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Maximilian Spliethöver∗ and Jonas Klaff∗ and Hendrik Heuer
University of Bremen

Bibliothekstraße 1, 28359 Bremen, Germany
{mspl,joklaff,hheuer}@uni-bremen.de

Abstract
Attention mechanisms have seen some success
for natural language processing downstream
tasks in recent years and generated new state-
of-the-art results. A thorough evaluation of
the attention mechanism for the task of Argu-
mentation Mining is missing. With this paper,
we report a comparative evaluation of atten-
tion layers in combination with a bidirectional
long short-term memory network, which is the
current state-of-the-art approach for the unit
segmentation task. We also compare sentence-
level contextualized word embeddings to pre-
generated ones. Our findings suggest that for
this task, the additional attention layer does
not improve the performance. In most cases,
contextualized embeddings do also not show
an improvement on the score achieved by pre-
defined embeddings.

1 Introduction

Argumentation Mining (AM) is increasingly ap-
plied in different fields of research like fake-news
detection (Cabrio and Villata, 2018) and politi-
cal argumentation and network analysis (Haunss
et al.).
One crucial part of the AM pipeline is to seg-
ment written text into argumentative and non-
argumentative units. Recent research in the area of
unit segmentation (Eger et al., 2017; Ajjour et al.,
2017) has lead to promising results with F1-scores
of up to 0.90 for in-domain segmentation (Eger
et al., 2017). Nevertheless, there is still a need for
more robust approaches.
Given the recent progress of attention-based mod-
els in Neural Machine Translation (NMT) (Bah-
danau et al., 2014; Vaswani et al., 2017), this pa-
per evaluates the effectiveness of seperate atten-
tion layers for the task of argumentative unit seg-
mentation. The idea of the attention layers added

∗The first two authors contributed equally. Their listing
order is random.

to the recurrent networks is to preprocess the input
data and enable the model to prioritize those parts
of the input sequence that are important for the
current prediction (Bahdanau et al., 2014). This
can be achieved by learning additional parameters
during the training of the model. With the addi-
tional information gained, the model learns a bet-
ter internal representation which improves perfor-
mance.
Additionally, we evaluate the impact of contex-
tualized distributed term representations (also re-
ferred to as word embeddings hereinafter) on all
our models. The goal of word embeddings is to
represent a word as a high-dimensional vector that
encodes its approximate meaning. This vector will
be generated by a model trained on a language
modeling task, like next-word prediction (Mikolov
et al., 2013), for a given text corpus. The repre-
sentation is based on the word’s surrounding con-
text in the corpus. Words with a similar semantic
meaning should then also have similar vector rep-
resentations, as measured by their distance in the
vector space (Sahlgren, 2005, 2006; Firth, 1957;
Heuer, 2015). Different methods to pre-compute
the embeddings include word2vec (Mikolov et al.,
2013), FastText (Bojanowski et al., 2017) and
GloVe (Pennington et al., 2014). To make use of
the capabilities of pre-trained Language Models
(LMs), such as BERT (Devlin et al., 2018) or Flair
(Akbik et al., 2018), we evaluate how well their
semantic representations perform, by using con-
textualized word embeddings. Those are, in con-
trast to previously mentioned methods, specific to
the context of the word in the input sequence. One
major benefit is the fact that the time-consuming
feature engineering could become obsolete since
the features are implicitly encoded in the word em-
beddings. Furthermore, a better semantic repre-
sentation of the input could lead to better general-
ization capabilities of the model and, therefore, to
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better cross-domain performance.
This paper answers the following research ques-
tions, which will help to assess the importance of
the attention layers and contextualized word em-
beddings for the argument unit segmentation task:

• RQ1: To what extent can seperate attention
layers help the model focus on the, for the
task of unit segmentation relevant, sequence
parts and how much do they influence the
predictions?

• RQ2: What is the impact of contextualized
distributed term representations like BERT
(Devlin et al., 2018) and Flair (Akbik et al.,
2018) on the task of unit segmentation and
do they improve upon pre-defined represen-
tations like GloVe?

The contributions of this paper are as follows:
first, we present and evaluate new attention-based
architectures for the task of argumentative text
segmentation. Second, we review the effective-
ness of recently proposed contextualized word em-
bedding approaches in regard to AM. We will con-
tinue by presenting the previous work on this spe-
cific task, followed by a description of the different
architectures used, the data set and the generation
of the word embeddings. Afterwards, we will re-
port the results, followed by a discussion and the
limitations. We will finish with a conclusion and
an outlook on possible future work.

2 Related Work

Attention mechanisms have long been utilized in
deep neural networks. Some of its roots are in
the salient region detection for the processing of
images (Itti et al., 1998), which takes inspiration
from human perception. The main idea is to focus
the attention of the underlying network on points-
of-interest in the input that are often surrounded
by irrelevant parts (Mnih et al., 2014). This al-
lows the model to put more weight on the impor-
tant chunks. While earlier salient detectors were
task-specific, newer approaches (e.g. Mnih et al.,
2014) can be adapted to different tasks, like image
description generation (Xu et al., 2015), and allow
for the parameters of the attention to be tuned dur-
ing the training. These additional tasks include se-
quence processing and the application of such net-
works to different areas of Natural Language Pro-
cessing (NLP). One of the first use-cases for atten-
tion mechanisms in the field of NLP was machine

translation. Bahdanau et al. (2014) utilized the
attention to improve their NMT model. Vaswani
et al. (2017) achieved new State-of-the-Art (sota)
results by presenting an encoder-decoder architec-
ture that is based on the attention mechanism, only
adding a position-wise feed-forward network and
normalizations in between. Devlin et al. (2018)
picked up on the encoder part of this architecture
to pre-train a bidirectional LM. After fine-tuning,
they achieved a new sota performance on different
downstream NLP tasks like part-of-speech tagging
and questions-answering.
A possible way of posing the unit segmentation
as NLP task is a token-based sequence labeling
(Stab, 2017). While Tobias et al. (2018) used non-
recurrent classifiers to approach this problem, oth-
ers mostly applied recurrent networks to the task
of unit boundary prediction. For example, Eger
et al. (2017) reported different long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997) architectures. Further, Ajjour et al. (2017)
proposed a setup with three bidirectional LSTMs
(Bi-LSTMs) (Schuster and Paliwal, 1997) in total
as their best solution. While the first two of them
are fully connected and work on word embeddings
and task-specific features respectively, the inten-
tion for the third is to take the output of the first
two as input and learn to correct their errors. Even
though the third Bi-LSTM did not improve on the
F1-score metric, it did succeed in resolving some
of the wrong consecutive token predictions, with-
out worsening the final results.
To the best of the authors’ knowledge, the atten-
tion mechanism has not been widely utilized for
the task of argumentative unit segmentation. Stab
et al. (2018) integrated the attention mechanism
directly into their Bi-LSTM by calculating it at
each time step t to evaluate the importance of the
current hidden state ht. To do that, they employed
additive attention. A similar approach has been
applied by Morio and Fujita (2018) for a three-
label classification task (claim, premise or non-
argumentative).
While a direct integration of the attention mech-
anism is able to take the previous state of the
Bi-LSTM into the calculation, it seems less trivial
to implement with the current available program-
ming frameworks. In contrast, the approach pre-
sented in this paper uses attention as a separate
layer that encodes all sequences before they are
fed into a Bi-LSTM. This might enable the recur-
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rent parts of the network to learn from better rep-
resentations that are specific to the task they were
trained on. The aim is further to evaluate the pos-
sible applications of attention layers for the task of
sequence segmentation and token classification. A
recurrent architecture (Ajjour et al., 2017) is com-
pared to multiple modified versions that utilize the
aforementioned attention mechanism.
In order to derive a representation of the input
text that better resembles the context of the in-
put for a specific task, several approaches have
been presented. Akbik et al. (2018), for exam-
ple, pre-train a character-level Bi-LSTM to pre-
dict the next character for a given text corpus.
The pre-trained model is able to derive contextu-
alized word embeddings by additionally utilizing
the input sequence for a specific task. This allows
the system to encode the preceding and following
words of the given input sequence into the word
representation. In comparison to that, the pre-
trained BERT-LM utilizes stacked attention lay-
ers (Vaswani et al., 2017). By feeding a sequence
into it and extracting the output of the last layer for
each token, the idea is to implicitly use the atten-
tion mechanism to derive a better representation
for every token. As is the case for the character-
wise LM from Akbik et al. (2018), the BERT em-
beddings are contextualized by the whole input se-
quence of the specific task.
This paper will compare the two contextualized
approaches described above with the pre-defined
GloVe (Pennington et al., 2014) embeddings in the
light of their usefulness for AM. The goal is to en-
code the features necessary to detect arguments by
utilizing the context of a sentence.

3 Methodology

This paper evaluates different machine learning
architectures with attention layers for the task of
AM, and more specifically unit segmentation. The
problem is framed as a multi-class token labeling
task, in which each token is assigned one of three
labels. A (B) label denotes that the token is at the
beginning of an argumentative unit, an (I) label
that it lies inside a unit and an (O) label that the
token is not part of a unit. This framework has
been applied previously for the same task (Stab,
2017; Eger et al., 2017; Ajjour et al., 2017).
The architectures proposed in this section build
on Ajjour et al. (2017), omitting the second
Bi-LSTM, which was used to process features

other than word embeddings (see section 3.3).
They are further being modified by adding atten-
tion layers at different positions. The goal is to
reuse existing approaches and possibly enhance
their ability to model long-range dependencies.
Additionally, a simpler architecture, consisting of
a single Bi-LSTM paired with an attention layer, is
built and evaluated with the aim of reduced com-
plexity.
In order to answer the second research question,
this paper reports results in combination with im-
proved input embeddings, in order to evaluate
their effectiveness and impact on the AM down-
stream task.
All models are compared to the modified re-
implementation of the architecture, which is de-
fined as the baseline architecture.

3.1 Models

In order to evaluate the attention mechanisms, dif-
ferent architectures based on previous AM litera-
ture are implemented. The attention layer is added
at different positions in the network.
All models were implemented using Python and
the Keras framework with a TensorFlow back-
end. For the self-attention and multi-head atten-
tion layers, an existing implementation is used
(HG, 2018a,b). The difference between the two
is that the multi-head attention divides the in-
put into multiple chunks and each head therefore
works on a different vector subspace (Vaswani
et al., 2017), while the self-attention works on the
whole input sequence. This is supposed to allow
the head to focus on specific features of the in-
put. In this case, the self-attention layers use addi-
tive attention, while the multi-head attention lay-
ers use scaled dot-product attention, with the lat-
ter following the implementation of Vaswani et al.
(2017).

Baseline re-implementation The baseline
model from Ajjour et al. (2017) uses a total of
three Bi-LSTMs (two of them fully connected)
to assign labels to tokens (see Figure 1a). The
re-implementation does not include the two fully
connected Bi-LSTMs but instead uses only a
single one that works on the word embeddings
(see Figure 1b). Due to the fact that the second
Bi-LSTM in the first layer is only used to encode
the non-semantic features like part-of-speech
tags and discourse marker labels, it is omitted in
the re-implementation. Hereafter, we will refer
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Figure 1: (a) The original baseline architecture as reported by Ajjour et al. (2017). (b) The modified baseline
architecture without the second input Bi-LSTM. The bold arrows show the positions at which the additional atten-
tion layers are added to build the Baseline+input and Baseline+error architectures. (c) The Bi-LSTM architecture
incorporates only one Bi-LSTM. The bold arrow shows the position at which the additional attention layer is added
to build the Bi-LSTM+input architecture.

to this model as Baseline. Also, the batch size
was increased from 8 to 64, compared to the
original implementation, as a trade-off between
convergence time and the model’s generalization
performance (Keskar et al., 2016). Nevertheless,
this model achieves comparable scores to the
ones presented in the original paper. The slightly
lower performance can probably be attributed to
implementation details.

Baseline+input and Baseline+error For both
variations, the architecture shown in in Figure 1b
was used as a basis. Multi-head-attention layers
are added at different positions in the network.
The number of attention heads depends on the di-
mension of the embedding vectors. For the GloVe
(300 dimensions) and the BERT (3072 dimen-
sions) embeddings, six heads are used, while the
Flair (4196 dimensions) embeddings require four
heads. Both numbers were the largest divisor for
the respective input vector size that worked inside
the computational boundaries available. In the first
model, an attention layer was added before the first
Bi-LSTM in an attempt to apply a relevance score
directly to the tokens, in order to better capture
dependencies of the input sequence. This model
will be referred to as Baseline+input. The second
variation adds the attention layer after the first and
before the second Bi-LSTM, which will be called
Baseline+error. According to Ajjour et al. (2017),
the latter Bi-LSTM is used to correct the errors of
the first one. The attention layer should be able
to support the model in the error correction pro-
cess. In contrast to the first approach, this does

not change the input data, but only works on the
output of the first Bi-LSTM.

Bi-LSTM and Bi-LSTM+input To decrease the
complexity of the architecture, two additional
models with a single Bi-LSTM are trained. The
first variant has no attention layer, while the sec-
ond one utilized the same input attention de-
scribed above (see Figure 1c). They will be
refered to as Bi-LSTM and Bi-LSTM+input re-
spectively. Both architectures use a self-attention
mechanism instead of the above-mentioned multi-
head-attention, due to better results in preliminary
tests.

3.2 Data

The different architectures were trained and eval-
uated on the “Argument annotated Essays (version
2)” corpus (also referred to as Persuasive Essays
corpus) (Stab and Gurevych, 2017). It was utilized
for the same task in previous literature (Ajjour
et al., 2017; Eger et al., 2017).
The corpus, compiled for parsing argumentative
structures in written text, consists of a random
sample of 402 student essays. The annotation
scheme includes the argumentative units and the
relations between them, as well as the major claim
and stance of the author towards a specific topic.
The texts were annotated by non-professionals, la-
beling the boundary of each argumentative unit
alongside the unit type. A type can either be
major-claim, claim or premise. For the unit seg-
mentation task, the corpus is labeled by treating
major claims, claims, and premises as argumen-
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tative units1. For comparability reasons in the
evaluation process, the models are trained and
tested with the train-test-split defined by Stab and
Gurevych (2017). The development set was com-
posed of the last 20 percent of the training set and
shuffled before use.

3.3 Features

For each token, a set of three different embed-
dings is generated and compared regarding their
capability as standalone input features. The re-
sulting weighted F1-score is then used as a proxy
for measuring the usefulness of the generated text-
representation in light of this specific downstream
task.
In combination with the re-implemented architec-
ture, the word embeddings approach GloVe (Pen-
nington et al., 2014), trained on 6 billion tokens,
serves as the baseline.
As a first approach to enhance the performance,
the GloVe embeddings are stacked with the
character-based Flair embeddings (Akbik et al.,
2018), which are generated by a Bi-LSTM model.
Akbik et al. (2018) argue that the resulting embed-
dings are contextualized, since the LM was trained
to predict the most probable next character and
therefore to encode the context of the whole se-
quence.
Similar to that, we also compare contextualized
BERT-embeddings as standalone features (Devlin
et al., 2018). An increased performance is ex-
pected because of the pre-training procedure of the
LM. The BERT-LM was trained to predict a (ran-
domly masked) word by utilizing the context of its
appearance, as well as on next sentence prediction.
Due to its sota performance for both, token-level
and sentence-level tasks, the authors of this pa-
per argue that the derived representations are well
suited for the task of unit segmentation. Also, the
representation fits the needs of the inter-token and
sentence dependencies of the task. It is expected
that this enables the model to better grasp the no-
tion or pattern of an argument. Both contextual-
ized embeddings are generated using the Flair li-
brary (Zalando Research, 2018).
For the of the BERT-embeddings the “bert-base-
uncased” LM, consisting of 12-layers and pre-
trained on lowercased data, is used. At the time

1All data pre-processing scripts are available
in our code repository: https://gitlab.
informatik.uni-bremen.de/covis1819/
worth-the-attention.

Model GloVe BERT Flair
Baseline 0.86 0.83 0.87

Baseline+input 0.85 0.68 0.67
Baseline+error 0.67 0.68 0.67

Bi-LSTM 0.86 0.86 0.86
Bi-LSTM+input 0.84 0.83 0.81

Table 1: The weighted F1-scores for the Baseline and
all four variations. Results are shown per variation
and embedding. Each row shows the performance of
one architecture with different word embeddings as in-
put vector. The highest score for each architecture is
marked in bold.

of writing, the Flair library extracts the representa-
tions for the first subword token from the last four
layers of the pre-trained BERT model. The subto-
ken embeddings is then used as representation for
the whole token. Features specifically engineered
for this task are not included in the input, follow-
ing the argumentation of Eger et al. (2017) that
they will probably not be generalizable to differ-
ent data sets.

4 Results

We evaluate the performance of all architectures
on the Persuasive Essays data set detailed above.
The models are re-initialized after every evalua-
tion and do not share any weights. This allows
us to answer the first research question of whether
additional attention layers have a positive impact
on the prediction quality.
To answer the second research question, we re-run
each training, replacing the GloVe embeddings
with BERT and Flair embeddings. Both contex-
tualized embedding methods are tested separately.
We contextualize the tokens on the sentence level
since the BERT model (Devlin et al., 2018) only
allows for a maximum input length of 512 char-
acters. This makes document-level or paragraph-
level embeddings impractical for the data set.
As a performance measure, we report the weighted
F1-score instead of the macro F1-score, since it
takes the imbalance of the samples per label into
account.
For our re-implementation of the baseline, we are
able to approximately reproduce the results re-
ported by Ajjour et al. (2017). Additionally, we
can verify that there is no major change in the
performance when adding a second Bi-LSTM to

https://gitlab.informatik.uni-bremen.de/covis1819/worth-the-attention
https://gitlab.informatik.uni-bremen.de/covis1819/worth-the-attention
https://gitlab.informatik.uni-bremen.de/covis1819/worth-the-attention
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the network (compare results for Bi-LSTM and
Baseline in Table 1).

4.1 Attention Layers

The results of the token classification task are pre-
sented in Table 1. Generally speaking, the added
attention encodings do not improve upon the origi-
nal architecture’s performance, no matter at which
position they are added. Architectures with an
input attention encoding, namely Baseline+input

and Bi-LSTM+input, do achieve similar perfor-
mances compared to their respective baseline. But
the F1-score performance is in strong contrast to
the generalization error, which is in most cases
lower for the Baseline model.
The Baseline+error architecture, on the other
hand, which is supposed to help the second
Bi-LSTM in the network to correct the errors made
by the first one, performs worse across all tests.
For the Flair embeddings, this results in a 0.20
points performance drop in the F1-score measure.

4.2 Contextualized Word Embeddings

The results for the enhanced word embedding
evaluations are reported in Table 1. In some cases,
the models utilizing the word embeddings gen-
erated by the BERT-LM achieve a lower perfor-
mance score than the other embeddings. This drop
is most noticeable for the Baseline+input model,
while the performance for the Bi-LSTM+input de-
creases only slightly. The Baseline+error model is
able to achieve results that outperform both, GloVe
and Flair embeddings.
Compared to the GloVe vectors, the models
trained on the Flair embeddings mostly lose in
F1-score performance as well. For example, the
Baseline+input model drops by 0.18. On the other
hand, the Baseline model is able to slightly im-
prove upon the GloVe score using the Flair em-
beddings, achieving a final score of 0.87, which
also marks the best overall score in our testings.
An interesting observation is the fact that the en-
hanced embeddings seem to increase the general-
ization error (compare Figure 2). The Baseline
model trained on the GloVe embeddings, for ex-
ample, shows a difference in the final validation
and training loss of around 0.17 and increases for
the BERT and Flair embeddings to roughly 0.60
and 0.48, respectively.

5 Discussion

Given the experimental results, we discuss the re-
sulting implications for our two research questions
and conclude this section by presenting some lim-
itations.

5.1 Attention Layers

Our results suggest that the attention encoding
does not increase the performance of the model,
as we hypothesized above. This is true for both,
the input and the error encoding. A potential
explanation is the fact that we use the attention
mechanism as an additional layer to encode the
input. Other approaches, like Morio and Fujita
(2018) or Stab et al. (2018), incorporate it into the
Bi-LSTM architecture and calculate the weight of
the hidden states at every time step.
While the performance does not decrease
meaningfully for the Baseline+input and
Bi-LSTM+input models (using the GloVe
embeddings as features), it does for the error
encoding Baseline+error model. This drop might
be explained by the vector space the attention
mechanism is working on. Due to its small size of
only four features, it is unlikely that the resulting
vector has a meaningful encoding.
A deeper inspection of the output values from
the different layers in the network and how they
influence the overall classification task might give
more insight into the cause of the problem.

5.2 Contextualized Word Embeddings

For most of the tests we conduct, the contextual-
ized embedding approaches do not improve upon
the GloVe embeddings. This is especially true for
the architectures that include an attention layer,
which does not seem to be able to handle the en-
coding of high dimensional vectors very well. The
results further suggest that the amount of neurons
in the Bi-LSTMs is not an issue in this case, since
the Baseline model achieves comparable results
across all three embeddings.
A potential way to improve the results of the en-
hanced embeddings is to contextualize them on the
paragraph level. While we contextualize them on
a sentence level, the dependencies between argu-
ments might span over multiple sentences, some-
times even a paragraph, as described by Stab and
Gurevych (2017) for the Persuasive Essays data
set. Following this reasoning, one might think that
a document level contextualization makes sense
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Figure 2: The loss curves of the Baseline architecture using different input embeddings. Figure (a) shows the
training process of the model using the GloVe embeddings, while the model in Figure (b) used the BERT embed-
dings and Figure (c) the Flair embeddings. The orange line shows the training loss, the green line the validation
loss.

and adds even more information to the embed-
ding. For the task of AM, however, we argue
against this for two reasons. First, argumentative
units usually do not span over the whole document
and it might include additional counter-arguments
(Stab and Gurevych, 2017). The contextualization
would most likely cause a lot of noise and make
the vector less useful. Also, depending on the size
of the document, the size of the vector might be
too small to hold the contextual information of the
full document. Second, the model trained on such
embeddings would probably not generalize very
well. An argumentative document can be written
in different formats with different purposes, like
an essay, a speech or a newspaper article. Contex-
tualizing the embeddings on the document level
might then also encode the structure of the text
and decrease the cross-domain applicability of the
model. However, further research is needed.

5.3 Limitations

The results we report and analyze above are the
networks’ performance as validated on the data
splits provided by Stab and Gurevych (2017). Due
to time and resource restrictions, we evaluate the
results after a single training run and perform nei-
ther an averaging over multiple runs nor any cross-
validation. Both could lead to more robust results.
As another consequence of the above-mentioned
restrictions, we are also not able to test the model’s
generalization capabilities on different data sets.
For the learning rate, we perform only a ba-
sic Bayesian hyperparameter optimization (Snoek
et al., 2012) with four iterations per model. These
limitations are especially important for the varia-
tions of the Baseline architecture, since the per-
formed changes to the architecture, even though

rather small, entail the need for independently
tuned hyperparameters.
Furthermore, an additional evaluation of the dif-
ferent contextualization levels for the embeddings
could provide a clearer picture of how much
the results actually improve, compared to non-
contextualized methods.

6 Conclusion

Recent improvements in utilizing contextual in-
formation for sequence processing had a big im-
pact on the area of NLP, namely advances of at-
tention architectures and contextualized word em-
beddings. For example, the Transformer architec-
ture (Vaswani et al., 2017) employs attention to
achieve sota scores on different NLP tasks. Fur-
ther, the Flair model (Akbik et al., 2018) incorpo-
rates character-wise context to generate enhanced
word representations.
In this paper, we report on the usefulness of these
two approaches for the task of AM. First, we are
able to show that an attention layer as additional
encoding of the input does not improve upon the
current sota approach of a Bi-LSTM. Addition-
ally, the attention mechanism seems to fail for a
low-dimensional vector space. Second, we present
the impact of contextualized word embeddings for
AM. Although the Flair embeddings slightly im-
prove upon the performance of the GloVe embed-
dings for the Baseline architecture, we can not
confirm any advantage over non-contextualized
embeddings.

6.1 Future Work

A first extension of this work could be a proper hy-
perparameter optimization for the attention-based
models. Second, we plan to explore an attempt to
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fine-tune solely attention based pre-trained models
like BERT (Devlin et al., 2018) to domain-specific
data. Recent research by Howard and Ruder
(2018) in transfer-learning for NLP has shown
great improvement for several NLP-downstream
tasks, while reducing the needed amount of la-
beled training data.
Third, we contextualize the embeddings on the
sentence level only. According to Stab and
Gurevych (2017), arguments can sometimes span
over multiple sentences. Therefore, the contextu-
alization of the embeddings could be extended to
a paragraph level, in order to make use of possible
inter-dependencies within it. Additionally, a fine-
tuning approach of the underlying LMs to the AM
task could further enhance the embeddings.
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