
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 246–251
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

246

Multi-headed Architecture Based on BERT for Grammatical Errors
Correction

Julia Shaptala

WebSpellChecker LLC

julia@webspellchecker.net

Bohdan Didenko

NLP Research, WebSpellChecker LLC

bogdan@webspellchecker.net

Abstract

During last years we have seen tremen-

dous progress in the development of NLP-

related solutions and area in general. It

happened primarily due to emergence of

pre-trained models based on the Trans-

former (Vaswani et al., 2017) architecture

such as GPT (Radford et al., 2018) and BERT

(Devlin et al., 2019). Fine-tuned models con-

taining these representations can achieve state-

of-the-art results in many NLP-related tasks.

Given this, the use of pre-trained models in

the Grammatical Error Correction (GEC) task

seems reasonable.

In this paper, we describe our approach to

GEC using the BERT model for creation

of encoded representation and some of our

enhancements, namely, “Heads” are fully-

connected networks which are used for find-

ing the errors and later receive recommenda-

tion from the networks on dealing with a high-

lighted part of the sentence only. Among the

main advantages of our solution is increasing

the system productivity and lowering the time

of processing while keeping the high accuracy

of GEC results.

1 Introduction

Modern state-of-the-art GEC models use the

sequence-to-sequence (seq2seq) approach and

Transformer Encoder-Decoder architecture

(Ge et al., 2018). The core idea of seq2seq

approach for GEC is the following: tokens

from the source sequence are sent to the model

input, and a similar sequence without errors is

expected as an output. Transformer Decoder is

auto-regressive, meaning that it predicts tokens

one by one. Though this approach can represent

the following challenges: (i) the sequence is re-

constructed entirely, regardless of errors number;

(ii) sentences are processed at low speed during

inference; (iii) errors tend to accumulate since a

failure in prediction of a single token can lead to a

rupture of the entire chain in the network.

In this paper, we suggest an alternative ap-

proach for GEC with “Multi-headed” architec-

ture that uses BERT as Encoder and specialized

“Heads” networks enabling additional text pro-

cessing based on particular error types. In ad-

dition, particular Heads let us discover the error

placement and come out with error correction.

When we can create an effective dictionary for

different types of errors suggested in ERRor AN-

notation Toolkit (Bryant et al., 2017), such Heads

as Punctuation, Articles and Case will be used.

Otherwise, if we cant create an effective dictio-

nary, we are going to use a special “highlight and

decode” technique in a bundle with Transformer

Decoder to suggest a correction.

Also, we used Boosting Approach (Ge et al.,

2018) as an auxiliary step to improve the GEC

within the framework of this competition.

2 Data and Text Pre-processing

The data sets which we used for the network train-

ing were in the m2 format (Dahlmeier and Ng,

2012). This data obviously has its issues; not all

the data sets can be considered the perfect ones

and may require pre-processing before they can be

used for neural networks training. Thus, before

using given data sets we performed a number of

operations to filter out irrelevant data and improve

its quality by simplifying its form. The main prob-

lem of such data format is that each edit made is

recorded separately, and it is not possible to dis-

play the related changes.

The data and text pre-processing phases are de-

scribed below.

Phase 1. Adjusting form of the information in

data sets (by combining related changes). Below

is an example of a sentence in m2 format which

247

displays our approach to grammatical errors cor-

rection:

S I think that you have to bring with you winter clothes because
here there is a really cold weather !
 A 7 11|||R:OTHER|||winter|||REQUIRED|||-NONE-|||0
 A 11 11|||M:OTHER|||clothes with you|||REQUIRED|||-NONE-|||0
 A 13 14|||R:OTHER|||it|||REQUIRED|||-NONE-|||0
 A 15 16|||U:DET||||||REQUIRED|||-NONE-|||0
 A 18 19|||U:NOUN||||||REQUIRED|||-NONE-|||0
Result - I think that you have to bring winter clothes with you
because here it is really cold !

S I think that you have to bring with you winter clothes because

 A 11 11|||M:OTHER|||clothes with you|||REQUIRED|||-NONE-|||0

Result - I think that you have to bring winter clothes with you

 A 7 11|||R:OTHER|||winter|||REQUIRED|||-NONE-|||0

As you can see, the related changes in the sen-

tence are divided into a number of edit operations

U (Unnecessary), M (Missing) and in some cases

R (Replacement), M, and even R, R. To combine

related changes, we find R ∩ I where R removed

tokens, I inserted tokens from all edits. In ad-

dition, we have combined edits with a non-zero

intersection into one edit. As a result, we get an

example with only one edit which is MOVE.

S I think that you have to bring with you winter clothes because here
it is really cold !
A 7 11|||MOVE|||winter clothes with you|||REQUIRED|||-NONE-|||0

Phase 2. Using Textual Semantic Similarity

(Yang and Tar, 2018) analysis to filter noisy data.

For example, to filter noise in the data like this:

S It was very spicy .
A 0 1|||R:OTHER|||Delete|||REQUIRED|||-NONE-|||0
A 1 4|||R:OTHER|||this sentence|||REQUIRED|||-NONE-|||0

Textual Semantic Similarity analysis was used

to define the similarity between a source sequence

and a sequence after applying corrections and dis-

carded the sentences with the similarity below

0.87.

The original sentence containing a mistake is a

vector as well as the meaning of a corrected sen-

tence. Textual Semantic Similarity is calculated

using the scalar multiplication of vectors (vector

size equals 512), each of them is output of the

Universal Sentence Encoder1. As a result we have

one number ranging from 0 to 1 which is the ra-

tio of semantic similarity of the two sentences.

The higher the scalar multiplication number is, the

higher Textual Semantic Similarity of the two sen-

tences.

1https://tfhub.dev/google/universal-sentence-encoder/2

After we have processed 600K sentences from

the data sets used for this competition2, we re-

alised that most part of sentences before the num-

ber of 0.87 are not acceptable for usage and change

the meaning or not valid at all.

Thus, our assumption is that the sentences that

equal 0.87 and above are usable, and we will train

our model on it. All the other sentences are filtered

as noise as in the example in m2 format above.

Phase 3. Flattening the data by extending the

number of sentences for training. Our next step

is to enlarge the amount of data for training and

convert the sentence with N edits to N sentences

with one edit. Conventionally, we called it “flatten

m2 blocks”.

Example below represents a sentence in

m2 format with 2 edits: we replace the

verb (R:VERB:SVA) and add missing adjective

(M:ADJ). As a result we have two sentences with

one edit, one for a replaced verb (R:VERB:SVA)

and the second for an added missing adjective

(M:ADJ).

Example of the original sentence in m2 format:

S This are a sentence .
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||0
A 3 3|||M:ADJ|||good|||-REQUIRED-|||NONE|||0
Result - This is a good sentence.

Result sentence after the first edit:

S This are a sentence .
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||0
Result - This is a sentence.

Result sentence after the second edit:

S This is a sentence .
A 3 3|||M:ADJ|||good|||-REQUIRED-|||NONE|||0
Result - This is a good sentence.

Our assumption is that one epoch (or the pro-

cess of training of a neural network) on the “flat-

ten” of data should have a better result than a few

epochs on the original data and reduce the effect

of network overfitting.

3 The Model

The main architectural advantage of our approach

is using trained “Heads”. Heads are the fully-

connected networks that receive the BERT output

2https://www.cl.cam.ac.uk/research/nl/bea2019st/

248

result embedding as input and have an output of

the Head dictionary size. Each Head is classified

by error type given in Errant Error Type Token

Tier (Bryant et al., 2017).

We distinguish the following Heads types de-

pending on their usage and based on their context:

• By the type of operation: Replace, Insert,

Range Start and Range End;

• By the type of error: Punctuation, Articles,

Case, Noun Number, Spelling, Verbs;

• By the type of correction method: ByDic-

tionary (Punctuation, Articles, Case), ByDe-

coder (Noun Number, Spelling, Verbs). Out-

put of ByDictionary Heads will be a sug-

gestion from the dictionary. Output of By-

Decoder Heads which only detect errors po-

sitions will be represented as a “Head type

mask” (e.g. Spelling Head mask). For exam-

ple, Punctuation offers suggestions from its

dictionary while Verbs points the place of the

error to generate a suggestion by Decoder.

Figure 1 below outlines the number of the pa-

rameters of each Head. The dark grey color rep-

resents the output which is processed by Decoder,

and light grey - the results provided from a Head

dictionary.

Error Types

Punctuation Articles Case
Noun
Number Spelling Verbs

Operations

Replace BES * PDS

2 * BES * (PDS - 1)

BES * ADS BES * CDS

- - - -

BES * HDS

BES * RDS

BES * RDS

2 * BES * (ADS - 1)Insert

Range Start

Range End

Figure 1: Number of parameters for each Head type.

The following Head dictionary sizes are used:

BERT embedding size (BES) 768; Punctuation

dictionary size (PDS) 36; Articles dictionary size

(ADS) 5; Case dictionary size (CDS) 3; High-

lighting dictionary size (HDS) 2; Range dictio-

nary size (RDS) 2. RDS is applicable for Range

Start and Range End Hands. The size of the dictio-

nary for both equals 2; one for skip and the other

for start position or end position accordingly. Ad-

ditionally, for the Insert operation, Delete is elim-

inated action, thus, we use “-1”.

Since a BERT output is the encoded representa-

tion of each token from the input sequence, Heads

analyze each token from the BERT output, detect

an error in it and depending on its type, either im-

mediately provide a correction or highlight this er-

ror position for further correction by the Decoder

as shown in Figure 2 below.

Original sentence

BERT output

Replace HEADS Replace HEADS

ByDictionary ByDecoder

Punctuation

Range Start Range End

Articles Case

Insert HEADS

Range HEADS

Punctuation Articles

SpellingVerbsNoun Number

BERT

HEADS

Suggested correction

DECODER

Suggested correction Hightlighted BERT output

Figure 2: The Multi-headed model architecture.

Also, Heads networks are distinguished by the

type of the operation performed such as Replace

and Insert. Replace Heads are the Heads perform-

ing the Replace operation, and it can either provide

a suggestion from its dictionary (ByDictionary),

or provide a Head type mask for further processing

by the Decoder (ByDecoder) as shown in Figure 3

below.

BERT output

Punctuation HEAD

skip del. . . .,

Dictionary

Figure 3: Example of the Replace operation.

During the Insert operation, an Insert Head

takes two BERT output embeddings which have

249

the dimension of 768 located nearby, concatenates

to one embedding with dimension 2*768, pro-

cesses it and outputs the result with the dimen-

sion which equals the dictionary size of a partic-

ular Head type.

Thus, we have probability distribution of a par-

ticular Head. Position with highest probability in a

dictionary is what should be inserted. If the prob-

ability equals 0, nothing should be done. An ex-

ample of the Insert operation is shown in Figure 4

below.

BERT output

Punctuation HEAD dictionary

skip ,

Punctuation HEAD

skip del. . . .,

Dictionary

Figure 4: Example of the Insert operation.

Range Heads, Range Start, and Range End are

used to define the range (start and end position)

of an error for the Decoder. Each Range Head

uses an approach similar to the Replace ByDic-

tionary Head, thus, the length of its dictionary

equals 2. As an output from two Heads, we re-

ceive Range Start mask and Range End mask. Us-

ing these masks we receive a resulting Range mask

that will be used in the highlight and decode tech-

nique as shown in Figure 5 below. Thus, Range

Head enables detection of those parts of the sen-

tence which need to be either replaced or para-

phrased.

0 0 0 0 0 0 01

0 0 0 0 0 0 01 1 1

0 0 00 0 0 0 01

Range Start mask

Range End mask

Range mask

Figure 5: Example of the Range Start and Range End

operation.

4 Highlight and Decode Technique

Since there are different types of errors, and it is

not possible to compile effective dictionaries as

the number of correction options is too large, we

used classic Transformer Decoder (Vaswani et al.,

2017) and the entire BERT vocabulary. We devel-

oped a special “highlight and decode” technique

to generate a suggestion for a particular place, de-

termined by one of the Heads, and, thus, managed

to avoid the reconstruction of the entire sentence

(see Figure 6 below).

0 0 0 0 0 01 1

“Head type” mask

Highlighting tensor based on the
“Head type” mask

+

=

BERT output

Highlighted BERT output

Special trainable highlighting vector

which equals BERT hidden size [768].

Zero vector which equals BERT

hidden size [768].

Figure 6: Obtaining of the highlighted BERT output.

The highlighted BERT output, a Decoder in-

put, in Figure 6 above is a summary of the BERT

output and the highlighting tensor, consisting of

special embeddings (based on Head type mask)

in place of errors detected by one of the ByDe-

coder Heads (such as Spelling), and zero vectors in

other places. Such approach allows the Decoder to

learn how to predict a suggestion only for the high-

lighted place in the sentence. The various types

of Heads and “highlight and decode” technique let

the network find and offer suggestions for any er-

ror types.

5 Training Process and Setup

We trained our neural networks using Google Co-

lab TPU resources. A total of 100,000 iterations

250

were performed on “flatten” data from the Cam-

bridge English Write & Improve (W&I) corpus

and the LOCNESS corpus dataset3. The learn-

ing rate 5e-5 which is recommended in the BERT

approach (Devlin et al., 2019) was implemented.

However, for the layers of the BERT itself, a layer-

by-layer multiplier was used for the learning rate

which decreases from the last layers to the first.

We calculated the learning rate of a specific layer

using the logarithmic formula:

,

where BL is number of the BERT layers; LR is

model learning rate, e.g.: 5e-5.

It helped us to manage the accuracy of the re-

sults adjusting their weights, thus, helping to sort

out the errors and improving the results quality by

15% according to our empirical observations.

Also, for each Head of the Replace operation,

a special “protection mask” was used to reveal an

error only for tokens that can be changed by the

given Head. The approach which is shown in Fig-

ure 7 below the was used to create a protection

mask (for details, see the Spacy library 4).

This are a .sentence

10 0 0 0

Punctuation protection mask

10 0 1 0 0

Articles protection mask

10 1 0 0 0

Verbs protection mask

Original Sentence

Figure 7: The protection masks examples for three

Head types, namely Punctuation, Articles, and Verbs.

Unlike the Replace operation, the protection

masks are not used for the Insert operation as it is

equal to a protection mask with all values equaling

3https://www.cl.cam.ac.uk/research/nl/bea2019st
4https://spacy.io/

1. Thus, Insert can be done to any place between

the tokens.

6 Post Processing and Model Output

At the inference stage, iterative sentences correc-

tions were applied. Each sentence passes through

the model, and we get the probability distribution

for each Head as an output. During each iteration,

the Head with the highest “confidence rate” is cho-

sen from all the Heads as the code below shows:

max class = argmax(prob) confidence rate =

prob[max class] if max class != 0 else 0. # Index

0 means skip in all dictionaries.

Similar to the training stage, the probabilities

for the Replace operation are multiplied by the

protection mask. The edit proposed by the Head

with maximal confidence rate is applied to the sen-

tence, preliminary saving it to the history of previ-

ous changes. The process is looped until the fol-

lowing conditions are met: (i) probabilities of ed-

its in all Heads reach zero (0), e.g. all errors have

been fixed; (ii) length of the history is more than

ten (10) meaning the network tried to improve the

original sentence more than 10 times.

Also during each stage, we calculate Textual

Semantic Similarity between the current version

and the original sentence. This is also a part of

our architecture concept. If the similarity is below

0.87, the loop stops, and we use the most recent

sentence from the iterations history. Thus, we in-

tended to perform the most effective correction for

all grammatical errors in a sentence.

7 Concept Analysis and Roadmap

We have achieved the following results5 within the

framework of BEA 2019 competition. Let us now

summarize the main challenges we faced when de-

veloping the suggested concept:

• Each Head type has a different learning speed

due to different sizes and quality of dictio-

naries. When some Heads have not been

trained yet, others start overfitting. For ex-

ample, Spelling, Articles, and Punctuation

Heads were trained faster than the Range

Head and the Decoder itself. Thus, the re-

sults have worsened.

5https://competitions.codalab.org/

my/competition/submission/563950/

detailed_results/

https://competitions.codalab.org/my/competition/submission/563950/detailed_results/
https://competitions.codalab.org/my/competition/submission/563950/detailed_results/
https://competitions.codalab.org/my/competition/submission/563950/detailed_results/

251

• All Heads work independently. This is an

issue for sentences where errors depend on

each other, for example, in a sentence where

the tense of one verb relies on the tense of

another one. In the approach proposed in this

article, each Head gives the probability of an

error without taking into account the prob-

abilities for other Heads in other networks.

The same is true for the suggestion predic-

tion. Thus, all results should be revised, and

assessment should be made.

• The Decoder learned to predict the “End Of

Sequence” (EOS) token as the first one to

remove the token. Since EOS is the most

frequently encountered token, position of the

maximum probability on the Decoder predic-

tion was often EOS. As a result, our solution

has mistakenly eliminated tokens from the

sentence, thus, lowering the quality of neural

network and final output result .

To address the above-mentioned issues, we plan

the following changes for our proposal:

• Choosing a unique learning rate for each

Head separately. A different approach to con-

sider in our case is to freeze the change in

Head weights after it reaches the maximum

accuracy for the validation dataset.

• Redesigning the architecture so that the

Heads can share information among them-

selves.

• Using a separate token for deletion, as an op-

tion to use one of [unused1-100] tokens from

the BERT vocabulary. According to our re-

search and test results, it can improve the ac-

curacy in two times.

References

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Universal sentence encoder. ERRor AN-
notation Toolkit: Automatically extract and clas-
sify grammatical errors in parallel original and cor-
rected sentences.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805v2 [cs.CL] 24
May 2019.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Reaching
human-level performance in automatic grammatical
error correction: An empirical study;. Microsoft Re-
search Technical Report.

Alec Radford, Karthik Narasimhan, Tim Salimans,
Jakob Uszkoreit, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-
training. OpenAI Blog.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. arXiv preprint arXiv:1706.03762v5
[cs.CL] 6 Dec 2017.

Yinfei Yang and Chris Tar. 2018. Advances in semantic
textual similarity. Google AI Blog.

