JHU System Description
for the MADAR Arabic Dialect Identification Shared Task

Tom Lippincott
tom@cs. jhu.edu

Kevin Duh
kevinduh@cs. jhu.edu

Pamela Shapiro
pshapiro@jhu.edu

Paul McNamee
mcnamee@jhu.edu

Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218

Abstract

Our submission to the MADAR shared task on
Arabic dialect identification (Bouamor et al.,
2019) employed a language modeling tech-
nique called Prediction by Partial Match-
ing, an ensemble of neural architectures, and
sources of additional data for training word
embeddings and auxiliary language models.'
We found several of these techniques provided
small boosts in performance, though a simple
character-level language model was a strong
baseline, and a lower-order LM achieved best
performance on Subtask 2. Interestingly, word
embeddings provided no consistent benefit,
and ensembling struggled to outperform the
best component submodel. This suggests the
variety of architectures are learning redundant
information, and future work may focus on en-
couraging decorrelated learning.

1 Introduction

While Modern Standard Arabic (MSA) is used
across many countries for formal written com-
munication, regional Arabic dialects vary sub-
stantially. Dialect identification has traditionally
been performed at the level of broad families
of dialects—for instance grouping many dialects
across the Arabian Peninsula together. However,
even within a single country there is often no-
ticeable variation from one city to another. The
MADAR dataset and corresponding shared task
aim to perform dialect identification at a finer-
grained level. Subtask 1 aims to distinguish travel
phrases produced between Arabic dialect speak-
ers from 25 different cities, as well as MSA. Sub-

!Code available at https: //bit.ly/2Kouo5X

task 2 aims to distinguish Twitter users from dif-
ferent Arabic-speaking countries. Along with the
inherent difficulty of classifying short documents,
highly-correlated modalities like topic and proper
names can lead to overfitting, particularly for user-
directed content like Twitter. Our method attempts
to address the former by using a language model-
ing technique that has empirically been found to
perform well on extremely short documents. For
the latter, we employ ensembles of heterogeneous
neural architectures and aggressive dropout, with
the goal of finding a broad range of features that
support the task without overfitting.

2 Data

In addition to the data provided by the MADAR
subtasks, we used the following data sets to train
embeddings or auxiliary language models:

1. Preexisting collections of the Arabic Dialect
Corpus (ADC) of 150k comments from three
Arabic-language newspaper sites focused on
Saudi Arabia, Jordan, and Egypt (Zaidan and
Callison-Burch, 2011)

2. The Twitter LID corpus of 70k Tweets in 70
languages .

3. Crawled posts from Reddit and the Twitter
1% sample either tagged as Arabic, or having
a majority of Arabic characters, amounting to
11k and 100m posts, respectively, are used.

The ADC and Twitter LID corpora were also
used to train additional PPM language models,

ttps://bit.1ly/2K1ITre

Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages 264-268
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics

https://bit.ly/2Kouo5X
https://bit.ly/2KlITre

though these proved to be ineffective in our en-
sembles (see Section 5)

Split | Missing
Train | 13076 (6%)
Dev | 1607 (5%)
Test | 5763 (12%)

Table 1: Missing tweets from the Subtask 2 data splits,
absolute number and percent of total.

Table 1 shows how many tweets were still avail-
able when we initialized Subtask 2.

3 System

3.1 PPM Language Models

Prediction by Partial Matching (PPM) was first
introduced as a sequence compression algorithm
(Cleary and Witten, 1984) but has been found to
be particularly effective as a character language
model for classifying short documents (Frank
et al., 2000; McNamee, 2016), using the proba-
bilities directly rather than as input to a numeric
encoding.

PPM is based on a variable-order Markov model
that contains a parameter /N known as the maxi-
mal order. When compressing data files or train-
ing a classification model, observations from pre-
viously seen data are used to estimate the likeli-
hood of observing a symbol following a given con-
text of up to IV characters. Longer contexts are
used when available, starting with the maximal or-
der N. However, PPM automatically backs off to
use shorter contexts when a symbol has never been
observed in a longer context. A context-dependent
penalty, also known as an escape probability, is ap-
plied when backing off is required.

As an example, in English, an ‘n’ is the most
likely character observed after the sequence “t i
0”. Other letters are observed less frequently, such
as ‘I’, ‘m’, and ‘p’. However, a ‘z’ is not observed.
To account for a ‘z’ after “t i 0” it is necessary to
back off using the estimates from shorter contexts
such as “10”. If a ‘z’ has never been observed after
“i 0” then the process continues, with an additional
penalty and further recursive backoff for ‘z” using
the context of the single symbol (‘1).

To use PPM for classification rather than com-
pression, models My, Mo, ..., M, are trained for
each discrete class. Then for a given textual sam-
ple ¢, choose the model that encodes ¢ in the least

265

number of bits. In reality the text is not com-
pressed and the probabilities from the model are
used to choose the model which best fits the text.

N | Subtask 1 | Subtask 2
2 | 0.430 0.431
3 10.576 0.543
4 | 0.591 0.402
5 | 0.586 0.287

Table 2: Performance of PPM models on the subtask
dev sets using different values of V.

For each labeled corpus, we trained PPM lan-
guage models for distinguishing among the labels.
This included each of the two subtasks, as well as
the ADC and Twitter LID corpora that have a way
to divide the instances into categories.

These models can either be used directly for
their “native” task, or produce probabilities that
may contain useful signal for a downstream task.
Table 2 shows how the native models for each
MADAR subtask perform with different values of
maximal order N on dev data. N = 4 was best for
Subtask 1, and N = 3 was best for Subtask 2.

3.2 Word Embeddings

For the word-based neural models, we use 300-
dimensional word embeddings trained on differ-
ent amounts of data as input representations. First,
we use randomly initialized embeddings. Then,
we train fastText continuous bag of words (cbow)
models with default parameters on the MADAR
data (Bojanowski et al., 2017).> Finally, we uti-
lize additional data, training on MADAR in addi-
tion to the datasets mentioned above (MADAR+).
We provide final results (Macro-Average F1) from
the ensemble model using each of these variants in
Table 3. We see that utilizing additional data pro-
vided marginal performance gains, helping more
in Subtask 2 where much of our additional data
was also Twitter data, making it in-domain.

Embedding | Subtask 1 | Subtask 2
Random 0.632 0.399
MADAR 0.626 0.397
MADAR+ | 0.634 0.411

Table 3: Effect of different word embeddings,
Macro-Average F1 for final ensemble models on dev
data.

‘https://fasttext.cc/

https://fasttext.cc/

Embedding sequence

Padded sequence

B0

8

2

=

:

=

£ {

=) —_

g

9 o
= <1
: z
£
s
Z

=

5
=
.'E{
==

(a) CNNs over sequences

(b) RNNs over
sequences

Distribution over label space

(c) MLPs over
distributions

Figure 1: The three basic types of submodels combined into the final ensemble, where the top layer is the input
representation. They all produce the same-sized final hidden representation that can either be mapped directly to
the target value with a final linear layer (for individual training) or concatenated into an ensemble.

3.3 Ensemble Models

In what follows, all layers other than the final
fully-connected input to softmax employ ReLU
non-linearity.

We experimented with an ensemble model that
combines submodels to extract signal from differ-
ent features or incorporate information from non-
neural methods. Figure 1 shows the three types of
submodels: CNNs and RNNs over character and
word sequences, and MLPs over probability distri-
butions from language models and metadata. We
integrate the metadata provided with Subtask 2 as
additional distributions: the probabilities from the
organizers’ 26-class model are incorporated the
same way as LM scores, while the Twitter label
is treated as a one-hot distribution and also incor-
porated alongside the LM scores.

Each submodel, regardless of architecture,
eventually produces a same-sized hidden repre-
sentation, which are initially mapped to the target
output via cross-entropy to train as an individual
model. Once the submodels have converged, their
parameters are frozen, their hidden layers are de-
tached from the target output, and instead concate-
nated into a single representation. This representa-
tion is then the input to the shared ensemble archi-
tecture, as shown in Figure 2. Note that the “Step-
down FCs” layer is actually composed of several
fully-connected layers, each dividing the represen-
tation size in half until it is one factor larger than
the output label space.

Other specific choices for the models in this
paper are: 100-dim char embeddings, char/word

CNN filter sizes 1,2,3,4,5, bidirectional 2-layer
LSTMs with 32-dim states, and SGD with
LR=0.1, momentum=0.9, patience of 10 for LR
decay, early stop patience of 20, and minibatch
size of 512.

Submodel hidden layers

s umop-dayg

Softmax
=~

Figure 2: The ensemble model concatenates the
hidden representations produced by the submodels and
stacks one or more dense, non-linear layers, stepping
down in size to a final softmax output over the label
space.

Due to a misreading of the task description, our
models were designed to classify tweets individu-
ally: this was handled at the submission deadline
by taking a majority vote over each user’s tweets.

4 Results

Table 4 reports the final precision, recall, and F1
scores for the best-performing model on each sub-
task.

The ensemble for Subtask 1 incorporates the
best-performing (PPM-4) language model (see Ta-
ble 2). The PPM-3 model for Subtask 2 performed
text normalization to only include Arabic charac-
ters, followed by prepending the user name.

266

Subtask Model Prec | Rec | F1
Subtask 1 | Ensemble | 63.7 | 63.4 | 63.4
Subtask 2 | PPM-3 749 | 46.5 | 54.3

Table 4: Precision, recall, and f-score of the best
model for each subtask.

5 Discussion

Table 5 shows the final performance (Macro-
Average F1) of the submodels of the ensemble
on Subtask 1, before they were frozen, and the
performance of the final ensemble model (which
used the submodels). The modest 4-point im-
provement of the ensemble over the PPM sub-
model, and the fact that the Subtask 2 ensemble
under-performed the PPM-3 model, suggests poor
coordination of the representational power of the
constituents. Distributions from language models
trained on our other data sets unfortunately pro-
vided no benefit under the ensemble, and were not
included.

Submodel | F1 Score
CNN 0.545
RNN 0.554
MLP-PPM | 0.591
Ensemble | 0.634

Table 5: F1 Scores of the submodels of the best
ensemble for Subtask 1.

Figures 3 and 4 show the confusion matrices of
the best models on Subtask 1 and 2, respectively.
Our Task 1 misclassifications closely track those
reported in (Salameh and Bouamor, 2018), e.g.
TUN/SFX and BAS/BAG.

For Task 2, the preponderance of Saudi Ara-
bian documents dominates the misclassifications,
but also striking is how asymmetric the heatmap is
compared to Subtask 1. This may largely be due to
the small number of instances (half of the classes
have counts in the single digits), but even better-
represented pairs like Oman (14) and Iraq (10) are
largely unidirectional, with Iraq much likelier to
be misclassified as Oman than the reverse.

6 Conclusion

We experimented with a non-standard character
language model (PPM) designed for classifying
short text sequences, and an ensemble model that
combined several neural architectures and input

267

r 10
ALG
ALX 4
AMM ~
ASW
G 0.8
BAS
BEI
BEN
CAl
_ pam 0.6
E con _
® FES
© JED
2 R
= wia loa
MOS
MSA 4
MUs
RAB -
RIY - Loo
SAL o
SAN
SFX
TRI
T e —— Ll oo

SO e IR E OSSR SRS
Predicted label

Figure 3: Confusion matrix for the Subtask 1 dev set

using an ensemble model with word embeddings and

language model scores constructed from the full suite
of MADAR and external data sets

Ageria JII Lo

Bahrain

Egypt - |

Morocca o

Oman]

True label

Palestine - |]
Qatar 4
Saudi_Arabia | |
Somalia -

Sudan
|

wwwwww 0.0
PO & PP PP S
Pl o*w@z

\\\\\\\\\\\\\
5

S
AL,
C

& &
Sphs®es
T
L
«

Predicted label

Figure 4: Confusion matrix for Subtask 2 dev set using
a 3-gram PPM model constructed from the train set

features. The language model proved difficult to
beat, even by ensembles that include the LM it-
self: this under-performance indicates the ensem-
bling is not optimally leveraging its inputs. Future
work might focus on techniques for encouraging
uncorrelated training, perhaps by sequential sub-
model training that modifies the data as a function
of previous submodel predictions.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Houda Bouamor, Sabit Hassan, and Nizar Habash.
2019. The MADAR Shared Task on Arabic Fine-
Grained Dialect Identification. In Proceedings of the

Fourth Arabic Natural Language Processing Work-
shop (WANLP19), Florence, Italy.

John Cleary and Ian Witten. 1984. Data compression
using adaptive coding and partial string matching.
Transactions on Communications, 32:396—402.

Eibe Frank, Chang Chui, and Ian Witten. 2000. Text
categorization using compression models. In Pro-
ceedings of the IEEE Data Compression Confer-
ence, pages 200-209.

Paul McNamee. 2016. Language and Dialect Discrimi-
nation Using Compression-Inspired Language Mod-
els. Proceedings of the Third Workshop on NLP for
Similar Languages, Varieties and Dialects.

Mohammad Salameh and Houda Bouamor. 2018.
Fine-grained arabic dialect identification. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 1332—-1344.

Omar Zaidan and Chris Callison-Burch. 2011. The ara-
bic online commentary dataset: an annotated dataset
of informal arabic with high dialectal content. In
Proceedings of the Association for Computational
Linguistics, pages 37-41.

268

