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Abstract

We present a machine foreign-language
teacher that takes documents written in a
student’s native language and detects situations
where it can replace words with their foreign
glosses such that new foreign vocabulary can
be learned simply through reading the resulting
mixed-language text. We show that it is possi-
ble to design such a machine teacher without
any supervised data from (human) students. We
accomplish this by modifying a cloze language
model to incrementally learn new vocabulary
items, and use this language model as a proxy
for the word guessing and learning ability of
real students. Our machine foreign-language
teacher decides which subset of words to
replace by consulting this language model.

We evaluate three variants of our student
proxy language models through a study on
Amazon Mechanical Turk (MTurk). We find
that MTurk “students” were able to guess
the meanings of foreign words introduced by
the machine teacher with high accuracy for
both function words as well as content words
in two out of the three models. In addition,
we show that students are able to retain their
knowledge about the foreign words after they
finish reading the document.

1 Introduction

Proponents of using extensive reading for language
acquisition, such as Krashen (1989), argue that
much of language acquisition takes place through in-
cidental learning , where a reader infers the meaning
of unfamiliar vocabulary or structures using the sur-
rounding (perhaps more familiar) context. Unfortu-
nately, when it comes to learning a foreign language
(L2), considerable fluency is required before seeing
the benefits of incidental learning. But it may be pos-
sible to use a student’s native language (L1) fluency
to introduce new L2 vocabulary. The student’s L1
fluency can provide sufficient “scaffolding” (Wood

et al., 1976), which we intend to exploit by find-
ing the “zone of proximal development” (Vygotskiı̆,
2012) in which the learner is able to comprehend
the text but only by stretching their L2 capacity.

As an example of such mixed-language incidental
learning, consider a native speaker of English (learn-
ing German) presented with the following sentence:
Der Nile is a Fluss in Africa. With
a little effort, one would hope a student can infer
the meaning of the German words because there
is sufficient contextual information. Perhaps with
repeated exposure, the student may eventually learn
the German words. Our goal is to create a machine
teacher that can detect and exploit situations where
incidental learning can occur in narrative text (sto-
ries, articles etc.). The machine teacher will take a
sentence in the student’s native language (L1) and re-
place certain words with their foreign-language (L2)
translations, resulting in a mixed-language sentence.
We hope that reading mixed-language documents
does not feel like a traditional vocabulary learning
drill even though novel L2 words can be picked
up over time. We envision our method being used
alongside traditional foreign-language instruction.

Typically, a machine teacher would require super-
vised data, meaning data on student behaviors and
capabilities (Renduchintala et al., 2016; Labutov
and Lipson, 2014). This step is expensive, not
only from a data collection point of view, but also
from the point of view of students, as they would
have to give feedback (i.e. generate labeled data)
on the actions of an initially untrained machine
teacher. However, our machine teacher requires
no supervised data from human students. Instead,
it uses a cloze language model trained on corpora
from the student’s native language as a proxy for
a human student. Our machine teacher consults this
proxy to guide its construction of mixed-language
data. Moreover, we create an evaluation dataset that
allows us to determine whether students can actually
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Sentence The Nile is a river in Africa

Gloss Der Nil ist ein Fluss in Afrika

Mixed-Lang Der Nile ist a river in Africa
Configurations The Nile is a Fluss in Africa

Der Nil ist ein river in Africa

Table 1: An example English (L1) sentence with Ger-
man (L2) glosses. Using the glosses, several possible
mixed-language configurations are possible. Note that
the glosses do not form fluent L2 sentences.

understand our generated texts and learn from them.
We present three variants of our machine teacher,

by varying the underlying language models, and
study the differences in the mixed-language doc-
uments they generate. We evaluate these systems
by asking participants on Amazon Mechanical Turk
(MTurk) to read these documents and guess the
meanings of L2 words as and when they appear (the
participants are expected to use the surrounding
words to make their guesses). Furthermore, we
select the best performing variant and evaluate if
participants can actually learn the L2 words by
letting participants read a mixed-language passage
and give a L2 vocabulary quiz at the end of passage,
where the L2 words are presented in isolation.

2 Approach

Will a student be able to infer the meaning of the L2
tokens I have introduced? This is the fundamental
question that a machine teacher must answer when
deciding on which words in an L1 sentence should
be replaced with L2 glosses. The machine teacher
must decide, for example, if a student would
correctly guess the meanings of Der, ist, ein, or
Flusswhen presented with this mixed-language
configuration: Der Nile ist ein Fluss
in Africa.1 The machine teacher must also ask
the same question of many other possible mixed-
language configurations. Table 1 shows an example
sentence and three mixed-language configurations
from among the exponentially many choices. Our
approach assumes a 1-to-1 correspondence (i.e.
gloss) is available for each L1 token. Clearly,
this is not true in general, so we only focus on
mixed-language configurations when 1-to-1 glosses
are possible. If a particular L1 token does not have
a gloss, we only consider configurations where that
token is always represented in L1.

1By “meaning” we mean the L1 token that was originally
in the sentence before it was replaced by an L2 gloss.

2.1 Student Proxy Model
Before we address the aforementioned question,
we must introduce our student proxy model. Con-
cretely, our student proxy model is a cloze language
model that uses bidirectional LSTMs to predicts
L1 words from their surrounding context (Mousa
and Schuller, 2017; Hochreiter and Schmidhuber,
1997). We refer to it as the cLM (cloze language
model). Given a L1 sentence [x1,x2, ... ,xT ], the
model defines a distribution p(xt | [hf : hf ]) at
each position in the sentence. Here, hf and hb are
D−dimensional hidden states from forward and
backward LSTMs.

hf
t=LSTMf ([x1,...,xt−1];θ

f ) (1)

hb
t=LSTMb([xt+1,...,xT ];θ

b) (2)

The cLM assumes a fixed L1 vocabulary of size
V , and the vectors xt above are embeddings of
these word types, which correspond to the rows of a
matrix E∈RV×D. The output distribution (over V
word types) is obtained by concatenating the hidden
states from the forward and backward LSTMs and
projecting the resulting 2D-dimensional state down
to D-dimensions using a projection layer h(·;θh).
Finally, a softmax operation is performed:

p(· | [hf :hb])=softmax(E·h([hf :hb];θh)) (3)

Note that the softmax layer also uses the word
embedding matrix E when generating the output
distribution (Press and Wolf, 2017). This cloze
language model encodes left-and-right contextual
dependence rather than the typical sequence depen-
dence of standard (unidirectional) language models.

We train the parameters θ = [θf ; θb; θh; E]
using Adam (Kingma and Ba, 2014) to maximize∑

xL(x), where the summation is over sentences
x in a large L1 training corpus.

L(x)=
∑
t

logp(xt | [hf
t :h

b
t]) (4)

We assume that the resulting model represents the
entirety of the student’s L1 knowledge, and that the
L1 parameters θ will not change further.

2.2 Incremental L2 Vocabulary Learning
The model so far can assign probability to an
L1 sentence such as The Nile is a river
in Africa, (using Eq. (4)) but what about a
mixed-language sentence such as Der Nile ist
ein Fluss in Africa? To accommodate the
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new L2 words, we use another word-embedding
matrix, F ∈ RV ′×D and modify Eq 3 to consider
both the L1 and L2 embeddings:

p(· | [hf :hb])=softmax([E;F]·h([hf :hb];θh))

We also restrict the softmax function above to
produce a distribution not over the full bilingual
vocabulary of size |V | + |V ′|, but only over the
bilingual vocabulary consisting of the V L1 types
together with only the v′⊂V ′ L2 types that actually
appear in the mixed-language sentence x. In the
above example mixed-language sentence, |v′| is 4.
We initialize F by drawing its elements IID from
Uniform[−0.01,0.01]. Thus, all L2 words initially
have random embeddings [−0.01,0.01]1×D.

These modifications lets us compute L(x) for a
mixed-language sentence x. We assume that when
a human student reads a mixed-language sentence
x, they update their L2 parameters F (but not their
L1 parameters θ) to increaseL(x). Specifically, we
assume that F will be updated to maximize

L(x;θf ,θb,θh,E,F)−λ‖F−Fprev‖2 (5)

Maximizing Eq. (5) adjusts the embeddings of each
L2 word in the sentence so that it is more easily pre-
dicted from the other L1/L2 words, and also so that it
is more helpful at predicting the other L1/L2 words.
Since the rest of the model’s parameters do not
change, we expect to find an embedding for Fluss
that is similar to the embedding for river. How-
ever, the regularization term with coefficient λ>0
prevents F from straying too far from from Fprev,
which represents the value of F before this sentence
was read. This limits the degree to which our sim-
ulated student will change their embedding of an
L2 word such as Fluss based on a single example.
As a result, the embedding of Fluss reflects all of
the past sentences that contained Fluss, although
(realistically) with some bias toward the most recent
such sentences. We do not currently model spacing
effects, i.e., forgetting due to the passage of time.

In principle, λ should be set based on human-
subjects experiments, and might differ from human
to human. In practice, in this paper, we simply took
λ=1. We (approximately) maximized the objective
above using 5 steps of gradient ascent, which gave
good convergence in practice.

2.3 Scoring L2 embeddings
The incremental vocabulary learning procedure
(Section 2.2) takes a mixed-language configuration

and generates a new L2 word-embedding matrix
by applying gradient updates to a previous version
of the L2 word-embedding matrix. The new matrix
represents the proxy student’s L2 knowledge after
observing the mixed-language configuration.

Thus, if we can score the new L2 embeddings,
we can, in essence, score the mixed-language
configuration that generated it. The ability to
score configurations affords search (Sections 2.4
and 2.5) for high-scoring configurations. With this
motivation, we design a scoring function to measure
the “goodness” of L2 word-embeddings, F.

The machine teacher evaluates F with reference
to all correct word-gloss pairs from the entire
document. For our example sentence, the word
pairs are {(The, Der), (is,ist), (a,ein),
(river,Fluss)}. But the machine teacher also
has access to, for example, {(water,Wasser),
(stream, Fluss) . . . }, which come from
elsewhere in the document. Thus, ifP is the set of
word pairs,{(x1,f1),...(x|P|,f|P|)}, we compute:

r̃p=R(xp,cs(Ffp ,E)) (6)

rp=

{
r̃p if r̃p<rmax

∞ otherwise

MRR(F,E,rmax)=
1

|P|
∑
p

1

rp
(7)

where cs(Ff ,E) denotes the vector of cosine simi-
larities between the embedding of an L2 word f and
the entire L1 vocabulary. R(x,cs(E,Ff )) queries
the rank of the correct L1 word x that pairs with f .
r can take values from 1 to |V |, but we use a rank
threshold rmax and force pairs with a rank worse
than rmax to∞. Thus, given a word-gloss pairing
P , the current state of the L2 embedding matrix
F, and the L1 embedding matrix E, we obtain the
Mean Reciprocal Rank (MRR) score in (7).

We can think of the scoring function as a
“vocabulary test” in which the proxy student gives
(its best) rmax guesses for each L2 word type and
receives a numerical grade.

2.4 Mixed-Language Configuration Search
So far we have detailed our simulated student
that would learn from a mixed-language sentence,
and a metric to measure how good the learned L2
embeddings would be. Now the machine teacher
only has to search for the best mixed-language
configuration of a sentence. As there are exponen-
tially many possible configurations to consider,
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exhaustive search is infeasible. We use a simple
left-to-right greedy search to approximately find the
highest scoring configuration for a given sentence.
Algorithm 1 shows the pseudo-code for the search
process. The inputs to the search algorithm are
the initial L2 word-embeddings matrix Fprev, the
scoring function MRR(), and the student proxy
model SPM(). The algorithm proceeds left to right,
making a binary decision at each token: Should the
token be replaced with its L2 gloss or left as is? For
the first token, these two decisions result in the two
configurations: (i) Der Nile... and (ii) The
Nile... These configurations are given to the
student proxy model which updates the L2 word
embeddings. The scoring function (section 2.3)
computes a score for each L2 word-embedding
matrix and caches the best configuration (i.e. the
configuration associated with the highest scoring
L2 word-embedding matrix). If two configurations
result in the same MRR score, the number of L2
word types exposed is used to break ties. In Algo-
rithm 1, ρ(c) is the function that counts the number
of L2 word types exposed in a configuration c.

Algorithm 1 Mixed-Lang. Config. Search
Require: x=[x1,x2,...,xT ] . L1 tokens
Require: f =[f1,f2,...,fT ] . L2 glosses
Require: E . L1 emb. matrix
Require: Fprev . initial L2 emb. matrix
Require: SPM . Student Proxy Model
Require: MRR,rmax . Scoring Func., threshold
1: function SEARCH(x,f ,Fprev)
2: c←x . initial configuration is the L1 sentence
3: F←Fprev

4: s=MRR(E,F,rmax)
5: for i=1;i≤T ;i++ do
6: c′←c1···ci−1 fixi+1···xT
7: Φ′=SPM(Fprev,c′)
8: s′=MRR(E,Φ′,rmax)
9: if (s′,−ρ(c′))≥(s,−ρ(c)) then

10: c←c′,F←F′,s←s′

11: end if
12: end for
13: return c,F .Mixed-Lang. Config.
14: end function

2.5 Mixed-Language document creation
Our idea is that a sequence of mixed-language con-
figurations is good if it drives the student proxy
model’s L2 embeddings toward an MRR score close
to 1 (maximum possible). Note that we do not
change the sentence order (we still want a coher-
ent document), just the mixed-language configura-
tion of each sentence. For each sentence in turn, we
greedily search over mixed-language configurations
using Algorithm 1, then choose the configuration

that learns the best F, and proceed to the next sen-
tence with Fprev now set to this learned F.2 This
process is repeated until the end of the document.
The pseudo-code for generating an entire document
of mixed-language content is shown in Algorithm 2.

Algorithm 2 Mixed-Lang. Document Gen.
Require: D=[(x1,f1),...,(xN,fN)] .Document
Require: E . L1 emb. matrix
Require: F0 . initial L2 emb. matrix
1: function DOCGEN(D,F0)
2: C=[] .Configuration List
3: for i=1;i≤N ;i++ do
4: xi,fi=D[i]
5: ci,Fi=SEARCH(xi,fi,Fi−1)
6: C←C+[ci]
7: end for
8: return C .Mixed-Lang. Document
9: end function

In summary, our machine teacher is composed
of (i) a student proxy model which is a contextual
L2 word learning model (Sections 2.1 and 2.2)
and (ii) a configuration sequence search algorithm
(Sections 2.4 and 2.5), which is guided by (iii) an
L2 vocabulary scoring function (Section 2.3). In
the next section, we describe two variations for the
student proxy models.

3 Variations in Student Proxy Models

We developed two variations for the student proxy
model to compare and contrast the mixed-language
documents that can be generated.

3.1 Unidirectional Language Model
This variation restricts the bidirectional model
(from Section 2.1) to be unidirectional (uLM ) and
follows a standard recurrent neural network (RNN)
language model (Mikolov et al., 2010).

logp(x)=
∑
t

logp(xt |hf
t) (8)

hf
t=LSTMf (x0,...,xt−1;θ

f ) (9)

p(· |hf )=softmax(E·hf ) (10)

Once again, hf ∈ RD×1 is the hidden state of the
LSTM recurrent network, which is parameterized
by θf , but unlike the model in Section 2.1, no
backward LSTM and no projection function is used.

The same procedure from the bidirectional model
is used to update L2 word embeddings (Section 2.2).
While this model does not explicitly encode context

2For the first sentence, we initialize Fprev to have values
randomly between [−0.01,0.01].



373

from “future” tokens (i.e. words to the right of xt)
, there is still pressure from right-side tokens xt+t:T

because the new embeddings will be adjusted to
explain the tokens to the right as well. Fixing all
the L1 parameters further strengthens this pressure
on L2 embeddings from words to their right.

3.2 Direct Prediction Model
The previous two models variants adjust L2
embeddings using gradient steps to improve the
pseudo-likelihood of the presented mixed-language
sentences. One drawback of such an approach
is computation speed caused by the bottleneck
introduced by the softmax operation.

We designed an alternate student prediction
model that can “directly” predict the embeddings for
words in a sentence using contextual information.
We refer to this variation as the Direct Prediction
(DP ) model. Like our previous student proxy mod-
els, the DP model also uses bidirectional LSTMs
to encode context and an L1 word embedding ma-
trix E. However, the DP model does not attempt to
produce a distribution over the output vocabulary;
instead it tries to predict a real-valued vector using
a feed-forward highway network (Srivastava et al.,
2015). The DP model’s objective is to minimize the
mean square error (MSE) between a predicted word
embedding and the true embedding. For a time-step
t, the predicted word embedding x̂t, is generated by:

hf
t=LSTMf ([x1,...,xt−1];θ

f ) (11)

hb
t=LSTMb([xt+1,...,xT ];θ

b) (12)

x̂t=FF([xt :h
f
t :h

b
t];θ

w) (13)

L(θf ,θb,θw)=
∑
t

(x̂t−xt)
2 (14)

where FF (.;θw) denotes a feed forward highway
network with parameters θw. Thus, the DP model
training requires that we already have the “true em-
beddings” for all the L1 words in our corpus. We use
pretrained L1 word embeddings from FastText as
“true embeddings” (Bojanowski et al., 2017). This
leaves the LSTM parametersθf ,θb and the highway
feed-forward network parameters θw to be learned.
Equation 14 can be minimized by simply copying
the input xt as the prediction (ignoring all context).
We use masked training to prevent the model itself
from trivially copying (Devlin et al., 2018). We
randomly “mask” 30% of the input embeddings
during training. This masking operation replaces
the original embedding with either (i) 0 vectors,
or (ii) vectors of a random word in vocabulary, or

(iii) vectors of a “neighboring” word from the vo-
cabulary. 3 The loss, however, is always computed
with respect to the correct token embedding.

With the L1 parameters of the DP model
trained, we turn to L2 learning. Once again the L2
vocabulary is encoded in F, which is initialized to
0 (i.e. before any sentence is observed). Consider
the configuration: The Nile is a Fluss
in Africa. The tokens are converted into a
sequence of embeddings: [x0 = Ex0 , ... , xt =
Fft ,...,xT =ExT ]. Note that at time-step t the L2
word-embedding matrix is used (t=4,ft=Fluss
for the example above). A prediction x̂t is generated
by the model using Equations 11-13. Our hope
is that the prediction is a “refined” version of the
embedding for the L2 word. The refinement arises
from considering the context of the L2 word. If
Flusswas not seen before, xt=Fft =0, forcing
the DP model to only use contextual information.
We apply a simple update rule that modifies the L2
embeddings based on the direct predictions:

Fft←(1−η)Fft+ηx̂t (15)

where η controls the interpolation between the old
values of a word embedding and the new values
which have been predicted based on the current
mixed sentence. If there are multiple L2 words in a
configuration, say at positions i and j (where i<j),
we can still follow Eq 11–13. However, to allow the
predictions x̂i and x̂j to jointly influence each other,
we need to execute multiple prediction iterations.

Concretely, let X = [x0,...,Ffi ,...,Ffj ,...,xT ]
be the sequence of word embeddings for a
mixed-language sentence. The DP model generates
predictions X̂= [x̂0,...,x̂i,...,x̂j ,...,x̂T ]. We only
use its predictions at time-steps corresponding to
L2 tokens since the L2 words are those we want to
update (Eq 16).

X1=DP(X0)

Where,X0=[x1,...,Ffi ,...,Ffj ,...,xT ]

X1=[x1,...,x̂
1
i ,...,x̂

1
j ,...,xT ] (16)

Xk=DP(Xk−1) ∀0≤k<K−1 (17)

where X1 contains predictions at i and j and the
original L1 word-embeddings in other positions.
We then pass X1 as input again to the DP model.
This is executed for K iterations (Eq 17). With

3We precompute 20 neighboring words (based on cosine-
similarity) for each word in the vocabulary using FastText
embeddings before training.
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Figure 1: A screenshot of a mixed-language sentence
presented on Mechanical Turk.

Metric Model rmax =1 rmax =4 rmax =8

cLM 0.25 0.31 0.35
Replaced uLM 0.20 0.25 0.25

DP 0.19 0.22 0.21

cLM 86.00(±0.87) 74.00(±1.10) 55.13(±2.54)
Guess
Accuracy uLM 84.57(±0.56) 73.89(±1.72) 72.83(±1.58)

DP 88.44(±0.73) 81.07(±1.03) 70.85(±1.49)

Table 3: Results from MTurk data. The first section
shows the percentage of tokens that were replaced
with L2 glosses under each condition. The Accuracy
section shows the percentage token accuracy of MTurk
participants’ guesses along with 95% confidence
interval calculated via bootstrap resampling.

each iteration, our hope is that the DP model’s
predictions x̂i and x̂j get refined by influencing
each other and result in embeddings that are
well-suited to the sentence context. A similar style
of imputation has been studied for one dimensional
time-series data by Zhou and Huang (2018). Finally,
afterK−1 iterations, we use the predictions of x̂i

and x̂j fromXK to update the L2 word-embeddings
in F corresponding to the L2 tokens fi and fj . η
was set to 0.3 and the number of iterationsK=5.

Ffi←(1−η)Ffi+ηx̂
K
i

Ffj←(1−η)Ffj+ηx̂
K
j (18)

4 Experiments

We first investigate the patterns of word replace-
ment produced by the machine teacher under the
influence of the different student proxy models
and how these replacements affect the guessability
of L2 words. To this end, we used the machine
teacher to generate mixed-language documents
and asked MTurk participants to guess the foreign
words. Figure 1 shows an example screenshot of our
guessing interface. The words in blue are L2 words
whose meaning (in English) is guessed by MTurk
participants. For our study, we created a synthetic
L2 language by randomly replacing characters from
English word types. This step lets us safely assume
that all MTurk participants are “absolute beginners.”
We tried to ensure that the resulting synthetic words

are pronounceable by replacing vowels with vowels,
stop-consonants with other stop-consonants, etc.
We also inserted or deleted one character from some
of the words to prevent the reader from using the
length of the synthetic word as a clue. While our
evaluation required use of a synthetic foreign lan-
guage, we provide as an example mixed-language
documents with real L2 languages in Appendix A.1.

We studied the three student proxy models
(cLM , uLM , and DP ) while keeping the rest of
the machine teacher’s components fixed (i.e. same
scoring function and search algorithms). All three
models were constructed to have roughly the
same number of L1 parameters (≈ 20M ). The
uLM model used 2 unidirectional LSTM layers
instead of a single bidirectional layer. The L1
and L2 word embedding size and the number of
recurrent units D were set to 300 for all three
models (to match the size of FastText’s pretrained
embeddings). We trained the three models on the
Wikipedia-103 corpus (Merity et al., 2016).4 All
models were trained for 8 epochs using the Adam
optimizer (Kingma and Ba, 2014). We limit the L1
vocabulary to the 60k most frequent English types.

4.1 MTurk Setup

We selected 6 documents from Simple Wikipedia to
serve as the input for mixed-language content.5 To
keep our study short enough for MTurk, we selected
documents that contained 20 − 25 sentences. A
participant could complete up to 6 HITs (Human In-
telligence Tasks) corresponding to the 6 documents.
Participants were given 25minutes to complete each
HIT (on average, the participants took 12 minutes
to complete the HITs). To prevent typos, we used a
20k word English dictionary, which includes all the
word types from the 6 Simple Wikipedia documents.
We provided no feedback regarding the correctness
of guesses. We recruited 128 English speaking
MTurk participants and obtained 162 responses,
with each response encompassing a participant’s
guesses over a full document.6 Participants were
compensated $4 per HIT.

4.2 Experiment Conditions

We generated 9 mixed-language versions (3 models
{cLM ,uLM ,DP } in combination with 3 rank

4FastText pretrained embeddings were trained on more data.
5https://dumps.wikimedia.org/simplewiki/20190120/
6Participants self-reported their English proficiency, only

native or fluent speakers were allowed to participate. Our HITs
were only available to participants from the US.
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Model rmax =1 rmax =8

cLM Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
is hu longest river iñ Earth (about 6,650 km
or 4,132 miles), though other rivers carry
more water...
Many ozvolomb types iv emoner live in or near
hu waters iv hu Nile, including crocodiles,
birds, fish ñb many others. Not only do
animals depend iñ hu Nile for survival, but
also people who live there need up zi everyday
use like washing, as u jopi supply, keeping
crops watered ñb other jobs...

Hu Nile (‘‘an-nīl’’) ev u river um Africa. Up
ev the longest river on Earth (about 6,650 km
or 4,132 miles), though other rivers carry
more water...
Emu ozvolomb types of emoner live um or iul
the waters of hu Uro, including crocodiles,
ultf, yvh and emu others. Ip only do animals
depend iñ the Nile zi survival, but also daudr
who live there need up zi everyday use like
washing, ez a jopi supply, keeping crops
watered ñb other jobs...

uLM The Nile (‘‘an-nīl’’) ev a river um Africa.
It ev hu longest river on Earth (about 6,650
km or 4,132 miles), though other rivers carry
more jopi...
Many different pita of emoner live in or near
hu waters iv hu Nile, including crocodiles,
ultf, fish and many others. Not mru do emoner
depend iñ hu Nile for survival, but also
people who live there need it for everyday
use like washing, as a jopi supply, keeping
crops watered ñb other jobs...

Hu Nile (‘‘an-nīl’’) ev u river um Africa. Up
ev the longest river iñ Earth (about 6,650 km
or 4,132 miles), though other rivers carry
more jopi...
Many different pita of emoner live um or near
hu waters iv hu Nile, including crocodiles,
ultf, fish and many others. Not mru do emoner
depend on the Nile for survival, id also
people who live there need it zi everyday use
like washing, as u water supply, keeping crops
watered ñb other jobs...

DP Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
ev hu longest river on Earth (about 6,650 km
or 4,132 miles), though other rivers carry
more water...
Many different types iv animals live in
or near hu waters iv hu Nile, including
crocodiles, birds, fish and many others.
Not only do animals depend iñ hu Nile for
survival, but also people who live there
need it for everyday use like washing, as u
water supply, keeping crops watered and other
jobs...

Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
ev hu longest river on Earth (about 6,650 km
or 4,132 miles), though udho rivers carry more
water...
Many different pita of animals live in or near
hu waters of hu Nile, including crocodiles,
birds, fish and many others. Not mru do
animals depend iñ hu Nile zi survival, id also
people who live there need it zi everyday use
like washing, ez a water supply, keeping crops
watered and udho jobs...

Table 2: Portions of one of our Simple Wikipedia articles. The document has been converted into a mixed-language
document by the machine teacher using the three student proxy models. Our experiments use a synthetic L2
language, see Appendix A.1 for examples with real L2 language (German and Spanish) on two stories. The two
columns show the effect of the rank threshold rmax. Note that this mixed-language document is 25 sentences long;
here, we only show the first 2 sentences and another middle 2 sentences to save space.

thresholds rmax∈{1,4,8}) for each of the 6 Simple
Wikipedia documents. For each HIT, an MTurk
participant was randomly assigned one of the 9
mixed-language versions. Table 2 shows the output
at two settings of rmax for one of the documents. We
see that rmax controls the number of L2 words the
machine teacher deems guessable, which affects
text readability. The increase in L2 words is most
noticeable with the cLM model. We also see that
the DP model differs from the others by favoring
high frequency words almost exclusively. While the
cLM and uLM models similarly replace a number
of high frequency words, they also occasionally
replace lower frequency word classes like nouns
and adjectives (emoner, Emu, etc.). Table 3
summarizes our findings. The first section of 3
shows the percentage of tokens that were deemed
guessable by our machine teacher. The cLM model
replaces more words as rmax is increased to 8, but
we see that MTurkers had a hard time guessing
the meaning of the replaced tokens: their guessing
accuracy drops to 55% at rmax = 8 with the

cLM model. The uLM model, however, displays a
reluctance to replace too many tokens, even as rmax
was increased to 8.

We further analyzed the replacements and MTurk
guesses based on word-class. We tagged the L1
tokens with their part-of-speech and categorized
tokens into open or closed class following Universal
Dependency guidelines (Nivre et al.).7 Table 4
summarizes our analysis of model and human
behavior when the data is separated by word-class.
The pink bars indicate the percentage of tokens
replaced per word-class. The blue bars represent the
percentage of tokens from a particular word-class
that MTurk users guessed correctly. Thus, an
ideal machine teacher should strive for the highest
possible pink bar while ensuring that the blue bar is
as close as possible to the pink. Our findings suggest
that the uLM model at rmax=8 and the cLM model
at rmax = 4 show the desirable properties – high
guessing accuracy and more representation of L2
words (particularly open-class words).

7 https://universaldependencies.org/u/pos/
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Table 4: Results of MTurk results split up by word-class. The y-axis is percentage of tokens belonging to a
word-class. The pink bar (right) shows the percentage of tokens (of a particular word-class) that were replaced
with an L2 gloss. The blue bar (left) and indicates the percentage of tokens (of a particular word-class) that were
guessed correctly by MTurk participants. Error bars represent 95% confidence intervals computed with bootstrap
resampling. For example, we see that only 5.0% (pink) of open-class tokens were replaced into L2 by the DP model
at rmax=1 and 4.3% of all open-class tokens were guessed correctly. Thus, even though the guess accuracy forDP at
rmax=1 for open-class is high (86%) we can see that participants were not exposed to many open-class word tokens.

Metric Model Closed Open

Types Repl-
aced

random 59 524
cLM 33 149

Guess Acc-
uracy

random 62.06(±1.54) 39.36(±1.75)
cLM 74.91(±0.94) 61.96(±1.24)

Table 5: Results comparing our student proxy based
approach to a random baseline. The first part shows
the number of L2 word types exposed by each model
for each word-class. The second part shows the
average guess accuracy percentage for each model and
word-class. 95% confidence intervals (in brackets)
were computed using bootstrap resampling.

4.3 Random Baseline

So far we’ve compared different student proxy
models against each other, but is our student proxy
based approach required at all? How much better
(or worse) is this approach compared to a random
baseline? To answer these questions, we compare
the cLM with rmax = 4 model against a randomly
generated mixed-language document. As the name
suggests, word replacements are decided randomly
for the random condition, but we ensure that the

number of tokens replaced in each sentence equals
that from the cLM condition.

We used the 6 Simple Wikipedia documents from
Section 4.1 and recruited 64 new MTurk partipants
who completed a total of 66 HITs (compensation
was $4 per HIT). For each HIT, the participant
was given either the randomly generated or the
cLM based mixed-language document. Once again,
participants were made to enter their guess for each
L2 word that appears in a sentence. The results are
summarized in Table 5.

We find that randomly replacing words with
glosses exposes more L2 word types (59 and 524
closed-class and open-class words respectively)
while the cLM model is more conservative with
replacements (33 and 149). However, the random
mixed-language document is much harder to
comprehend, indicated by significantly lower
average guess accuracies than those with the
cLM model. This is especially true for open-class
words. Note that Table 5 shows the number of word
types replaced across all 6 documents.
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Model Closed Open

random 9.86(±0.94) 4.28(±0.69)
cLM 35.53(±1.03) 27.77(±1.03)

Table 6: Results of our L2 learning experiments
where MTurk subjects simply read a mixed-language
document and answered a vocabulary quiz at the end
of the passage. The table shows the average guess
accuracy percentage along with 95% confidence
intervals computed from bootstrap resampling.

4.4 Learning Evaluation

Our mixed-language based approach relies on
incidental learning, which states that if a novel word
is repeatedly presented to a student with sufficient
context, the student will eventually be able to learn
the novel word. So far our experiments test MTurk
participants on the “guessability” of novel words
in context, but not learning. To study if students
can actually learn the L2 words, we conduct an
MTurk experiment where participants are simply
required to read a mixed-language document (one
sentence at a time). At the end of the document an
L2 vocabulary quiz is given. Participants must enter
the meaning of every L2 word type they have seen
during the reading phase.

Once again, we compare our cLM (rmax = 4)
model against a random baseline using the 6 Simple
Wikipedia documents. 47 HITs were obtained
from 45 MTurk participants for this experiment.
Participants were made aware that there would be
a vocabulary quiz at the end of the document. Our
findings are summarized in Table 6. We find the ac-
curacy of guesses for the vocabulary quiz at the end
of the document is considerably lower than guesses
with context. However, subjects still managed
to retain 35.53% and 27.77% of closed-class and
open-class L2 word types respectively. On the other
hand, when a random mixed-language document
was presented to participants, their guess accuracy
dropped to 9.86% and 4.28% for closed and open
class words respectively. Thus, even though more
word types were exposed by the random baseline,
fewer words were retained.

5 Related Work

Our work does not require any supervised data
collection from students. This departure makes
our work easier to deploy in diverse settings
(i.e. for different document genres, and different
combinations of L1/L2 languages etc). While

there are numerous self-directed language learning
applications such as Duolingo (von Ahn, 2013),
our approach uses a different style of “instruction”.
Furthermore, reading L2 words in L1 contexts is
also gaining popularity in commercial applications
like Swych (2015) and OneThirdStories (2018).

Most recently, Renduchintala et al. (2016)
attempt to model a student’s ability to guess the
meaning of foreign language words (and phrases)
when prompted with a mixed language sentence.
One drawback of this approach is its need for large
amounts of training data, which involves prompting
students (in their case, MTurk users) with mixed lan-
guage sentences created randomly. Such a method is
potentially inefficient, as random configurations pre-
sented to users (to obtain their guesses) would not
reliably match those that a beginner student would
encounter. Labutov and Lipson (2014) also use a
similar supervised approach. The authors required
two sets of annotations, first soliciting guesses of
missing words in a sentences and then obtaining
another set of annotations to judge the guesses.

6 Conclusion

We are encouraged by the ability to generate
mixed-language documents without the need of
expensive data collection from students. Our
MTurk study shows that students can guess the
meaning of foreign words in context with high
accuracy and also retain the foreign words.

For future work, we would like to investigate
ways to smoothly adapt our student proxy models
into personalized models. We also recognize that
our approach may be “low-recall,” i.e., it might
miss out on teaching possibilities. For example, our
machine teacher may not realize that cognates can
be replaced with the L2 and still understood, even if
there are no contextual clues (Afrika can likely be
understood without much context). Incorporating
spelling information into our language models (Kim
et al., 2016) could help the machine teacher identify
more instances for incidental learning. Additionally,
we would like to investigate how our approach
could be extended to enable phrasal learning (which
should consider word-ordering differences between
the L1 and L2). As the cLM and uLM models
showed the most promising results in our experi-
ments, we believe these models could serve as the
baseline for future work.
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Sense y Sensibility
CHAPTER 1

La family de Dashwood llevaba long been
settled en Sussex. Their estate era large,
and their residence was en Norland Park,
en el centre de their propiedad, where,
por many generations, ellos had lived en
so respectable a manner as a engage the
general buena opinion of their surrounding
acquaintance. El late owner de esta estate
was a single man, who lived to una very
advanced age, and who for many años de su life,
had una constant companion y housekeeper in
su sister. But her death, which happened
ten años before su own, produced a great
alteration en his home; for para supply her
loss, he invited y received into his house
the family of his nephew Mr. Henry Dashwood,
the legal inheritor de the Norland estate, y
the person to whom se intended to bequeath
it. En la society of his nephew and niece,
and their children, el old Gentleman’s days
fueron comfortably spent. Su attachment a
them all increased. La constant attention
de Mr. y Mrs. Henry Dashwood a sus wishes,
which proceeded not merely from interest, but
from goodness de heart, dio him every degree
de solid comfort which his age could receive;
y la cheerfulness de los children added un
relish to his existence.

Por a former marriage, Mr. Henry Dashwood
had one hijo: by su present lady, tres
daughters. El son, un steady respectable
young man, tenı́a amply provided for by la
fortune de su mother, which habı́a been large,
y half de which devolved on him on su coming
de age. Por his own marriage, likewise,
which happened soon afterwards, he added a su
wealth. Para him therefore la succession a la
Norland estate era not so really important
como para his sisters; para su fortune,
independent of what might arise a them de su
father’s inheriting that propiedad, could ser
but small. Su madre had nothing, and their
father only seven thousand pounds en su own
disposal; porque the remaining moiety of su
first wife’s fortune era also secured a su
child, y he had only a life-interest en it.

Table 7: Example of mixed-language output for
Jane Austen’s “Sense and Sensibility”. We used the
uLM with rmax=8.

A Appendices

A.1 Mixed-Language Examples

While our experiments necessitated use of synthetic
L2 words, our methods are compatible with real
L2 learning. For a more “real-world” experience
of how our methods could be deployed, we present
the first few paragraphs of mixed-language novels
generated using the uLM model with rmax = 8.
First example is from Jane Austin’s “Sense and
Sensibility” (Table 7), and for the second example,
as we are transforming text from one language into
a “strange hybrid creature” (i.e mixed-language) it
seems appropriate to use Franz Kafka’s “Metamor-
phosis”(Table 8). For these examples, glosses were
obtained from a previous MTurk data collection
process from bilingual speakers. Glosses for

Metamorphosis
I

One morning, when Gregor Samsa woke from
troubled dreams, er found himself transformed
in his bed into einem horrible vermin. Er lay
auf his armour-like back, und if er lifted
seinen head a wenig he could see his brown
belly, slightly domed und divided von arches
into stiff sections. das bedding was hardly
able zu cover it and seemed ready to slide
off any moment. His many legs, pitifully
thin compared mit der size of dem rest of him,
waved about helplessly als he looked.

‘‘What’s happened mit me?’’ er thought.
His room, ein proper human room although a
wenig too small, lay peacefully between seinen
four familiar walls. Eine collection of
textile samples lay spread out on dem table -
Samsa was ein travelling salesman - und above
it there hung ein picture that er had recently
cut out von an illustrated magazine and housed
in a nice, gilded frame. It showed eine lady
fitted out with einem fur hat und fur boa who
sat upright, raising einen heavy fur muff that
covered the whole of her lower arm towards dem
viewer.

Gregor dann turned to look out the window
at the dull weather. Drops of rain could sein
heard hitting the pane, which machte him feel
quite sad. ‘‘How about if I sleep ein little
bit longer and forget all this nonsense,’’
er thought, but that war something er war
unable zu do because he war used zu sleeping
on seiner right, und in seinem present state
couldn’t get into diese position. However
hard he threw himself onto seine right, er
always rolled zurück to where he was. Er must
haben tried it ein hundred times, shut seine
eyes so dass er wouldn’t have to look at die
floundering legs, und only stopped when er
began to feel einen mild, dull pain there that
er had nie felt before.

‘‘Oh, God,’’ er thought, ‘‘what a
strenuous career it ist that I’ve chosen!
Travelling day in und day out. Doing business
like diese takes much mehr effort than doing
your own Geschäft at home, und auf top of that
there’s der curse des travelling, worries
about making train connections, bad and
irregular food, contact with verschiedenen
people all die time so das you kannst never
get to know anyone or become friendly mit
them. es can all gehen to Hell!’’ Er felt
a slight itch up auf seinem belly ; pushed
himself slowly up on seinen back towards the
headboard so dass he konnte lift seinen head
better ; found where das itch was, und saw
dass it was besetzt with lots of little white
spots which er didn’t know what to make of ;
und when er tried to feel die place with one
of his legs er drew es quickly back because as
soon as he touched it er was overcome by einem
cold shudder.

Table 8: Example of mixed-language output for the
English translation (by David Wyllie) of Franz Kafka’s
“Metamorphosis”. We used the uLM with rmax=8.

each English (L1) token was obtained from 3
MTurkers, if a majority of them agree on the gloss it
is considered by our machine teacher as a possible
L2 gloss. If no agreement was obtained we restrict
that token to always remain as L1.


