
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 149–158
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

149

Erroneous data generation for Grammatical Error Correction

Shuyao Xu Jiehao Zhang Jin Chen Long Qin
Singsound Inc.

{xushuy,zhangjiehao,chenjin,qinlong}@singsound.com

Abstract

It has been demonstrated that the utiliza-
tion of a monolingual corpus in neural
Grammatical Error Correction (GEC) sys-
tems can significantly improve the system
performance. The previous state-of-the-
art neural GEC system is an ensemble of
four Transformer models pretrained on a
large amount of Wikipedia Edits. The
Singsound GEC system follows a similar
approach but is equipped with a sophis-
ticated erroneous data generating compo-
nent. Our system achieved an F0.5 of 66.61
in the BEA 2019 Shared Task: Grammat-
ical Error Correction. With our novel er-
roneous data generating component, the
Singsound neural GEC system yielded an
M2 of 63.2 on the CoNLL-2014 bench-
mark (8.4% relative improvement over the
previous state-of-the-art system).

1 Introduction

The most effective approaches to Grammatical
Error Correction (GEC) task are machine trans-
lation based methods. Both Statistical Machine
Translation (SMT) approaches and Neural Ma-
chine Translation (NMT) methods have achieved
promising results in the GEC task.

Pretraining a decoder as a language model is
an effective method to improve the performance
of neural GEC systems (Junczys-Dowmunt et al.,
2018). As an extension of this work, Lichtarge et
al. (2018) showed pretraining on 4 billion tokens
of Wikipedia edits to be beneficial for the GEC
task.

In this work, we investigate a similar approach
by systematically generating parallel data for pre-
training. As shown in Table 1, in addition to
spelling errors (price → puice), transposition er-
rors (independent voters → voters independent)
and concatenation errors (the man→ theman), our

Origin
the primary is open to independent
voters .

Generated
the primary is opens to voters
independhent .

Origin
the price of alcohol is ramped up
at every budget .

Generated
the puice of alchool is ramping up
at every budget .

Origin
they say the police shot and killed
the man after he had fired at them .

Generated
they say the polices shot and killed
theman after he had firing at them .

Table 1: Examples of generated data.

method also introduces errors such as ramped →
ramping. Our approach obtained competitive re-
sults compared to the top systems in the BEA 2019
GEC Shared Task. Both our single model and en-
semble models have exceeded the previous state-
of-the-art systems on the CoNLL-2014 (Ng et al.,
2014) benchmark and our system reaches human-
level performance on the JFLEG (Napoles et al.,
2017) benchmark.

2 Related Work

Chollampatt and Ng (2018) used a convolutional
sequence-to-sequence (seq2seq) model (Gehring
et al., 2017) with a large language model for
rescoring. Their model was the first NMT
based GEC system that exceeded the strong SMT
baseline system (Junczys-Dowmunt and Grund-
kiewicz, 2016) which combined a Phrase-based
Machine Translation (PBMT) with a large lan-
guage model. Then a hybrid PBMT-NMT sys-
tem (Grundkiewicz and Junczys-Dowmunt, 2018)
appeared to reach the new state-of-the-art on the
CoNLL-2014 benchmark. Later, various pure neu-



150

Corpus Sentences Tokens Anno.
WMT11 115M 2362M No
1B words 30M 769M No
Lang-8 1037K 12M Yes
NUCLE 57K 1.2M Yes
FCE 28K 455K Yes
ABCN 34K 628K Yes

Table 2: Statistics for training data sets.

Corpus Sentences Scorer
ABCN dev 4384 ERRANT
ABCN test 4477 ERRANT
JFLEG test 747 GLEU
CoNLL-2014 test 1312 M2 Scorer

Table 3: Statistics for test and development data.

ral systems (Ge et al., 2018; Junczys-Dowmunt
et al., 2018; Lichtarge et al., 2018) reported state-
of-the-art results successively. Ge et al. presented
the fluency boosting method which was demon-
strated to be effective to improve performance of
GEC seq2seq models. The system proposed by
Junczys-Dowmunt et al. (2018) is an ensemble of
Transformer models (Vaswani et al., 2017); they
pretrained the decoder of transformer as a lan-
guage model on a large monolingual corpus. To
our best knowledge, the current state-of-the-art
GEC system on both the CoNLL-2014 benchmark
and the JFLEG benchmark is the system presented
by Lichtarge et al. (2018), which is an ensemble of
four Transformer models pretrained on Wikipedia
revisions and then fine-tuned on Lang-8 (Mizu-
moto et al., 2011).

3 Data

We list the training data in Table 2. The text
data used to generate parallel corpus automatically
was the One Billion Words Benchmark dataset
(1B words) (Chelba et al., 2013) and the WMT11
monolingual corpus (WMT11) which can be ob-
tained from WMT11 Website1. Our fine-tuning
data is Lang-8 (Mizumoto et al., 2011; Tajiri et al.,
2012), NUS Corpus of Learner English (NUCLE)
(Dahlmeier et al., 2013), FCE (Yannakoudakis
et al., 2011), the Cambridge English Write & Im-
prove (W&I) corpus and the LOCNESS corpus
(ABCN) (Granger, 1998; Bryant et al., 2019) .

1http://statmt.org/wmt11/
training-monolingual.tgz

Length Err. Prob.

[1, 3)
0 0.50
1 0.50

[3, 6)
1 0.50
2 0.50

[9, 16)

3 0.15
4 0.25
5 0.30
6 0.30

[20, 30)

4 0.10
5 0.15
6 0.15
7 0.30
8 0.30

Length Err. Prob.

[6, 9)
2 0.30
3 0.45
4 0.25

[16, 20)

3 0.10
4 0.15
5 0.15
6 0.30
7 0.30

[30,∞)

5 0.10
6 0.15
7 0.15
8 0.30
9 0.30

Table 4: Probability distribution of sentence errors.

Table 3 shows the development and test data
sets in our experiments. We choose the ABCN
dev set as our development set and the ABCN test,
the CoNLL-2014 test, the JFLEG as our bench-
mark. For these benchmarks, we report precision
(P ), recall (R) and F0.5 with ERRANT (Bryant
et al., 2017) on the ABCN test, GLEU (Sakaguchi
et al., 2016) on the JFLEG test set (Napoles et al.,
2017). To compare with previous state-of-the-art
systems, we provide results of MaxMatch (M2)
Scorer (Dahlmeier and Ng, 2012) on the CoNLL-
2014 test set.

4 Erroneous Data Generation

In this section, we describe our error generating
method. For each sentence, we assign a proba-
bility distribution (as shown in Table 4) to deter-
mine the number of errors according to the sen-
tence length. The parameters in Table 4 are de-
termined empirically, as well as the parameters in
Table 5, Table 6 and Table 7. Because of the time
limitation of the GEC competition, we did not op-
timize these parameters.

After the number of errors (E) in a sentence
has been determined, we randomly select E to-
kens from all the tokens of the sentence with equal
probability to be errors. And for each error, we
apply a random variable (Table 5) to determine
which error type it should be.

We introduce five error types:

• Concatenation: combine two consecutive to-
kens, e.g., hello world→ helloworld.

• Misspelling: introduce spelling errors into



151

Type Prob.
Concatenation 0.12
Misspell 0.45
Substitution 0.40
Deletion 0.00
Transposition 0.03

Table 5: Error types.

Tok. length Err. Prob.
[1, 3) 0 1.00
[3, 5) 1 1.00

[5, 10)
1 0.80
2 0.20

[10,∞)
1 0.75
2 0.15
3 0.10

Table 6: Number of misspells in a token.

Type Prob.
Deletion 0.30
Insertion 0.15
Transposition 0.25
Replacement 0.30

Table 7: Mispell types.

words, e.g., computer→ camputer.

• Substitution: we introduce seven different
types of substitutions.

• Deletion: delete the token.

• Transposition: the token exchange position
with a consecutive token.

4.1 Misspelling

To generate misspellings, we introduce a random
variable to determine how many errors in the to-
ken according to the token length (parameters are
shown in Table 6.), and we randomly insert errors
into the token.

For each spelling error, we apply another ran-
dom variable to determine which error type should
be. We introduce four spelling error types (Table
7 lists the parameters.).

• Deletion: delete the character.

• Insertion: insert a random English letter into
the current position.

• Transposition: exchange position with the
consecutive character.

• Replacement: replace the current character
with a random English character.

We only introduce spelling errors into words be-
longing to a vocabulary list of 32k ordinary words2

which does not include numerals (e.g., 2019), to-
kens that contain digits (e.g., Lang8), URLs or
non-word symbols (e.g., ≥ 5 ≤).

4.2 Substitution

We introduce seven types of substitutions accord-
ing to token and its part-of-speech (POS).

• Substitution between Prepositions. E.g., in,
on, at, through, for, with.

• Substitution between Articles. E.g., a, an,
the.

• Substitution between Pronouns (Singular).
E.g., he, she, his, him, her, hers.

• Substitution between Pronouns (Plural). E.g.,
their, them, they, theirs.

• Substitution between Wh words. E.g., which,
where, what, how, when, who, whose, whom.

• Substitution between Modal verbs. E.g., will,
shall, can, may, would, could, might.

• Substitution in a Word Tree (see 4.3 for de-
tails).

4.3 Word Tree

We want to make substitutions such as going →
gone, useful → usable, administration → admin-
istrative. To make such substitution possible, we
introduce the Word Tree.

A Word Tree represents a group of words that
share the same stem but have different suffixes.
Figure 1 shows an example of Word Tree of ”use”.
A node denotes a word (e.g., usable) and corre-
sponding Extended part-of-speech (EPOS) (e.g.,
VBP JJ BLE) (see 4.4 for details.), and an edge
indicates the root from which the word is derived
(e.g., ”usable” is derived from ”use”).

With EPOS, we can easily set rules or assign
probability distributions to determine which sub-
stitutions are more likely to happen, (e.g., singu-
lar ↔ plural, VBD ↔ VBZ ↔ VBP ↔ VBN ↔

2We manually created this vocabulary for building the
Word Tree (see 4.3 for details).



152

RAW
use

VB
use

VBP
use

VBP NN R
user

VBP NNS R
users

VBP JJ BLE
usable

VBP JJ BLE NN
usableness

VBP RB BLE
usably

VBD
used

VBZ
uses

VBG
using

VBN
used

NN
use

NN JJ F
useful

NN RB F
usefully

NN JJ F NN
usefulness

NNS
uses

NN JJ L
useless

NN RB L
uselessly

NN JJ L NN
uselessness

Figure 1: Word Tree: use

VB

VBG

VBG NNS VBG RB

VBD VBP

VBP JJ BLE

VBP JJ BLE NN

VBP JJ BLE NNS

VBP RB BLE

VBP NN M

VBP NNS M

VBP NN O

VBP NNS O

VBP NN R

VBP NNS R

VBP JJ

VBP RB VBP JJ NN

VBP JJ NNS

VBP JJ NN ORI

VBP JJ NNS ORI

VBZ VBN

VBN RB VBN NN

VBN NNS

Figure 2: Verb branch of the EPOS Tree

VBG, adjective ↔ adverb), and which substitu-
tions are less likely to happen (e.g., happiest JJS
↔ happiness JJ NN). In our experiments, due to
the time limitation of the competition, we sim-
ply assigned a uniform distribution to all existing
words in a Word Tree, excluding substitutions that
were definitely unlikely to occur such as substi-
tutions between the words in an NN JJ F branch
(e.g., careful) and the words in an NN JJ L branch
(e.g., carelessness).

4.4 Extended part-of-speech

A Word Tree can contain multiple words of the
same POS. As shown in the example in Figure 1,
use, user and usefulness can all be nouns. There-
fore, in order to identify the different roles for
words in a Word Tree, we propose EPOS, derived
from part-of-speech (POS) and the surface form of
the word.

POS explains how a word is used (mostly syn-

tactically) in a sentence. Compared to POS, EPOS
also reflects some semantic role of a word in a sen-
tence.

We define EPOS in Table 11 in the Appendix.
We used NLTK (Bird, 2006) as our POS tagger,
and use NLTK-style tags in this paper.

We briefly describe our method of creating
word trees.

a. Extract the vocabulary from a text corpus
which is tagged with NLTK POS tagger.

b. Create three tables for Noun, Verb, and Ad-
jective respectively. The Noun table contains
two columns: singular and plural; the Verb ta-
ble has six columns: original verb form (VB),
non-third person present (VBP), third person
present (VBZ), past tense (VBD), past partici-
ple (VBN) and present participle (VBG); the
Adjective table has four columns: adjective, ad-
verb, comparative degree and superlative de-



153

# System P R F0.5

1 UEDIN-MS 72.28 60.12 69.47
...

4 CAMB-CLED 70.49 55.07 66.75
5 Singsound 70.17 55.39 66.61

Table 8: Results of BEA 2019 GEC competition.

dev test
F0.5 P R F0.5

single 52.29 66.06 56.68 63.94
w/o pretrain 44.60 50.59 43.60 49.02

4 ensemble 55.37 70.14 57.57 67.21
w/o pretrain 47.01 56.05 44.33 53.24

Table 9: Results of ABCN set. ”w/o pretrain” refers to
models without pretraining.

gree. Then we fill words into corresponding
entries according to their POS tags. Words that
cannot be filled in any of the above tables are
filled into a list.

c. Manually check and correct all entries of the
three tables, and fill missing entries as well.

d. Define EPOS as listed in Table 11 in the Ap-
pendix according to suffix transforming rules.

e. Extract a RAW list from the vocabulary accord-
ing to the suffix transforming rules.

f. Create an EPOS tree structure for each token
in the RAW list, and then fill each word from
the vocabulary into the corresponding entry of
the corresponding EPOS tree (The full struc-
ture of the EPOS Tree is described in Table 12
in the Appendix, and Figure 2 shows the Verb
branch); then prune empty entries in the trees.

g. Manually check every entry of every word tree,
and fix all incorrect entries.

h. Update the defined EPOS (final version in Ta-
ble 11) and the EPOS tree (Table 12); recreate
word trees.

i. Repeat step g and h until satisfied.

5 Experiments

In our experiments, we generated a corpus of 3
billion tokens, of which about 24% were errors.

Following Lichtarge et al. (2018), we also use
Transformer as our encoder-decoder model, using
Tensor2Tensor open source implementation 3.

The models are trained on words, and rare
words are segmented into sub-words with the byte
pair encoding (BPE) (Sennrich et al., 2015). We
use 6 layers for both encoder and decoder, and 4
attention heads. The embedding size and hidden
size are 1024, and the filter size for all position-
wise feed forward network is 4096. We set
dropout rate to 0.3, and source word dropout is set
to 0.2 as a noising technique. Following Junczys-
Dowmunt et al. (2018), source, target and output
embeddings are tied in our models.

Following Lichtarge et al. (2018), we first
trained our model on an artificially generated par-
allel corpus with a batch size of approximately
3072 tokens. Then we set the batch size to 2048
tokens and fine-tuned on human annotated data
for 20 epochs, and we averaged the 5 best check-
points. Finally, the averaged model was fine-tuned
on the ABCN and FCE training data for 1000 steps
as domain adaptation (Junczys-Dowmunt et al.,
2018).

There are about 50% sentence pairs without any
correction in the Lang-8 dataset, and we noticed
that training with too many error-free sentence
pairs had a negative effect. Therefore, we filtered
out these error-free sentence pairs in the Lang-
8 dataset. Since the NUCLE, FCE and ABCN
datasets are much smaller than the Lang-8 set, we
did not filter out the error-free sentence pairs in
these datasets.

We used beam search for decoding with a beam
size of 4 at evaluation time. For the ensemble,
we averaged logits from 4 Transformer models
with identical hyper-parameters at each decod-
ing step. Following (Grundkiewicz and Junczys-
Dowmunt, 2018; Junczys-Dowmunt et al., 2018;
Lichtarge et al., 2018), we preprocessed the JF-
LEG dataset with spell-checking. We did not ap-
ply spell-checking to the ABCN and CoNLL-2014
datasets.

6 Results and Discussion

The results of the Singsound System in the GEC
competition (Table 8) were obtained by an ensem-
ble of four models. Because of the time limi-
tation, we only trained two independent models

3https://github.com/
tensorflow/tensor2tensor



154

CoNLL-2014 CoNLL-10 (SvH) JFLEG
Model P R F0.5 P R F0.5 GLEU

(1) Word&Char SMT-GEC 62.7 33.0 53.1 68.3 56.8

(2) MLConv (4 ensemble) 65.5 33.1 54.8 57.5

(3)
Transformer (single) 53.0 57.9

Transformer (4 ensemble) 63.0 38.9 56.1 58.5
Transformer (4 ensemble) + LM 61.9 40.2 55.8 59.9

(4) Hybrid PBMT+NMT+LM 66.8 34.5 56.3 83.2 47.0 72.0 61.5

(5)
Transformer (single) 62.2 37.8 54.9 59.3

Transformer (4 ensemble) 67.5 37.8 58.3 62.4

Singsound
Transformer (single) 68.3 42.5 60.9 83.5 55.2 75.7 60.8

Transformer (4 ensemble) 73.0 41.1 63.2 86.0 53.8 76.8 62.6

Human avg. 73.5 69.6 72.6 62.4

Table 10: Comparison with top performing systems on CoNLL and JFLEG datasets. (1): Chollampatt and Ng
(2017) (2): Chollampatt and Ng (2018); (3): Junczys-Dowmunt et al. (2018); (4): Grundkiewicz and Junczys-
Dowmunt (2018); (5): Lichtarge et al.(2018).

from scratch. The other two were based on ex-
isting trained models. Concretely, after we got a
model trained from scratch, we kept training it on
the generated corpus for 0.2 epoch; then fine-tuned
the model on the annotated data and ABCN and
FCE training sets as before.

We provide the performance of our single model
and the ensemble of 4 independently trained mod-
els 4 on the ABCN dev and test datasets in Table 9.
As the results shown in Table 9, models pretrained
on the generated corpus significantly outperform
the models without pretraining.

To compare with previous state-of-the-art GEC
systems, we evaluated our systems on the CoNLL-
2014 and JFLEG datasets. As the results shown
in Table 10, our single model exceeded previ-
ous state-of-the-art systems on the CoNLL-2014
dataset. Our ensemble models achieved 8.4% rel-
ative improvement over the latest state-of-the-art
results on the CoNLL-2014 benchmark.

We also report the results on the CoNLL-2014
10 annotation dataset (denoted as CoNLL-10)
(Bryant and Ng, 2015) which is an extension of
the CoNLL-2014 test set with 10 annotators. The
human-level scores are calculated by averaging the
scores for each annotator with regard to the re-
maining annotators. Following Chollampatt and
Ng (2017), scores on CoNLL-10 (SvH) are calcu-

4The four models are trained on the same data with the
same hyper-parameter set.

lated by removing one set of human annotations
at a time and evaluating the system against the re-
maining sets. Our models reach human-level per-
formance on both CoNLL-10 and JFLEG bench-
marks.

7 Conclusion

In this work, we present a novel erroneous data
generating method for training English GEC mod-
els. Our experiments show that Transformer mod-
els pretrained on generated corpus significantly
outperform the previous GEC systems that are also
based on Transformer. We also present a novel
tool: the Word Tree, which represents a group of
words that share the same stem but have different
suffixes; and we show that one possible applica-
tion of the Word Tree is generating erroneous text
for training GEC models.

Acknowledgments

We thank Xiaoxue Fan, Miao Xue and Yueming
Gao for their help in checking the three tables re-
quired for creating the Word Trees.

References

Steven Bird. 2006. NLTK: The natural language
toolkit. meeting of the Association for Computa-
tional Linguistics, pages 69–72.



155

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 Shared
Task on Grammatical Error Correction. In Proceed-
ings of the 14th Workshop on Innovative Use of NLP
for Building Educational Applications. Association
for Computational Linguistics.

Christopher Bryant, Mariano Felice, and Edward John
Briscoe. 2017. Automatic annotation and evaluation
of error types for grammatical error correction. As-
sociation for Computational Linguistics.

Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammati-
cal error correction. 1:697–707.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Com-
puter Science.

Shamil Chollampatt and Hwee Tou Ng. 2017. Con-
necting the dots: Towards human-level grammatical
error correction. pages 327–333.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572. Association for Computational Linguis-
tics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In
Proceedings of the eighth workshop on innovative
use of NLP for building educational applications,
pages 22–31.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Fluency
boost learning and inference for neural grammati-
cal error correction. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1055–
1065.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org.

Sylviane Granger. 1998. The computer learner corpus:
a versatile new source of data for SLA research. na.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2018. Near human-level performance in grammati-
cal error correction with hybrid machine translation.
arXiv preprint arXiv:1804.05945.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Phrase-based machine translation is state-of-
the-art for automatic grammatical error correction.
arXiv preprint arXiv:1605.06353.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as
a low-resource machine translation task. arXiv
preprint arXiv:1804.05940.

Jared Lichtarge, Christopher Alberti, Shankar Kumar,
Noam Shazeer, and Niki Parmar. 2018. Weakly su-
pervised grammatical error correction using iterative
decoding. arXiv preprint arXiv:1811.01710.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revi-
sion log of language learning SNS for automated
Japanese error correction of second language learn-
ers. In Proceedings of 5th International Joint Con-
ference on Natural Language Processing, pages
147–155.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and
benchmark for grammatical error correction. arXiv
preprint arXiv:1702.04066.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14.

Keisuke Sakaguchi, Courtney Napoles, Matt Post, and
Joel R Tetreault. 2016. Reassessing the goals of
grammatical error correction: Fluency instead of
grammaticality. Transactions of the Association for
Computational Linguistics, 4(1):169–182.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
esl learners using global context. pages 198–202.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 180–189. Association for Computational
Linguistics.



156

A Appendix

EPOS POS Annotation Examples
RAW Root of word trees, original form use
NN NN Noun use
NNS NNS Plural form of Noun uses
NN JJ F JJ NN + ful 5 useful
NN JJ F NN NN NN JJ F + ness usefulness
NN JJ F NNS NNS Plural form of NN JJ F NN
NN JJ F NN ORI NN Adjective used as Noun dreadful
NN JJ F NNS ORI NNS Plural form of NN JJ F NN ORI dreadfuls
NN RB F RB Adverb form of NN JJ F usefully
NN JJ L JJ NN + less useless
NN JJ L NN NN NN JJ L + ness uselessness
NN JJ L NNS NNS Plural form of NN JJ L NN
NN JJ L NN ORI NN Adjective used as Noun wireless
NN JJ L NNS ORI NNS Plural form of NN JJ L NN ORI wirelesses
NN RB L RB Adverb form of NN JJ L uselessly
NN JJ OUS JJ NN + ous dangerous
NN JJ OUS NN NN NN JJ OUS + ness dangerousness
NN JJ OUS NNS NNS Plural form of NN JJ OUS NN
NN RB OUS RB Adverb form of NN JJ OUS dangerously
NN JJ AL JJ NN + al rational
NN JJ AL NN NN NN JJ AL + ness rationalness
NN JJ AL NNS NNS Plural form of NN JJ AL NN
NN RB AL RB Adverb form of NN JJ AL rationally
NN JJ Y JJ NN + y lucky
NN JJR Y JJR Comparative degree of NN JJ Y luckier
NN JJS Y JJS Superlative degree of NN JJ Y luckiest
NN JJ Y NN NN NN JJ Y + ness luckiness
NN JJ Y NNS NNS Plural form of NN JJ Y NN
NN JJ Y NN ORI NN Adjective used as Noun safety
NN JJ Y NNS ORI NNS Plural form of NN JJ Y NN ORI safeties
NN RB Y RB Adverb form of NN JJ Y luckily
NN JJ D JJ NN + ed warmhearted
NN JJ D NN NN NN JJ D + ness warmheartedness
NN JJ D NNS NNS Plural form of NN JJ D NN
NN RB D RB Adverb form of NN JJ D warmheartedly
VB VB Original form of verbs go
VBD VBD Past tense went
VBZ VBZ Present third person singular goes
VBN VBN Past participle gone
VBN NN NN VBN + ness limitedness
VBN NNS NNS Plural form of VBN NN
VBN NNS ORI NNS Plural form of VBN when VBN used as Noun shots, thoughts
VBN RB RB Adverb form of VBN excitedly
VBG VBG Present participle baking
VBG NNS ORI NNS Plural form of VBG when VBG used as Noun bakings
VBG RB RB Adverb form of VBG excitingly
VBP VBP non-third person present go



157

VBP NN O NN VBP + ion connection
VBP NNS O NNS Plural form of VBP NN O connections
VBP NN R NN VBP + er / or / ar dancer, editor
VBP NNS R NNS Plural form of VBP NN R dancers, editors
VBP JJ BLE JJ VBP + able / ible usable
VBP JJ BLE NN NN VBP JJ BLE + ness usableness
VBP JJ BLE NNS NNS Plural form of VBP JJ BLE NN
VBP RB BLE RB Adverb form of VBP JJ BLE usably
VBP JJ JJ VBP + ive active
VBP RB RB Adverb form of VBP JJ actively
VBP JJ NN NN VBP JJ + ness attractiveness
VBP JJ NNS NNS Plural form of VBP JJ NN
VBP JJ NN ORI NN VBP JJ used as Noun representative
VBP JJ NNS ORI NNS Plural form of VBP JJ NN ORI representatives
VBP NN M NN VBP + ment movement
VBP NNS M NNS Plural form of VBP NN M movements
JJ JJ Adjectivel happy
JJS JJS Superlative degree of Adjective happiest
JJR JJR Comparative degree of Adjective happier
JJ NN NN JJ + ness happiness
JJ NNS NNS Plural form of JJ NN happinesses
RB RB Adverb happily
RBR RBR Comparative degree of Adverb harder
RBS RBS Superlative degree of Adverb hardest
CD CD Cardinal digits one
CD JJ JJ Adjective form of CD first
CD RB RB Adverb form of numbers firstly
CD JJ NN ORI NN Adjective used as Noun first
CD JJ NNS ORI NNS Plural form of CD JJ NN ORI firsts
CD RB ORI RB Adverbs that are same as CD JJ first
CD NNS NNS Plural form of CD ones
DT DT Determiner the
WRB WRB Wh-adverb how, where
PRP PRP Personal pronoun I, you, they
IN IN Preposition or subordinating conjunction in, from, after
CC CC Coordinating conjunction and
MD MD Modal verb can
OFS Any POS out of the POS column

Table 11: EPOS table.

5By abuse notation, ”+” denotes ”with some suffix”.



158

Parent Children
RAW NN, JJ, VB, IN, OFS, CC, MD, DT, PRP, CD, WDT, WP, WRB
NN NNS, NN JJ F, NN JJ L, NN JJ Y, NN JJ D, NN JJ OUS, NN JJ AL
NN JJ D NN RB D, NN JJ D NN
NN JJ Y NN RB Y, NN JJR Y, NN JJS Y, NN JJ Y NN, NN JJ Y NN ORI
NN JJ Y NN NN JJ Y NNS
NN JJ Y NN ORI NN JJ Y NNS ORI
NN JJ F NN RB F, NN JJ F NN, NN JJR F, NN JJS F, NN JJ F NN ORI
NN JJ F NN NN JJ F NNS
NN JJ F NN ORI NN JJ F NNS ORI
NN JJ L NN RB L, NN JJ L NN, NN JJR L, NN JJS L, NN JJ L NN ORI
NN JJ L NN NN JJ L NNS
NN JJ L NN ORI NN JJ L NNS ORI
NN JJ AL NN RB AL, NN JJ AL NN
NN JJ AL NN NN JJ AL NNS
NN JJ OUS NN RB OUS, NN JJ OUS NN
NN JJ OUS NN NN JJ OUS NNS
VB VBP, VBD, VBZ, VBG, VBN
VBP VBP JJ, VBP NN R, VBP NN M, VBP NN O, VBP JJ BLE
VBP JJ VBP RB, VBP JJ NN, VBP JJ NN ORI
VBP JJ NN VBP JJ NNS
VBP JJ NN ORI VBP JJ NNS ORI
VBP JJ BLE VBP RB BLE VBP JJ BLE NN
VBP JJ BLE NN VBP JJ BLE NNS
VBP NN R VBP NNS R
VBP NN M VBP NNS M
VBP NN O VBP NNS O
VBG VBG RB, VBG NNS
VBN VBN RB, VBN NN
VBN NN VBN NNS
JJ JJR, JJS, RB, JJ NN, JJ NN ORI
JJ NN JJ NNS
JJ NN ORI JJ NNS ORI
RB RBR, RBS
CD CD JJ, CD JJ NN ORI, CD NNS
CD JJ CD RB, CD RB ORI
CD JJ NN ORI CD JJ NNS ORI

Table 12: Structure of the EPOS Tree.


