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Abstract

This paper provides an analytical assessment
of student short answer responses with a view
to potential benefits in pedagogical contexts.
We first propose and formalize two novel ana-
lytical assessment tasks: analytic score predic-
tion and justification identification, and then
provide the first dataset created for analytic
short answer scoring research. Subsequently,
we present a neural baseline model and report
our extensive empirical results to demonstrate
how our dataset can be used to explore new
and intriguing technical challenges in short an-
swer scoring. The dataset is publicly available
for research purposes.

1 Introduction

Short answer scoring (SAS) is the task of assess-
ing short, written, free-text student responses to a
given prompt. Typically, a prompt is a text which
either elicits recall of information that was given in
a reading passage, asks for a summary of a read-
ing passage, or asks students to draw on knowl-
edge they already have. The task is to assess the
responses based on context and writing quality, in
accordance with the criteria prespecified for each
assessment by a scoring rubric. Automation of
this process has the potential to significantly re-
duce the workload of human raters and has at-
tracted a considerable amount of attention from
both academia and industry (Riordan et al., 2017;
Zhao et al., 2017; Sultan et al., 2016; Heilman
and Madnani, 2015; Pulman and Sukkarieh, 2005;
Leacock and Chodorow, 2003; Vigilante, 1999,
etc.).

It should be emphasized that, in admissions
tests and other tests, such as writing proficiency
tests, large groups of students receive and re-
spond to the exact same set of problems, for which

∗Current affiliation: Future Corporation, mizu-
moto.tomoya.mh7@is.naist.jp

Prompt:Explain what the author means by the phrase 
“this tension has caused several different philosophical 
viewpoints in Western culture” (max: 35 words)

②

Mentions	“Western	culture”	
or	``Western’’:	2	pointsA B

Mentions	``others	have	
different	view	points	from	
oneself ’’:	3 points

justification	cue

③

C ・・・ Deduction Misspellings:	-1	point	
Minor	 flaws:	-1	point

holistic score: 4◯-1

Analytic	scoring	criteria

Student	Response:	Conflicts of interest in Western culture 
are formmed on the basis of God vs Human, …

Figure 1: Example of short answer scoring with several
analytic criteria.

rubrics have been prepared in advance. In other
words, rubrics are normally available in the SAS
setting as they are in preset paper assignments.
Additionally, at least a small amount of training
data is also available because responses are scored
by human raters in any case.

This paper examines the issue of analytical as-
sessment of short answer responses. Typically, in
a short answer setting, a scoring rubric comprises
multiple analytic criteria, each of which stipulates
different aspects of the conditions necessary for a
response to receive points, and the overall score
(referred to as the holistic score) of a given stu-
dent response is determined by some predefined
function (e.g., summation) of the score gained for
each analytic criterion (analytic score).

Consider the example illustrated in Figure 1,
where a student response is assessed according to
multiple analytic scoring rubrics (denoted by A,
B, C, etc.). The response gains two points for an-
alytic criterion A (denoted by the red circled “2”)
and three points for B (yellow circled “3”), and the
holistic score is given by the total of the analytic
scores (+2 for A, +3 for B, and −1 for the mis-
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spelling).
Assessing student responses by analytic scores

as well as holistic scores is essential in peda-
gogical contexts because (i) for teachers, analytic
scores are useful for a precise assessment of stu-
dent proficiency, and (ii) for students, analytic
scores can be used as informative feedback indi-
cating what has been achieved and what remains
to be learned next. To the best of our knowledge,
however, no prior study on automatic SAS has
ever addressed this task.

Motivated by this background, we propose and
formalize two analytical assessment tasks of SAS,
(i) analytic score prediction and (ii) justification
identification. Analytic score prediction is the task
of predicting the analytic score for each analytic
scoring criterion, whereas justification identifica-
tion is the task of identifying the justification cue
for each analytic score. By justification cue, we re-
fer to the segment of the response (a subsequence
of words) that causes the response to be awarded
points in the analytic score. In Figure 1, for ex-
ample, the phrase Western culture is identified as
a justification for criterion A, whereas the phrase
Conflicts of interest is a justification for criterion
B. Justification cues not only explain the model’s
prediction but also help students learn how to im-
prove their responses.

One crucial issue in addressing such analytical
assessment tasks is the lack of data. The datasets
that are presently available for SAS research
(Mohler et al., 2011; ASAP-SAS; Dzikovska
et al., 2013; Basu et al., 2013, etc.) are all accom-
panied by annotations of holistic scores alone. In
this study, we developed a new dataset with anno-
tated analytic scores and justification cues as well
as holistic scores. The dataset contains 2,100 sam-
ple student responses for each of six distinct read-
ing comprehension test prompts, collected from
commercial achievement tests for Japanese high
school students. The dataset is publicly available
for research purposes.1

SAS requires content-based, prompt-specific
rubrics, which means that one needs to create a
labeled dataset to train a model for each given
prompt. This nature of the task raises the issue of
how one can reduce the required labelling costs
while achieving sufficient performance. This chal-
lenge is even more critical in analytical assess-

1https://aip-nlu.gitlab.io/resources/
sas-japanese

ment because annotating student responses with
analytic scores and justification cues tends to be
much more costly than when only holistic scores
are used. This study explores several situations
with limited amounts of analytic scores and jus-
tification cues as well as large numbers of holistic
scores. We show that analytical assessment perfor-
mance for analytic score prediction and justifica-
tion identification can be improved by compensat-
ing for a lack of data with these different types of
annotations.

The contributions of this work are three-fold.
First, we propose and formalize two analytical as-
sessment tasks: analytic score prediction and justi-
fication identification. Second, we have created the
first dataset for analytic SAS and released it for re-
search. Third, we present a neural baseline model
and report some of the empirical results to demon-
strate how our dataset can be used to address new
amd intriguing technical challenges in SAS.

2 Task

2.1 Analytic criteria

We assume that each prompt is provided with a
scoring rubric which comprises several (typically
two to four) analytic criteria. Each analytic crite-
rion stipulates the conditions under which a stu-
dent response will gain an analytic score, typically
in the form of “if it includes the content 〈. . .〉, the
response gains x points. ”

A response may lose a few points owing to mis-
spellings or other minor flaws (referred to as de-
ductions). We also regard the criteria for such de-
ductions as special analytic scoring rubrics which
are allotted negative points.

The holistic (total) score of a response is as-
sumed to be the sum of all the item scores includ-
ing the deductions.

2.2 Analytic score prediction

Analytic score prediction is the task of predicting
the score of a given student response for each an-
alytic criterion. Given a student response that con-
sists of T words w1:T = (w1, · · · , wT ), the goal is
to predict the analytic score y(m) ∈ R for each cri-
terion m ∈M, whereM is a given set of analytic
criteria.

As an evaluation metric, we use quadratic
weighted kappa (QWK) (Cohen, 1968), which is
commonly used in the SAS literature.

https://aip-nlu.gitlab.io/resources/sas-japanese
https://aip-nlu.gitlab.io/resources/sas-japanese
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2.3 Justification identification

Justification identification is the task of identify-
ing a justification cue in a given student response
for each analytic score. A justification cue is the
segment of a response that causes that response
to gain points in the analytic score. For a content-
based criterion (i.e., a criterion of the form “if it
includes the content 〈. . .〉, the response gains x
points”), the fragment that explicitly expresses the
required content is a justification cue. Justification
cues not only explain the model’s prediction but
also help students learn how to improve their re-
sponses.

Formally, given a student response
w1:T = (w1, · · · , wT ), the goal is to iden-
tify the phrase w

(m)
i:j = (wi, · · · , wj), where

1 ≤ i ≤ j ≤ T , for each criterion m. As
an evaluation metric, we use precision, recall
and F1 scores based on the overlaps between
gold-standard (henceforth “gold”) and predicted
justification cues (phrases). Consider the follow-
ing example.

A carbon filament was used.
[ gold ]

[ pred ]

Here, the gold justification is A carbon filament,
and the predicted one is filament was. The number
of true positives (TP) is 1 (filament), that of false
positives (FP) is 1 (was), and that of false nega-
tives (FN) is 2 (A carbon). Thus we can calculate
the precision, 1/(1 + 1) = 0.50, and the recall,
1/(1 + 2) = 0.33. F1 score is then 2 × 0.50 ×
0.33/(0.50 + 0.33) = 0.398.

3 Dataset

This section provides an overview of our dataset.

3.1 Original dataset

Table 1 shows the statistics of our dataset. The
dataset consists of six prompts and 2,100 stu-
dent responses for each prompt. Those prompts
and their rubrics were collected from commer-
cial achievement tests provided by a long-standing
leading education company, where problems and
rubrics are carefully generated by professional ex-
perts. All the prompts are for reading comprehen-
sion tests and are of the type that requires recall of
information that has been given (either explicitly
or implicitly) in a reading passage.

Responses (6 prompts × 2,100 responses) were
originally annotated with holistic scores by profes-
sional raters employed by the education company
(not by those employed for this research). Before
the scoring, the raters were carefully instructed
about the rubrics and conducted a trial annotation
on the same sample response set for calibration.

3.2 Analytical assessment annotation

Each prompt in this dataset has three or four an-
alytic criteria. The stipulation of each criterion is
provided in the rubric. However, the responses in
the dataset were originally annotated only with
holistic scores and not with analytic scores. This
is often the case in the real-world answer scor-
ing business because (i) the manual annotation
of individual analytic scores tends to be very
costly, and (ii) proficient human assessors can ef-
ficiently grade a student response with a holistic
score taking analytic scores into account “implic-
itly”. Accordingly, we employed expert annotators
and conducted additional annotation of all the re-
sponses with analytic scores and justification cues.

Before instructing the annotators to work on the
dataset, we first investigated the difficulty of an-
notation. For each prompt, we randomly sampled
100 responses from the 2,100 responses and used
them to train and calibrate the annotators. During
this calibration process, we instructed the annota-
tors to identify analytic scores so that, for each
given student response, the sum of the analytic
scores would be equal to the holistic score given
in the original dataset. Then, using 100 additional
exclusively sampled responses, we measured the
inter-annotator agreement.

Table 2 shows the inter-annotator agreement of
analytic scores for each prompt in Kappa (Cohen,
1960) and QWK. The results are reasonably high.
This means that the annotation of analytic scores
is not too difficult for expert human annotators.
Given this observation, the remaining 1,900 re-
sponses for each prompt were annotated by a sin-
gle annotator with self-double checking. To avoid
inconsistency across annotators, we assigned all
1,900 responses to each prompt to the same an-
notator. Furthermore, if an annotator was not con-
fident about scoring a given response, the anno-
tator was instructed to discuss the response with
person who prepared the the exam to reach a con-
sensus. As a result, we obtained 12,600 student re-
sponses (6 prompts × 2,100 responses) with ana-
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Q1 Q2 Q3 Q4 Q5 Q6
Max holistic score 16 12 12 15 15 14
Average holistic score 6.8 4.0 5.3 5.5 4.6 5.5
Standard deviation 3.5 1.8 2.1 2.7 2.6 3.1
# analytic criteria 4 4 4 3 3 3
length (char.) limit 70 50 60 70 70 60
Average length (char.) 62.86 45.15 54.13 65.53 64.83 55.44

Table 1: Statistics of our dataset.

Q1 Q2 Q3 Q4 Q5 Q6 Ave.
Kappa .93 .92 .79 .70 .83 .82 .84
QWK .96 .94 .76 .84 .82 .90 .87

Table 2: Inter-annotator agreement of analytic scores in
Kappa (Cohen, 1960) and Quadratic Weighted Kappa
(QWK) (Cohen, 1968). The scores are calculated by
averaging the agreement scores for each analytic crite-
rion.

lytic scores and justification cues for each prompt.
In the future, we intend to extend the dataset

by adding a wider variety of prompts. In fact, we
have already started the annotation for three ad-
ditional prompts and plan to extend the dataset to
a far larger scale. However, our current dataset is
already as large as the biggest existing datasets
available for SAS research (ASAP-SAS), and fur-
thermore, no prior dataset has been annotated with
analytical assessment.

4 A Neural Baseline Model

The goal of the rest of the paper is to demonstrate
how our dataset can be used to address intrigu-
ing but as yet unexplored challenges in analytic
SAS. To this end, we first present our neural net-
work baseline model in this section and then report
some of the experimental results withwe have ob-
tained using the model in the next section.

4.1 Overall architecture

Figure 2 illustrates the overall architecture of our
baseline model. The idea is three-fold: (i) build a
distinct model of analytic score prediction for each
analytic criterion based on Riordan et al. (2017)’s
model for holistic SAS, (ii) train the analytic score
prediction models jointly with the holistic score
prediction model, and (iii) use supervised attention
for justification identification.

The model includes |M| analytic score models
and an addition layer. First, the input student re-
sponse w1:T = (w1, w2, · · · , wT ) is mapped to
word embeddings. Second, these embeddings are

Figure 2: Overview of the baseline model for analytic
short answer scoring.

fed to the BiLSTM layer. Third, through an atten-
tion mechanism associated with each analytic cri-
terion m ∈ M, an analytic scoring model outputs
the analytic score sm. Finally, the addition layer
sums up the analytic scores to calculate the holis-
tic score shol,

Formally, the holistic score shol is calculated by
summing all the analytic scores {sm |m ∈M}.

shol = max(
∑
m∈M

rescale(sm), 0) , (1)

sm = fm(w1:T ) . (2)

Here, we use max(·, 0) to prevent negative scoring
in the event that no scoring rubric criteria are met,
misspellings, and other minor flaws. The function
“rescale(·)” scales the analytic score back to the
original score range. As Equation 3 in Section 4.2
shows, we use the sigmoid function to compute
each analytic score. This means that each analytic
score takes a value from 0 to 1, i.e., sm ∈ [0, 1].
We thus re-scale the 0-1 ranged score to the origi-
nal scaled score. Consider a case in which the an-
alytic scoring model outputs sm = 0.7 for an ana-
lytic criterion assigned 3 points. The rescale func-
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tion multiplies 3 by the score sm = 0.7, and the
resulting score is 2.1. This score of 2.1 is then
rounded off, and 2 is summed into the holistic
score.

One advantage of this architecture is that the
connection between the holistic and analytic scor-
ing models enables the loss of the holistic score
to back-propagate to the analytic scoring mod-
els. This means that without analytic score anno-
tations, each analytic scoring model can still be
trained with holistic score signals.

4.2 Analytic scoring model
Each analytic scoring model fm in Equation 2 is
defined as follows:

fm(w) = sigmoid(wm · om + bm) , (3)

, where wm is a parameter vector and bm is a
bias value. An attention vector om is calculated
by an attention mechanism, i.e., om = f att

m (h1:T ),
where a sequence of the hidden states h1:T =
(h1, · · · ,hT ) is output by a BiLSTM layer.

As mentioned above, owing to the use of the
sigmoid function, each analytic score takes a value
from 0 to 1, i.e., sm ∈ [0, 1]. In the training phase,
we also scale gold analytic scores to match the
scale. In the evaluation phase, the predicted scores
are re-scaled back to their original range.

4.3 Attention mechanism
An attention mechanism f att

m is defined as follows:

f att
m (h1:T ) =

T∑
t=1

αm,tht (4)

An attention value αm,t denotes the importance
weight, which represents relative importance of
the t-th word for predicting analytic score sm.

4.4 Justification identification method
The attention mechanism is used not only for an-
alytic score prediction but also for justification
identification. Specifically, based on the attention
scores α, we extract a set of justification cues C.

αmax = max
t=1,··· ,T

αt ,

C = {t ∈ [1, T ] | αmax − αt < β} .

Here, we first calculate the maximum attention
score αmax among all the attention scores. We then
extract the word indices t if the difference between

the maximum score αmax and its score αt is less
than the threshold β. As a result, we can obtain a
set of justification cues C. The threshold β is a hy-
perparameter, which is selected by using the de-
velopment set.

4.5 Training
Training with analytic scores. To train each
analytic scoring model, we minimize the mean
squared error (MSE) as the loss function,

1

N

N∑
n=1

∑
i∈I(n)

(s
(n)
i − ŝ(n)i )2 , (5)

where N is the number of training instances, and
s
(n)
i and ŝ

(n)
i are the predicted score and gold

score, respectively.

Training with holistic scores. To train the
whole network on holistic score annotations, we
minimize the MSE calculated with gold and pre-
dicted holistic scores (Equation 1) as follows:

1

N

N∑
n=1

(s
(n)
hol − ŝ

(n)
hol )

2 , (6)

where N is the number of training instances, and
s
(n)
hol and ŝ

(n)
hol are the predicted score and gold

score, respectively.

Supervised attention. We further train the at-
tention mechanism for each criterion in a super-
vised manner, called supervised attention (Mi
et al., 2016; Liu et al., 2016; Kamigaito et al.,
2017). In supervised attention, attention is learned
from the difference between the span where the
attention is focused and the given gold signal of
a justification cue. Following a previous study by
Liu et al. (2016), we add a soft constraint method
to obtain the following objective function:

∑
i∈I
{ 1
N

N∑
n=1

(s
(n)
i − ŝ(n)i )2

+
λ

N

N∑
n=1

T∑
t=1

(α
(n)
i,t − α̂

(n)
i,t )

2} (7)

where α
(n)
i,t denotes an attention weight, α̂i,t is

the supervision of attention that corresponds to
the justification cue annotated by human assessors,
and λ > 0 is a hyper-parameter. If the t-th word
is part of a gold justification cue (e.g., the phrase
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“Western culture” in Figure 1), α̂(n)
i,t is 1, otherwise

it is 0.
If an analytic score is zero, all the attention

weights {α̂(n)
i,t }Tt=1 take zero values. To solve this

problem, we explicitly encode the information that
there is no justification cue by appending a dummy
token to an input sequence. Specifically, we add
α̂i,T+1 to {α̂i,t}Tt=1 and set its value to 1 if an an-
alytic score is zero and to 0 otherwise.

5 Experiments

5.1 Settings

Dataset We first split our dataset into three sub-
sets for each prompt: 1,600 responses for train-
ing, 250 responses for development, and 250 re-
sponses for testing. To tokenize the response texts,
we employed an off-the-shelf morphological ana-
lyzer, MeCab 0.98 (Kudo et al., 2004), with de-
fault settings.

Implementation We implemented the neural
baseline model with Keras and TensorFlow. The
code will be made publicly available at an anony-
mous URL once the paper is accepted. We chose
the same hyperparameters and training settings as
in Riordan et al. (2017)’s holistic scoring model.

SVR Baseline We also implemented another
simpler baseline model based on the support vec-
tor regression model (SVR) following Sakaguchi
et al. (2015) to provide sparse feature-based base-
line results. We adopted the feature set proposed
by Sakaguchi et al. (2015), which includes word 1-
gram, word 2-gram, and predicate-argument struc-
ture features2. We used KNP 4.16 (Kawahara and
Kurohashi, 2006) to extract Japanese predicate-
argument structure features.

5.2 Experimental scenarios

As argued in Sections 1 and 3.2, one crucial issue
in analytic SAS is that the annotation of analytic
scores and justification cues is far more expensive
than holistic score annotation. One of our primary
concerns, therefore, is finding ways to reduce the
required labeling costs while achieving sufficient
performance. To explore this issue, we consider
three experimental scenarios:

2We excluded response length and character n-gram fea-
tures because the performance was worse on the development
set.

Q1 Q2 Q3 Q4 Q5 Q6 Ave.
Analytic/Justification: 25

SVR .55 .60 .20 .54 .58 .45 .486
NN base .60 .62 .19 .58 .64 .47 .516

+just. .74 .73 .29 .64 .74 .53 .610
+hol. .94 .84 .48 .72 .86 .75 .764

Analytic/Justification: 50
SVR .69 .73 .29 .64 .68 .56 .596
NN base .77 .78 .29 .68 .72 .59 .638

+just. .83 .85 .38 .71 .78 .64 .700
+hol. .95 .93 .59 .71 .87 .79 .806

Analytic/Justification: 100
SVR .77 .80 .35 .72 .73 .66 .670
NN base .87 .84 .40 .74 .79 .67 .719

+just. .90 .88 .52 .76 .81 .72 .767
+hol. .96 .93 .67 .81 .87 .82 .844

Analytic/Justification: 200
SVR .85 .87 .44 .77 .78 .71 .735
NN base .92 .91 .57 .78 .83 .76 .794

+just. .95 .92 .65 .80 .84 .78 .822
+hol. .97 .94 .72 .82 .88 .83 .859

human .96 .94 .76 .84 .82 .90 .873

Table 3: Performance in QWK for analytic score pre-
diction. “SVR” denotes the SVR baseline model de-
scribed in Section 5.1. “NN base”, “+just. ”, and “+hol.
” denote the models trained in the three hypothetical
situations, Situations (i) to (iii), described in Section
5.2., respectively.

Scenario (i): Basic setting (analytic score sig-
nals only) The first scenario assumes that we
only have analytic scores annotated to a small set
of responses. Thus we can train a model on these
annotations for each task. We consider this sce-
nario as our baseline scenario. We refer to the
model for this scenario as “NN base.”

Scenario (ii): (i) + justification signals In addi-
tion to the analytic score annotations, the second
scenario assumes that we have justification cues
annotated to the same set of responses. We can
thus train a model on both the analytic score and
justification annotations.

Scenario (iii): (ii) + holistic score signals In
addition to the analytic scores and justification
cues, the third scenario assumes that we have
holistic scores annotated to a relatively large set
of responses. In addition to implementing super-
vised learning, we can train models in a weakly
supervised manner using holistic scores.

All the reported results are the average of ten
distinct trials with the use of ten different random
seeds.
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5.3 Analytic score prediction

Scenario (i) Table 3 shows the results of each
model. Here we vary the numbers of analytic
scores and justification cues used for training each
model. “Analytic/Justification: N” denotes that
we used N ∈ {25, 50, 100, 200} analytic scores
and justification cues, respectively.3 In all the set-
tings, the base analytic scoring model (NN base)
consistently outperformed the SVR. Also, com-
pared with human performance, the analytic scor-
ing models yields reasonably strong results.

Scenario (ii) Here, we are interested in the ef-
fects of gold justification signals on analytic score
prediction. In Table 3, “+just.” denotes the mod-
els trained on N analytic scores and the same
number of justification signals. Comparing the
base model (NN base) with the justification-added
model (+just.), we observed that gold justification
signals consistently improved the base model in
all the settings. This result reveals that gold justifi-
cation signals are useful for analytic score predic-
tion.

Scenario (iii) Another issue is the effects of
holistic score signals on analytic score prediction.
In Table 3, “+hol.” denotes the models trained on
N analytic score signals, N justification signals,
and 1,600 holistic scores signals. Comparing the
justification-added model (+just) with the holistic-
score-added model (+hol.), we observed that extra
holistic score signals contributed to further per-
formance improvement. This result suggests that
holistic score signals are useful for analytic score
prediction.

Summary These results suggest that our scenar-
ios (ii) and (iii) are both worth considering in or-
der to improve the performance of analytic score
prediction. Note that the gains achieved by incor-
porating scenarios (ii) and (iii) are both statisti-
cally significant (p < 0.01 by a paired bootstrap
test (Koehn, 2004)). Specifically, the performance
of the “+just.” model was significantly better than
that of the “NN base” model for all the prompts.
The performance of the “+hol.” model was also
significantly better than that of the “+just.” model
for all the prompts.

Prec. Rec. F1
NN base (100) .332 .491 .349

+just. (100) .837 .703 .758
+hol. .807 .692 .738

Table 4: Performance of justification identification.

5.4 Justification identification
Scenario (i) Table 4 shows the results for jus-
tification identification. The “NN base” model is
trained on analytic scores of 100 responses. This
means that we used no justification signals for
training. Nevertheless, the model was able to iden-
tify some phrases that appeared in the training re-
sponses frequently and that were strongly associ-
ated with analytic scores (e.g., the phrase “West-
ern culture” in Figure 1). This result suggests that,
although this model’s performance was not very
strong, some useful information relevant to justifi-
cation identification can be exploited from the an-
alytic score signals alone.

Scenario (ii) In Table 4, “+just.” denotes the
model trained on analytic scores as well as the
justification cues of 100 responses. Naturally, the
model’s performance was drastically improved
when we fed it the gold justification signals (0.349
to 0.758 in F1).

Scenario (iii) In Table 4, “+hol.” denotes the
model trained on 100 analytic score signals, 100
justification signals, and 1,600 holistic score sig-
nals. Interestingly, the model’s performance was
not improved by the incorporation of the extra
holistic score signals (0.758 vs. 0.738 in F1). This
is in contrast to the case of analytic score predic-
tion task, which was improved by the extra holis-
tic score signals. A more in-depth analysis of this
matter is needed, but our findings do raise the non-
trivial question of which architecture is optimal to
maximize the gain that results from including jus-
tification identification from holistic score signals.

Additional analysis Another interesting ques-
tion deals with how well the accuracy of ana-
lytic score prediction correlates with the accu-
racy of justification identification. We observed
that the neural baseline models showed strong per-
formance for justification identification. These re-
sults raise the simple question of whether the sys-

3Since our dataset is entirely annotated with analytic
scores, one could conduct experiments with more training
signals.
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tem is able to correctly predict the analytic scores
for each response with the same high performance
seen in justification identification. To answer this
question, we created two subgroups from among
the responses to Q34: (i) responses with higher
precision (> .70) and (ii) those with lower pre-
cision (< .50) on the justification identification
task. We then calculated the QWK for each of
these groups. We obtained QWK values of 0.835
and 0.182 (averaged across all the criteria) for re-
sponses with higher and lower precision, respec-
tively. This strong correlation between analytic
scoring and justification empirically indicates the
feasibility of simultaneously pursuing the two ana-
lytical assessment tasks because one benefits from
the other.

5.5 Holistic score prediction

Our dataset can, of course, be used to conduct ex-
periments on holistic SAS as well. One unique
advantage of our dataset is that it contains ana-
lytic scores and justification cues, and thus one
can draw more profound insights using these new
types of annotations. For example, we can investi-
gate the effects of analytic score signals on holistic
score prediction.

Table 5 shows the results for holistic score pre-
diction. The first thing to note here is the compari-
son between the SVR model and the “hol.” model
trained on only the holistic score signals. We can
observe that the “SVR” model consistently out-
performed the “hol.” model, that the difference in
their performance was smaller with a larger train-
ing set, and that the two models have nearly com-
parable QWK (0.848 vs. 0.844) for n = 1600.
The second issue is the comparison between the
“hol.” model and the “analytic” model trained on
only the analytic score signals. In all the settings,
the “analytic” model considerably outperformed
the “hol.” model. This indicates that analytic score
signals are very informative for training a holis-
tic score prediction model as well. The third issue
is the comparison between the “NN base” model
and the “+just.” model trained on both the analytic
score and justification signals. We can observe that
using justification signals as well as analytic score
signals for training further boosts the performance
at holistic score prediction, particularly when the
training set is smaller.

4To simplify the analysis, we selected Q3, which exhib-
ited the lowest performance.

n 100 200 400 800 1600
SVR (n) .724 .772 .810 .832 .848
hol. (n) .671 .733 .782 .815 .844
NN base (n) .738 .803 .841 .869 .891

+just. (n) .776 .827 .856 .876 .892

Table 5: The performances of holistic score prediction.
n denotes the number of training instances (responses).
“hol. (n)” denotes the model trained with n holistic
score signals only. “NN base (n)” denotes the model
trained with the analytic score signals of n responses.
“+just. (n)” denotes the model trained with both ana-
lytic scores and justification signals of n responses.

Summary These results imply that, when only a
limited number of responses is available for train-
ing a holistic scoring model, it may well be worth
annotating them with analytic scores and justifi-
cation cues as well as with holistic scores. Note
that this findings regarding the correlation between
holistic and analytic score predictions has never
previously been reported in the context of SAS.
Our dataset containing analytic score and justifi-
cation annotations opens up several potential di-
rections of research in the field of SAS.

6 Related Work

Short answer scoring Previous research on
SAS has solely focused on holistic score predic-
tion. We believe that this is partly because, to date,
the publicly available datasets for SAS have con-
tained holistic scores only (Mohler et al., 2011;
Dzikovska et al., 2012, 2013; ASAP-SAS) . To the
best of our knowledge, our dataset is the first to
provide both annotated analytic scores and their
justification cues.

Analytical assessment Analytical assessment
has been studied in the context of automated es-
say scoring (Persing and Ng, 2016, 2015, etc.).
The analytic criteria adopted in essay scoring tend
to be more general, e.g., organization, clarity, and
argument strength. In contrast, analytic criteria in
SAS are typically prompt-specific as in our exam-
ples in Figure 1. Thus, the analytic criteria need
to be learned by the model separately for each in-
dividual prompt. It is an interesting open question
whether the insights gained from essay scoring re-
search can be applicable to analytic SAS research.

Interpretability of neural models In recent
years, the interpretability of neural models has re-
ceived widespread attention. Some research on in-
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terpretability has been conducted in the image pro-
cessing field (Bach et al., 2015; Shrikumar et al.,
2017). In NLP, researchers have attempted to in-
terpret the model by analyzing the focus of at-
tention of neural networks (Ghader and Monz,
2017; Vinyals et al., 2015). In these previous stud-
ies, however, the attention was qualitatively rather
than quantitatively analyzed. In contrast, we quan-
titatively evaluated the justifications by examining
the extent to which justification cues correspond
to the span on which the system focuses to predict
the analytic score. To the best of our knowledge,
this is the first evaluation of the performance of
justifications (i.e., interpretability) in SAS.

7 Conclusion

In this paper, we have examined analytical assess-
ment for SAS. We proposed and formalized two
analytic tasks: (i) analytic score prediction and (ii)
justification identification. For these tasks, we de-
veloped a new dataset with analytic score and jus-
tification cue annotations. We then designed a neu-
ral model that predicts analytic scores simultane-
ously with a holistic score and trained the model
with only a small number of analytic score sig-
nals and a larger number of holistic score signals.
Through our extensive experiments, we have pro-
vided intriguing research scenarios and questions
on the correlations between analytic and holistic
scores.

One interesting line of future research is the
possibility of developing datasets in other lan-
guages. It is worth examining scoring models in
multilingual settings, although we plan to start
by creating and releasing an English-language
dataset. Another line of future research could in-
clude the development of more sophisticated mod-
els. In this paper, analytic scoring models calcu-
late scores independently, yet there are some inter-
dependencies between analytic score criteria. Ac-
cordingly, we plan to develop a model that incor-
porates this interdependency.
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