to predict whether two consecutive to-
kens within the tweet have been inverted or
not.
• Tense - The goal of this task is to identify the

tense of the main verb of the tweet.
• SubjNum - The goal of this task is to identify

the number of the subject of the main clause.
• ObjNum - The goal of this task is to identify

the number of the subject on the direct object
of the main clause.
• SOMO - This task classifies whether a tweet

occurs as-is in the source corpus, or whether
a randomly picked noun or verb was re-
placed with another form with the same part
of speech.
• CoordInv - This task distinguishes between

original tweet and tweet where the order of
two coordinated clausal conjoints has been
inverted purposely.

A.6 Selection of time span unit
We performed preliminary experiments with DBE
model to identify the time span unit that best fits
the data. As shown in Table 7, DBE model fits the
data well in terms of log likelihood metric when
the time span unit is year.

Time span unit Yearly Monthly Quarterly Half-yearly

Log lik. -5.7323 -7.1055 -6.4004 -6.0768

Table 7: Log likelihood scores of DBE model with
varying time span units.
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Task log lik. SS Senti Htag Topic Conv.

No Attention

spatial -7.8481 0.0583 73.11 42.1 39.76 71.16
income -7.8407 0.0616 73.17 41.99 39.80 71.22
interest -7.9704 0.0596 73.24 42.11 39.72 71.17
spatial & income -7.8407 0.0718 73.18 42.07 39.67 71.17
spatial & interest -7.9774 0.0581 73.27 42.05 39.69 71.14
income & interest -7.9601 0.0620 73.3 42.08 39.68 71.14
spatial & income & network -7.7735 0.0614 73.2 42.13 39.78 71.17
spatial & interest & network -8.0061 0.0613 73.27 42.17 39.61 71.14
interest & income & network -8.0170 0.0605 73.22 42.1 39.71 71.17
interest & income & network & spatial -8.0561 0.0587 73.29 42.18 39.67 71.15
interest & income & network & spatial & knowledge -8.0734 0.0620 73.3 42.19 39.7 71.24
interest & income & network & spatial & topic -8.0739 0.0639 73.28 42.13 39.62 71.15

Self Attention

spatial -7.8260 0.0624 73.11 41.95 39.75 71.09
income -7.8248 0.0577 73.13 41.98 39.78 71.17
interest -7.7986 0.0602 73.21 42.14 39.83 71.13
spatial & income -7.8383 0.0641 73.08 42.02 39.83 71.14
spatial & interest -7.7874 0.0625 73.2 42.11 39.71 71.12
income & interest -7.7796 0.0635 73.2 42.18 39.75 71.11
spatial & income & network -7.8613 0.0609 73.09 42.07 39.77 71.19
spatial & interest & network -7.7558 0.0611 73.13 42.1 39.68 71.07
interest & income & network -7.8432 0.0607 73.11 42.13 39.48 71.09
interest & income & network & spatial -7.8414 0.0609 73.15 42.16 39.58 71.04
interest & income & network & spatial & knowledge -7.8554 0.0618 73.2 42.15 39.58 71.06
interest & income & network & spatial & topic -7.8208 0.0575 73.22 42.13 39.58 71.07

Table 6: Ablation results based on log likelihood, semantic similarity and tweet classification.


