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Abstract

We describe two entries from the Cambridge
University Engineering Department to the
BEA 2019 Shared Task on grammatical er-
ror correction. Our submission to the low-
resource track is based on prior work on us-
ing finite state transducers together with strong
neural language models. Our system for the
restricted track is a purely neural system con-
sisting of neural language models and neural
machine translation models trained with back-
translation and a combination of checkpoint
averaging and fine-tuning — without the help
of any additional tools like spell checkers. The
latter system has been used inside a separate
system combination entry in cooperation with
the Cambridge University Computer Lab.

1 Introduction

The automatic correction of errors in text [In a
such situaction — In such a situation] is receiv-
ing more and more attention from the natural lan-
guage processing community. A series of compe-
titions has been devoted to grammatical error cor-
rection (GEC): the CoNLL-2013 shared task (Ng
et al., 2013), the CoNLL-2014 shared task (Ng
et al.,, 2014), and finally the BEA 2019 shared
task (Bryant et al., 2019). This paper presents the
contributions from the Cambridge University En-
gineering Department to the latest GEC competi-
tion at the BEA 2019 workshop.

We submitted systems to two different tracks.
The low-resource track did not permit the use
of parallel training data except a small develop-
ment set with around 4K sentence pairs. For our
low-resource system we extended our prior work
on finite state transducer based GEC (Stahlberg
et al., 2019) to handle new error types such as
punctuation errors as well as insertions and dele-
tions of a small number of frequent words. For
the restricted track, the organizers provided 1.2M
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pairs (560K without identity mappings) of cor-
rected and uncorrected sentences. Our goal on
the restricted track was to explore the potential of
purely neural models for grammatical error cor-
rection.! We confirm the results of Kasewa et al.
(2018) and report substantial gains by applying
back-translation (Sennrich et al., 2016b) to GEC
— a data augmentation technique common in ma-
chine translation. Furthermore, we noticed that
large parts of the training data do not match the
target domain. We mitigated the domain gap by
over-sampling the in-domain training corpus, and
by fine-tuning through continued training. Our
final model is an ensemble of four neural ma-
chine translation (NMT) models and two neural
language models (LMs) with Transformer archi-
tecture (Vaswani et al., 2017). Our purely neu-
ral system was also part of the joint submission
with the Cambridge University Computer Lab de-
scribed by Yuan et al. (2019).

2 Low-resource Track Submission

2.1 FST-based Grammatical Error
Correction

Stahlberg et al. (2019) investigated the use of fi-
nite state transducers (FSTs) for neural grammat-
ical error correction. They proposed a cascade of
FST compositions to construct a hypothesis space
which is then rescored with a neural language
model. We will outline this approach and explain
our modifications in this section. For more details
we refer to (Stahlberg et al., 2019).

In a first step, the source sentence is converted
to an FST I (Fig. 1). This initial FST is augmented
by composition (denoted with the o-operator) with
various other FSTs to cover different error types.
Composition is a widely used standard operation

"Models will be published at http://ucam-smt .
github.io/sgnmt/html/beal9_gec.html.
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Figure 1: Input FST I representing the source sentence ‘In a such situaction there is no other way.”. We follow
standard convention and highlight the start state in bold and the final state with a double circle.

ozoze/kdel

Figure 2: Deletion FST D which can map any token in
the list R from Tab. 1 to e. The o-label matches any
symbol and maps it to itself.

Deletion Frequency | Token
(dev set)
164 the
78 R
50 a
33 to
20 it
18 of
16 in
12 that
8 will
8 have
8 for
8 an
7 is
7 -
6 they
6 ’s
6 and
5 had

Table 1: List of tokens R that can be deleted by the
deletion transducer D in Fig. 2.

on FSTs and supported efficiently by FST toolk-
its such as OpenFST (Allauzen et al., 2007). We
construct the hypothesis space as follows:?

1. We compose the input I with the deletion
transducer D in Fig. 2. D allows to delete to-
kens on the short list shown in Tab. 1 at a cost
Adgel- We selected R by looking up all tokens
which have been deleted in the dev set more
than five times and manually filtered that list
slightly. We did not use the full list of dev
set deletions to avoid under-estimating Age in
tuning.

2. In a next step, we compose the transducer
from step 1 with the edit transducer F in
Fig. 3. This step addresses substitution er-
rors such as spelling or morphology errors.

*Note that our description differs from (Stahlberg et al.,
2019) in the following ways: First, we use additional FSTs to
allow insertions and deletions. Second, we integrate penal-
ties directly into the FSTs rather than using special tokens in
combination with a penalization transducer.
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is:e/h

sub

situaction:e/A g,

Figure 3: Edit FST £ which allows substitutions with a
cost of \yp. The o-label matches any symbol and maps
it to itself at no cost.

Figure 4: Insertion FST A for adding the symbols “,”,
“” and at a cost of \jys. The o-label matches any
symbol and maps it to itself at no cost.
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Like Stahlberg et al. (2019), we use the con-
fusion sets of Bryant and Briscoe (2018)
based on CyHunspell for spell checking (Ro-
driguez and Seal, 2014), the AGID morphol-
ogy database for morphology errors (Atkin-
son, 2011), and manually defined corrections
for determiner and preposition errors to con-
struct E/. Additionally, we extracted all sub-
stitution errors from the BEA-2019 dev set
which occurred more than five times, and
added a small number of manually defined
rules that fix tokenization around punctuation
symbols.

3. We found it challenging to allow insertions in
LM-based GEC because the LM often prefers
inserting words with high unigram probabil-
ity such as articles and prepositions before



Sub  Del Ins | LM Beam CoNLL-2014 BEA-2019 Dev
P R M2 P R ERRANT

Best published: Stahlberg et al. (2019) | 54.12 2552 44.21 n/a

v 1x 8 58.59 2414 4558 | 4244 14.68 30.79

v v 1x 8 59.01 26.07 47.11 | 41.21 1647 31.69
v v v 1x 8 52.89 26.68 4420 | 40.09 19.97 33.36
v v v 2x 8 54.05 26.71 44.87 | 40.70 20.01 33.73
v v v 2x 16 57.05 2722 46.80 | 42.02 19.76 34.29

v v v 2x 32 5848 28.21 48.15 | 4237 19.92 34.58

Table 2: Results on the low-resource track. The A-parameters are tuned on the BEA-2019 dev set.

less predictable words like proper names. We
therefore restrict insertions to the three to-
kens ), “-”, and and allow only one
insertion per sentence. We achieve this by
adding the transducer A in Fig. 4 to our com-

position cascade.
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4. Finally, we map the word-level FSTs to the
subword-level by composition with a map-
ping transducer 7T that applies byte pair en-
coding (Sennrich et al., 2016c, BPE) to the
full words. Word-to-BPE mapping transduc-
ers have been used in prior work to combine
word-level models with subword-level neu-
ral sequence models (Stahlberg et al., 2019,
2017b, 2018b, 2017a).

In a more condensed form, we can describe the
final transducer as:

IoDoFEoAoT (D)

with D for deletions, E for substitutions, A for in-
sertions, and 7" for converting words to BPE to-
kens. Path scores in the FST in Eq. 1 are the
accumulated penalties Agel, Agup, and Ajps. The
A-parameters are tuned on the dev set using a
variant of Powell search (Powell, 1964). We
apply standard FST operations like output pro-
jection, e-removal, determinization, minimization,
and weight pushing (Mohri, 1997; Mohri and Ri-
ley, 2001) to help downstream decoding. Follow-
ing Stahlberg et al. (2019) we then use the result-
ing transducer to constrain a neural LM beam de-
coder.

2.2 Experimental Setup

Our LMs are Transformer (Vaswani et al., 2017)
decoders (t ransformer_big) trained using the
Tensor2Tensor library (Vaswani et al., 2018).
We delay SGD updates (Stahlberg et al., 2018a;
Saunders et al., 2018) with factor 2 to simulate
500K training steps with 8 GPUs on 4 physi-
cal GPUs. Training batches contain about 4K
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source and target tokens. Our LM training set
comprises the monolingual news2015-news2018
English training sets® from the WMT evaluation
campaigns (Bojar et al., 2018) after language de-
tection (Nakatani, 2010) (138M sentences) and
subword segmentation using byte pair encod-
ing (Sennrich et al., 2016¢) with 32K merge op-
erations. For decoding, we use our SGNMT
tool (Stahlberg et al., 2017b, 2018b) with Open-
FST backend (Allauzen et al., 2007).

2.3 Results

We report M2 (Dahlmeier and Ng, 2012) scores
on the CoNLL-2014 test set (Ng et al., 2014) and
span-based ERRANT scores (Bryant et al., 2017)
on the BEA-2019 dev set (Bryant et al., 2019). On
CoNLL-2014 we compare with the best published
results with comparable amount of parallel train-
ing data. We refer to (Bryant et al., 2019) for a
full comparison of BEA-2019 systems. We tune
our systems on BEA-2019 and only report the per-
formance on CoNLL-2014 for comparison to prior
work.

Tab. 2 summarizes our low-resource experi-
ments. Our substitution-only system already out-
performs the prior work of Stahlberg et al. (2019).
Allowing for deletions and insertions improves the
ERRANT score on BEA-2019 Dev by 2.57 points.
We report further gains on both test sets by en-
sembling two language models and increasing the
beam size.

2.4 Differences Between CoNLL-2014 and
BEA-2019 Dev

Our results in Tab. 2 differ significantly between
the CoNLL-2014 test set and the BEA-2019 dev
set. Allowing insertions is beneficial on BEA-
2019 Dev but decreases the M2 score on CoNLL-
2014. Increasing the beam size improves our sys-
tem by 3.28 points on CoNLL-2014 while the im-

http://www.statmt.org/wmt19/
translation—-task.html
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Per Sentence Per Word
CoNLL | BEA | CoNLL BEA
Missing 0.35 | 0.46 1.51% | 2.30%
Replacement 1.52 | 1.31 6.62% | 6.57%
Unnecessary 042 | 0.19 1.83% | 0.98%
Total 229 | 1.96 9.95% | 9.86%

Table 3: Number of correction types in CoNLL-2014
and BEA-2019 Dev references.

pact on BEA-2019 Dev is smaller (+0.85 points).
These differences can be partially explained by
comparing the error type frequencies in the refer-
ence annotations in both test sets (Tab. 3). Samples
in CoNLL-2014 generally need more corrections
per sentence than in BEA-2019 Dev. More im-
portantly, the CoNLL-2014 test set contains fewer
missing words, but much more unnecessary words
than BEA-2019 Dev. This mismatch tempers with
tuning as we explicitly tune insertion and deletion
penalties.

3 Restricted Track Submission

In contrast to our low-resource submission, our
restricted system entirely relies on neural models
and does not use any external NLP tools, spell
checkers, or hand-crafted confusion sets. For sim-
plicity, we also chose to use standard implemen-
tations (Vaswani et al., 2018) of standard Trans-
former (Vaswani et al., 2017) models with stan-
dard hyper-parameters. This makes our final sys-
tem easy to deploy as it is a simple ensemble
of standard neural models with minimal prepro-
cessing (subword segmentation). Our contribu-
tions on this track focus on NMT training tech-
niques such as over-sampling, back-translation,
and fine-tuning. We show that over-sampling ef-
fectively reduces domain mismatch. We found
back-translation (Sennrich et al., 2016b) to be
a very effective technique to utilize unannotated
training data. However, while over-sampling is
commonly used in machine translation to bal-
ance the number of real and back-translated train-
ing sentences, we report that using over-sampling
this way for GEC hurts performance. Finally,
we propose a combination of checkpoint averag-
ing (Junczys-Dowmunt et al., 2016) and continued
training to adapt our NMT models to the target do-
main.

3.1 Experimental Setup

We use neural LMs and neural machine transla-
tion (NMT) models in our restricted track entry.
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BASE BiG
T2T HParams set trans._base | trans. big
# physical GPUs 4 4
Batch size 4,192 2,048
SGD delay factor 2 4
# training iterations | 300K 400K
Beam size 4 8

Table 4: NMT setups BASE and BIG used in our exper-
iments for the restricted track.

Number of Sentences
With Identities | W/o Identities
FCE 28K 18K
Lang-8 1,038K 498K
NUCLE 57K 21K
W&I+LOCNESS 34K 23K
Total 1,157K 560K

Table 5: BEA-2019 parallel training data with and
without removing pairs where source and target sen-
tences are the same.

Our neural LM is as described in Sec. 2.2. Our
LMs and NMT models share the same subword
segmentation. We perform exploratory NMT ex-
periments with the BASE setup, but switch to the
BIG setup for our final models. Tab. 4 shows
the differences between both setups. Tab. 5 lists
some corpus statistics for the BEA-2019 training
sets. In our experiments without fine-tuning we
decode with the average of the 20 most recent
checkpoints (Junczys-Dowmunt et al., 2016). We
use the SGNMT decoder (Stahlberg et al., 2017b,
2018Db) in all our experiments.

In-domain corpus over-sampling The BEA-
2019 training corpora (Tab. 5) differ significantly
not only in size but also their closeness to the
target domain. The W&I+LOCNESS corpus is
most similar to the BEA-2019 dev and test sets
in terms of domains and the distribution over En-
glish language proficiency, but only consists of
34K sentence pairs. To increase the importance
of in-domain training samples we over-sampled
the W&I+LOCNESS corpus with different rates.
Tab. 6 shows that over-sampling by factor 4 (i.e.
adding the W&I+LOCNESS corpus four times
to the training set) improves the ERRAMT Fj 5-
score by 2.2 points on the BEA-2019 dev set
and does not lead to substantial losses on the
CoNLL-2014 test set. We will over-sample the
W&I+LOCNESS corpus by four in all subsequent
experiments.

Removing identity mappings Previous works
often suggested to remove unchanged sentences



W&I+LOCNESS Ratio CoNLL-2014 BEA-2019 Dev
Over-sampling Rate P R M2 | R ERRANT
1x 1:33 | 59.88 17.46 40.30 | 3820 15.09 29.24
4x 1:8 59.16 17.20 39.76 | 4040 16.67 31.44
8x 1:4 | 5773 17.76  39.81 | 39.19 16.73 30.90

Table 6: Over-sampling the BEA-2019 in-domain corpus W&I+LOCNESS under BASE models. The second
column contains the ratio of W&I+LOCNESS samples to training samples from the other corpora.

Identity CoNLL-2014 BEA-2019 Dev

Removal| P R M2 P R ERR.
X 59.16 17.20 39.76 | 40.40 16.67 31.44
v 53.34 28.83 45.59|33.04 23.14 30.44

Table 7: Impact of identity removal on BASE models.

(i.e. source and target sentences are equal) from
the training corpora (Stahlberg et al., 2019; Zhao
etal., 2019; Grundkiewicz and Junczys-Dowmunt,
2018). We note that removing these identity map-
pings can be seen as measure to control the bal-
ance between precision and recall. As shown in
Tab. 7, removing identities encourages the model
to make more corrections and thus leads to higher
recall but lower precision. It depends on the test
set whether this results in an improvement in Fj 5
score. For the subsequent experiments we found
that removing identities in the parallel training
corpora but not in the back-translated synthetic
data works well in practice.

Back-translation Back-translation (Sennrich
et al., 2016b) has become the most widely used
technique to use monolingual data in neural
machine translation. Back-translation extends the
existing parallel training set by additional training
samples with real English target sentences but
synthetic source sentences. Different methods
have been proposed to synthesize the source
sentence such as using dummy tokens (Sennrich
et al., 2016b), copying the target sentence (Currey
et al., 2017), or sampling from or decoding with
a reverse sequence-to-sequence model (Sennrich
et al., 2016b; Edunov et al., 2018; Kasewa et al.,

2018). The most popular approach is to generate
the synthetic source sentences with a reverse
model that is trained to transform target to source
sentences using beam search. In GEC, this means
that the reverse model learns to introduce errors
into a correct English sentence. Back-translation
has been applied successfully to GEC by Kasewa
et al. (2018). We confirm the effectiveness of
back-translation in GEC and discuss some of
the differences between applying this technique
to grammatical error correction and machine
translation.

Our experiments with back-translation are sum-
marized in Tab. 8. Adding 1M synthetic sentences
to the training data already yields very substantial
gains on both test sets. We achieve our best re-
sults with SM synthetic sentences (+8.44 on BEA-
2019 Dev). In machine translation, it is important
to maintain a balance between authentic and syn-
thetic data (Sennrich et al., 2016b; Poncelas et al.,
2018; Sennrich et al., 2016a). Over-sampling the
real data is a common practice to rectify that ratio
if large amounts of synthetic data are available. In-
terestingly, over-sampling real data in GEC hurts
performance (row 3 vs. 5 in Tab. 8), and it is possi-
ble to mix real and synthetic sentences at a ratio of
1:7.9 (last three rows in Tab. 8). We will proceed
with the SM setup for the remainder of this paper.

Fine-tuning As explained previously, we over-
sample the W&I+LOCNESS corpus by factor 4 to
mitigate the domain gap between the training set
and the BEA-2019 dev and test sets. To further
adapt our system to the target domain, we fine-

Over-sampling Rate Number of Ratio CoNLL-2014 BEA-2019 Dev
(Real Data) Synthetic Sentences P R M2 P R ERRANT
Ix 0 - 5334 28.83 4559 | 33.04 23.14 30.44
1x IM 1:1.6 | 56.17 31.30 4847 | 37.79 23.86 33.84
1x 3M 1:48 | 61.40 3429 53.02 | 42.62 25.30 37.49
1x 5M 1:79 | 64.18 3427 54.64 | 4469 25.59 38.88
3x 3M 1:1.6 | 5712 3255 49.63 | 40.08 24.79 35.68
6x SM 1:1.3 | 59.15 3399 5152 | 41.52 25.05 36.69

Table 8: Using back-translation for GEC (BASE models). The third column contains the ratio between real and

synthetic sentence pairs.
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Fine-tuning Checkpoint CoNLL-2014 BEA-2019 Dev
(Continued Training) | Averaging | R M2 P R ERRANT
63.61 3339 53.86 | 44.16 25.01 38.29
v 64.18 3427 54.64 | 44.69 25.59 38.88
v 6498 33.05 54.46 | 48.62 27.19 42.00
v v 66.03 34.17 55.65 | 48.99 26.87 42.06

Table 9: Fine-tuning through continued training on W&I+LOCNESS and checkpoint averaging with a BASE model

with 5M back-translated sentences.

42.0 o T e
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With checkpoint averaging —»— |
W/q checkppint averaging ]
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Figure 5: Span-based ERRANT Fj 5 scores on the
BEA-2019 dev set over the number of fine-tuning train-
ing iterations (single GPU, SGD delay factor (Saunders
et al., 2018) of 16).

tune the NMT models on W&I+LOCNESS after
convergence on the full training set. We do that
by continuing training on W&I+LOCNESS from
the last checkpoint of the first training pass. Fig. 5
plots the Fy 5 score on the BEA-2019 dev set for
two different setups. For the red curve, we average
all checkpoints (Junczys-Dowmunt et al., 2016)
(including the last unadapted checkpoint) up to a
certain training iteration. Checkpoints are dumped
every 500 steps. The green curve does not use
any checkpoint averaging. Checkpoint averaging
helps to smooth out fluctuations in Fj 5 score, and
also generalizes better to CONLL-2014 (Tab. 9).

Final system Tab. 10 contains our experiments
with the BIG configuration. In addition to
W&I+LOCNESS over-sampling, back-translation
with 5SM sentences, and fine-tuning with check-
point averaging, we report further gains by adding

the language models from our low-resource sys-
tem (Sec. 2.2) and ensembling. Our best sys-
tem (4 NMT models, 2 language models) achieves
58.9 M2 on CoNLL-2014, which is slightly (2.25
points) worse than the best published result on that
test set (Zhao et al., 2019). However, we note
that we have tailored our system towards the BEA-
2019 dev set and not the CoNLL-2013 or CoNLL-
2014 test sets. As we argued in Sec. 2.4, our re-
sults throughout this work suggest strongly that
the optimal system parameters for these test sets
are very different from each other, and that our fi-
nal system settings are not optimal for CoNLL-
2014. We also note that unlike the system of Zhao
et al. (2019), our system for the restricted track
does not use spell checkers or other NLP tools but
relies solely on neural sequence models.

4 Conclusion

We participated in the BEA 2019 Shared Task on
grammatical error correction with submissions to
the low-resource and the restricted track. Our low-
resource system is an extension of prior work on
FST-based GEC (Stahlberg et al., 2019) to allow
insertions and deletions. Our restricted track sub-
mission is a purely neural system based on stan-
dard NMT and LM architectures. We pointed out
the similarity between GEC and machine trans-
lation, and demonstrated that several techniques
which originate from MT research such as over-
sampling, back-translation, and fine-tuning, are
also useful for GEC. Our models have been used
in a joint submission with the Cambridge Univer-
sity Computer Lab (Yuan et al., 2019).

NMT Fine-tuning LM CoNLL-2014 BEA-2019 Dev
P R M2 P R ERRANT
Best published: Zhao et al. (2019) | 71.57 38.65 61.15 n/a
1x 64.04 3574 5528 | 45.86 26.46 40.00
1x v 66.57 3521 56.50 | 51.57 27.49 43.88
1x v 2x 61.53 4044 55.72 | 48.30 33.08 44.23
4x v 70.37 35.12 58.60 | 55.84 27.80 46.47
4x v 2x 66.89 39.85 58.90 | 53.17 32.89 47.34

Table 10: Final results on the restricted track with BIG models and back-translation.
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