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Abstract

In this paper, we describe the contribution of
CU-RAISA team to the 2019 Madar shared
task 2 1, which focused on Twitter User fine-
grained dialect identification. Among partici-
pating teams, our system ranked the 4th (with
61.54%) F1-Macro measure. Our system is
trained using a character level convolutional
bidirectional long-short-term memory (BiL-
STM) network trained on approximately 2k
users’ data. We show that training on concate-
nated user tweets as input is further superior to
training on user tweets separately and assign
user’s label on the mode of user’s tweets’ pre-
dictions.

1 Introduction

Dialect identification is a sub-domain of language
identification, a task that aims to differentiate be-
tween different languages given a sample of spo-
ken or written text. Language and dialect identi-
fication are active research areas due to their use-
fulness as preliminary steps for other applications,
such as automatic speech recognition and machine
translation. The task of dialect identification poses
harder challenges due to the higher inter-class sim-
ilarity, which becomes harder to learn with hid-
den text solely due to the absence of pronunci-
ation information that exists in audio data. (Si-
bun and Reynar, 1996) made the first effort to dis-
tinguish between languages with high similarity.
Their dataset contained some languages with sim-
ilar content, such as Serbian and Croatian, among
others.

Arabic dialect identification (ADI) aims to dif-
ferentiate between dialects of the Arab world, spo-
ken by citizens of the Middle East and North
Africa. Multiple forms of categorization can ex-
ist when it comes to Arabic dialect identification.

1https://competitions.codalab.org/competitions/22475

The first form is based on the geographic loca-
tion, where the text is categorized with respect to
the home origin of the individual. The second
form is concerned with major dialects, grouping
the variations from different countries into larger
classes. The most common categorization of the
second form for Arabic dialects is the one de-
scribed by (Habash et al., 2012), which details five
major dialects (Egyptian, Gulf, Iraqi, Levantine,
and Maghrebi). In this paper, we will be exploring
the first form of categorization. This form poses
more challenges due to the increased granularity it
adds to the classification task.

2 Related Work

Deep learning models have gained attention in the
tasks of text-based ADI, spoken language-based
ADI and hybrid (text+spoken language) ADI with
the introduction of context-dependent architec-
tures such as Long short-term memory (LSTM)
and Convolutional neural networks (CNN’s). Re-
search in the past few years has explored both
character-level and word-level models, along with
combining these models with acoustic features
from the audio recordings. (Sayadi et al., 2017)
achieved a classification accuracy of 92.2% on
a two-way classification task between Modern
Standard Arabic (MSA) and Tunisian using a
character-level LSTM model. The experiments
were performed on the Tunisian Election Twitter
dataset (Sayadi et al., 2016). For a fine-grained
six-class classification task (MSA, Egyptian, Syr-
ian, Jordanian, Palestinian and Tunisian) on the
Multidialectal Parallel Corpus of Arabic dataset
(Bouamor et al., 2014), the authors reached a clas-
sification accuracy of 63.4%. Elaraby and Abdul-
Mageed (2018) experimented with attention-based
bidirectional LSTM (BiLSTM) models on a two-
way classification task (MSA vs. other dialects), a
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three-way classification task (Egyptian, Gulf, and
Levantine), and a four-way classification task that
adds the MSA dialect to the previous three-way
task. The dataset used in this study is the Ara-
bic Online Commentary (AOC) dataset. (Zaidan
and Callison-Burch, 2011). The system achieved
an accuracy of 87.65%, 87.4% and 82.45% on
the three aforementioned tasks, respectively using
pretrained word embeddings trained on a large di-
alectly rich corpus described in (Abdul-Mageed
et al., 2018). (Ali, 2018) used a character-level
convolution neural network with a GRU layer for a
five-way classification task (MSA, Egyptian, Gulf,
Levantine, and North African). This architecture
achieved 92.64% cross-validation accuracy on the
training set, and a 57.59% F1 (macro) score on
the test set. (Lulu and Elnagar, 2018) isolated the
three most frequent dialects in AOC (Gulf, Egyp-
tian, and Levantine). Using a word-based LSTM
to differentiate between the three dialects, the au-
thors obtained an accuracy of 71.4%, exceeding
the performance of CNN, BLSTM and CLSTM
models.

Along with exploring the performance of deep
learning models on ADI, research has also con-
tinued to explore more classical models, such as
kernel-based models and linear models, in addi-
tion to classical representations such as tf-idf. In
a geographic location-based ADI task, Salameh
et al. (2018) researched the effectiveness of com-
bining multiple features with a Multinomial Naive
Bias (MNB) classifier. The system combined
multiple word-based and character-based n-grams
with language models scoring probabilities as fea-
tures. The authors used a translated version of
the Basic Traveling Expression Corpus (BTEC)
(Takezawa et al., 2007). For sentences with an av-
erage length of seven words, the system obtained
a classification accuracy of 67.9%. As the average
length of the sentence increases to 16 words, the
performance of the system increased to more than
90%. This finding gives an intuition about the pos-
itive effect of sentence length on the performance
of the classifier. In addition to the classification
task, the authors analyzed the amount of pairwise
dialect similarity between the dialects. To per-
form the analysis, the authors used hierarchical
agglomerative clustering on the similarity matrix
obtained from the percentage of shared tokens be-
tween dialects. The resulting analysis shows the
amount of similarity between dialects in a certain

area, as well as the proximity of some dialects
to others (e.g.: Egyptian and Levantine). MSA
falls closest to Muscat and Khartoum. (Butnaru
and Ionescu, 2018) used multiple kernel learning
on character n-grams from text and phonetic tran-
scriptions, along with dialectal embeddings from
the audio recordings. Their model obtained an
accuracy of 58.65%. (El Haj et al., 2018) re-
searched the subjects of code-switching and bi-
valent words (words that occur in multiple lan-
guages or dialects with similar semantic content)
in dialect identification. They developed a method
called Subtractive Bivalency Profiling to build a
system that can handle both of these issues. Us-
ing support vector machines (SVM) for a task to
distinguish between four dialects (MSA, Egyp-
tian, Levant, and Gulf), they achieved 76% ac-
curacy. (Lichouri et al., 2018) researched word-
based and sentence-based methods on tf-idf vec-
tors, in addition to applying majority and minority
voting techniques. The authors experimented with
Bernoulli Naive Bayes (BNB) and MNB, along
with Linear SVM’s (LSVM). Two datasets were
used for this research. The first dataset, PADIC
(Meftouh et al., 2015; Harrat et al., 2014), con-
sists of multiple dialects (MSA, Tunisian, Mo-
roccan, Algerian, Palestenian and Syrian). For
this dataset, a sentence-level BNB achieved the
highest accuracy (73.15%). The second dataset
consisted of eight Algerian dialects (Tenes, Con-
stantine, Djelfa, Ain-Defla, Tizi-Ouzou, Batna,
Annaba, and Algiers), for which an LSVM model
achieved the highest accuracy (41.05%).

3 Data

3.1 Dataset Description

We used the Arabic twitter dataset released by
the organizers of the ”User Dialect Identification
task”. The dataset is portioned into 217,593 tweets
representing 2180 users for training, 29,870 for
development representing 300 users, and 49,962
for testing representing 500 users. Full detailed
description of the data can be found in task de-
scription paper Bouamor et al. (2019).

3.2 Accessibility of tweets

One challenging part of this task was the acces-
sibility of tweets as some users’ tweets weren’t
accessible at the time we crawled their timelines
from twitter. Training data portion were reduced
from 2180 users to 2032 users. The total number
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of training tweets were reduced to 192,389. Devel-
opment data were reduced from 300 to 281 users,
while the number of development tweets was re-
duced to 26,528. The number of test users was
reduced from 500 to 463.

4 Methods

4.1 Pre-processing

We adopt basic preprocessing techniques to our
training, development, and test sets. This involves
filtering out URLs and user mentions. For the vo-
cabulary V , we train using character-based vocab-
ulary. We filter out least frequent characters oc-
curring < 20 times, which leaves |V | = 2377 of
unique characters.

4.2 Data Preparation:

We conduct two sets of experiments; (1): train on
tweet level annotated by the country of the user.
In that case, the maximum input sequence length
is 140. (2) : train on user’s concatenated tweets
together. Maximum sequence length grown to
12000 characters. In the results section, we show
that training on concatenated user tweets improves
performance compared to training on individual
tweets. On the hidden units layer to prevent the
network from over-fitting on training set.

4.3 Models

4.3.1 Traditional Models
Traditional models refer to models based on fea-
ture engineering methods with linear and prob-
abilistic classifiers. In our experiments, we use
(1) logistic regression, and (2) multinomial Naive
Bayes as baselines. We use character ngrams,
word ngrams, and a combination of both as fea-
ture set.

4.3.2 Deep Learning Models
We develop models based on deep neural networks
based on variations of (1) convolution neural net-
works (CNNs) and (2) recurrent neural networks
(RNNs) which have proved useful for several NLP
tasks. Both RNNs, and CNNs s are able to capture
sequential dependencies especially in time series
data, of which language can be seen as an exam-
ple.

Our Model: We use a combination of convo-
lution neural network and bidirectional long short
term memory (BiLSTM). The following part de-
scribes how we apply CNN to extract higher-level

sequences of word features and BiLSTM to cap-
ture long-term dependencies over window feature
sequences respectively.

• Input layer: an input layer to map word se-
quence w into a sequence vector x where
xw is a real-valued vector (XwεRdemb where
demb = 50). Character embedding are ran-
domly initialized and not learnt externally.

• Convolution layer: Multiple convolution op-
erations are applied in parallel to the input
layer to map input sequence x into a hidden
sequence h
A filter kεRwdemb is applied to a window of
concatenated word embedding of size w to
produce a new feature ci . Where ciεR, ci =
k · xi:i+w−1+b b is the inductive bias term
bεR, and xi:i+w−1 is a concatenation of
xi, xi+1, .., xi+w−1

The filter sizes used are ranging from 1-
13 and the number of filters used is rang-
ing from 10-150. Finally, different convolu-
tion outputs are concatenated into a sequence
cεRn−h+1 and passed into a time distributed
layer to convert it into suitable output for the
BiLSTM layer.

• BiLSTM Layer: We use a Bidirectional
LSTM architecture consisting of 256 dimen-
sions hidden units. The BiLSTM is designed
to capture long-term dependencies via aug-
menting a standard RNN with two memory
states, forward and backward. The forward
direction state −→C t, with −→C t ∈ R at time step
t. The forward LSTM takes in a previous
state

−→
h t−1 and input xt, to calculate the hid-
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uct between two vectors. The −→i t,
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Figure 1: Our char level Convolution -BiLSTM

are the input, forget, and output gates, and
the−→C t is a new memory cell vector with can-
didates that could be added to the state in
the forward direction. The same operation
is done for the backward direction. We ap-
ply L2 regularization to avoid network over-
fitting.

• Softmax Layer: Finally, the combined hid-
den units (forward and backward) is con-
verted into a probability distribution over l
via softmax function, where l is the number
of classes in our case (21 classes).

Figure 1 shows a block diagram of our network
architecture.

Training and Optimization
We try a small set of hyper-parameters, identi-

fying best settings on our validation set using grid
search. We train the network for 40 epochs each.
For optimization, we use Adam (Kingma and Ba,
2014), The models weights W are initialized from
a normal distribution W ∼ N with a small stan-
dard deviation of = 0.05 We apply two sources
of regularization: dropout: we apply a dropout
rate of 0.2 on the input embeddings to prevent
co-adaptation of hidden units activation, and L2
norm: we also apply an L2-norm regularization
with a small value (0.002)

5 Results

We evaluated most of the experiments on the de-
velopment set using an accuracy metric. Table 1
concluded our experimentation results on develop-
ment set which consists of 281 users in total after
excluding tweets of non-accessible users.

For the test which set consists of 500 users, we
were able to access 463 users which we predicted

Models Accuracy F1-Macro
Individual tweets

Logistic Regression (1-11 ngrams) 36.5 -
Multinomial Naive Bayes (1-11 ngrams) 36.75 -
Char-Level CNN 50.12 -
Char-Level C-BiLSTM 51.7 42.3

Concatenated tweets
Logistic Regression (1-11 ngrams) 45.5 -
Multinomial Naive Bayes (1-11 ngrams) 46.7 -
Char-Level CNN 68.8 -
Char-Level C-BiLSTM 71.92 62.21

Table 1: Experimental results on development set

using our C-BiLSTM network. For the left 37
users we assign the most common class to it which
is ”Saudi Arabia” . The final result reported by
organizers on the test set was very close in terms
of both accuracy and F1 macro measure achieving
an accuracy of 72.6% and 61.5%.

6 Conclusion

In this paper, we described our system submit-
ted to MADAR shared task, focused on coun-
try level dialect identification from Twitter data.
We explored the utility of tuning different word-
and character-level based models. A char based
convolutional BiLSTM achieved the best perfor-
mance in terms of both accuracy and F1-macro
measure. Given our limited resources at that time
we weren’t able to experiment transfer learning
techniques as pre-trained embeddings or language
models which proved to be beneficial in vari-
ous Natural Language Processing tasks. In fu-
ture work, we plan to exploit a number of those
techniques in the fine-grained dialect identification
task.
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