
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 134–138
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

134

(Almost) Unsupervised Grammatical Error Correction
using a Synthetic Comparable Corpus

Satoru Katsumata and Mamoru Komachi
Tokyo Metropolitan University

katsumata-satoru@ed.tmu.ac.jp, komachi@tmu.ac.jp

Abstract
We introduce unsupervised techniques based
on phrase-based statistical machine transla-
tion for grammatical error correction (GEC)
trained on a pseudo learner corpus created by
Google Translation. We verified our GEC sys-
tem through experiments on a low resource
track of the shared task at Building Educa-
tional Applications 2019 (BEA2019). As a re-
sult, we achieved an F0.5 score of 28.31 points
with the test data.

1 Introduction

Research on grammatical error correction (GEC)
has gained considerable attention recently. Many
studies treat GEC as a task that involves translation
from a grammatically erroneous sentence (source-
side) into a correct sentence (target-side) and thus,
leverage methods based on machine translation
(MT) for GEC. For instance, some GEC systems
use large parallel corpora and synthetic data (Ge
et al., 2018; Xie et al., 2018).

We introduce an unsupervised method based on
MT for GEC that does not use parallel learner
data. In particular, we use methods proposed by
Marie and Fujita (2018), Artetxe et al. (2018b),
and Lample et al. (2018). These methods are
based on phrase-based statistical machine trans-
lation (SMT) and phrase table refinements. For-
ward refinement used by Marie and Fujita (2018)
simply augments a learner corpus with automatic
corrections. We also use forward refinement for
improvement of phrase table.

Unsupervised MT techniques do not require a
parallel but a comparable corpus as training data.
Therefore, we use comparable translated texts us-
ing Google Translation as the source-side data.
Specifically, we use News Crawl written in En-
glish as target-side data and News Crawl writ-
ten in another language translated into English as
source-side data.

We verified our GEC system through exper-
iments for a low resource track of the shared
task at Building Educational Applications 2019
(BEA2019). The experimental results show that
our system achieved an F0.5 score of 28.31 points.

2 Unsupervised GEC

Algorithm 1 shows the pseudocode for unsuper-
vised GEC. This code is derived from Artetxe
et al. (2018b). First, the cross-lingual phrase em-
beddings are acquired. Second, a phrase table is
created based on these cross-lingual embeddings.
Third, the phrase table is combined with a lan-
guage model trained by monolingual data to ini-
tialize a phrase-based SMT system. Finally, the
SMT system is updated through iterative forward-
translation.

Cross-lingual embeddings First, n-gram em-
beddings were created on the source- and target-
sides. Specifically, each monolingual embedding
was created based on the source- and target-sides
using a variant of skip-gram (Mikolov et al., 2013)
for unigrams, bigrams, and trigrams with high fre-
quency1 in the monolingual data. Next, the mono-
lingual embeddings were mapped onto a shared
space to obtain cross-lingual embeddings. The
self-learning method of Artetxe et al. (2018a) was
used for unsupervised mapping.

Phrase table induction A phrase table was cre-
ated based on the cross-lingual embeddings. In
particular, this involved the creation of phrase
translation models and lexical translation models.

The translation candidates were limited in the
source-to-target phrase translation model ϕ(f |e)
for each source phrase e to its 100 nearest neigh-
bor phrases f on the target-side. The score of

1We used the most frequent 200K unigrams, 400K bi-
grams, and 400K trigrams in the monolingual data.



135

Algorithm 1 Unsupervised GEC
Require: language models of the target-side LMt

Require: source training corpus Cs

Require: target training corpus Ct

Require: tuning data T
Require: iteration number N
Ensure: source-to-target phrase table P

(N)
s→t

Ensure: source-to-target weights W (N)
s→t

1: W emb
s ← TRAIN(Cs)

2: W emb
t ← TRAIN(Ct)

3: W cross emb
s ,W cross emb

t ← MAPPING(W emb
s ,W emb

t )

4: P
(0)
s→t← INITIALIZE(W cross emb

s ,W cross emb
t )

5: W
(0)
s→t← TUNE(P (0)

s→t, LMt, T )
6: for iter = 1, . . . , N do
7: synthetic datat
8: ← DECODE(P (iter−1)

s→t , LMt, W
(iter−1)
s→t , Cs)

9: P
(iter)
s→t ← TRAIN(Cs, synthetic datat)

10: W
(iter)
s→t ← TUNE(P

(iter)
s→t , LMt, T )

the phrase translation model was calculated based
on the normalized cosine similarity between the
source and target phrases.

ϕ(f |e) = exp(cos(e, f)/τ)∑
f
′ exp(cos(e, f

′
)/τ)

(1)

f
′ represents each phrase embedding on the target-

side and τ is a temperature parameter that con-
trols the confidence of prediction2. The backward
phrase translation probability ϕ(e|f) was deter-
mined in a similar manner.

The source-to-target lexical translation model
lex(f |e) considers the word with the highest trans-
lation probability in a target phrase for each word
in a source phrase. The score of the lexical trans-
lation model was calculated based on the product
of respective phrase translation probabilities.

lex(f |e) =
∏
i

max

(
ϵ,max

j
ϕ
(
f i|ej

))
(2)

ϵ is a constant term for the case where no align-
ments are found. As in Artetxe et al. (2018b), the
term was set to 0.001. The backward lexical trans-
lation probability lex(e|f) is calculated in a simi-
lar manner.

Refinement of SMT system The phrase table
created is considered to include noisy phrase pairs.
Therefore, we update the phrase table using an
SMT system. The SMT system trained on syn-
thetic data eliminates the noisy phrase pairs using

2As in Artetxe et al. (2018b), τ is estimated by maximiz-
ing the phrase translation probability between an embedding
and the nearest embedding on the opposite side.

Corpus Sent. Learner

Fi News Crawl 1,904,880 No
En News Crawl 2,116,249 No
One-Billion 24,482,651 No

tuning data 2,191 Yes
dev data 2,193 Yes

Table 1: Data statics: train and dev data size.

language models trained on the target-side corpus.
This process corresponds to lines 6—10 in Algo-
rithm 1. The phrase table is refined with forward
refinement (Marie and Fujita, 2018).

For forward refinement, target synthetic data
were generated from the source monolingual data
using the source-to-target phrase table P

(0)
s→t and

target language model LMt. A new phrase table
P

(1)
s→t was then created with this target synthetic

corpus. This operation was executed N times.

Construction of a comparable corpus This un-
supervised method is based on the assumption that
the source and target corpora are comparable. In
fact, Lample et al. (2018), Artetxe et al. (2018b)
and Marie and Fujita (2018) use the News Crawl
of source and target language as training data.

To make a comparable corpus for GEC, we
use translated texts using Google Translation as
the source-side data. Specifically, we use Finnish
News Crawl translated into English as source-side.
English News Crawl is used as the target-side as is.
Finnish data is used because Finnish is not similar
to English.

This translated data does not include misspelled
words. To address these words, we use a spell
checker as a preprocessing step before inference.

3 Experiment of low resource GEC

3.1 Experimental setting

Table 1 shows the training and development data
size. Finnish News Crawl 2014—2015 trans-
lated into English was used as source training data
and English News Crawl 2017 was used as target
training data. To train the extra language model
of the target-side (LMt), we used training data
of One Billion Word Benchmark (Chelba et al.,
2014). We used googletrans v2.4.03 for
Google Translation. This module did not work
sometimes and thus, we obtained 2,122,714 trans-

3https://github.com/ssut/py-googletrans
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Team TP FP FN P R F0.5

UEDIN-MS 2,312 982 2,506 70.19 47.99 64.24
Kakao&Brain 2,412 1,413 2,797 63.06 46.30 58.80
LAIX 1,443 884 3,175 62.01 31.25 51.81
CAMB-CUED 1,814 1,450 2,956 55.58 38.03 50.88
UFAL, Charles University, Prague 1,245 1,222 2,993 50.47 29.38 44.13
Siteimprove 1,299 1,619 3,199 44.52 28.88 40.17
WebSpellChecker.com 2,363 3,719 3,031 38.85 43.81 39.75
TMU 1,638 4,314 3,486 27.52 31.97 28.31
Buffalo 446 1,243 3,556 26.41 11.14 20.73

Table 2: GEC results with test data.

lated sentences4. We sampled the 3,000,000 sen-
tences from English News Crawl 2017 and ex-
cluded the sentences with more than 150 words
for either source- and target-side data. Finally,
the synthetic comparable corpus comprises pro-
cessed News Crawl data listed in Table 1. The low
resource track permitted to use W&I+LOCNESS
(Bryant et al., 2019; Granger, 1998) development
set, so we split it in half; tune data and dev data5.

These data are tokenized by spaCy v1.9.06

and the en_core_web_sm-1.2.0 model. We
used moses truecaser for the training data; this
truecaser model is learned from processed English
News Crawl. We used byte-pair-encoding (Sen-
nrich et al., 2016) learned from processed English
News Crawl; the number of operations is 50K.

The implementation proposed by Artetxe et al.
(2018b)7 was modified to conduct the experi-
ments. Specifically, some features were added;
word-level Levenshtein distance, word-, and
character-level edit operation, operation sequence
model, (Durrani et al., 2013)8 and 9-gram word
class language model, similar to Grundkiewicz
and Junczys-Dowmunt (2018) without sparse fea-
tures. Word class language model was trained with
One Billion Word Benchmark data; the number of
classes is 200, and the word class was estimated
with fastText (Bojanowski et al., 2017). The
distortion feature was not used.
Moses (Koehn et al., 2007) was used to train

the SMT system. FastAlign (Dyer et al.,
2013) was used for word alignment and KenLM
(Heafield, 2011) was used to train the 5-gram lan-
guage model over each processed English News

4Finnish News Crawl 2014—2015 have 6,360,479 sen-
tences.

5Because W&I+LOCNESS data had four types of learner
level, we split it so that each learner level is equal.

6https://github.com/explosion/spaCy
7https://github.com/artetxem/monoses
8Operation sequence model was used in refinement step.

Crawl and One Billion Word Benchmark. MERT
(Och, 2003) was used with the tuning data for
Mˆ2 Scorer (Dahlmeier and Ng, 2012). Syn-
thetic sentence pairs with a [3, 80] sentence length
were used at the refinement step. The number of
iterations N was set to 5, and the embedding di-
mension was set to 300. We decided best iteration
using the dev data and submitted the output of the
best iteration model.

We used pyspellchecker9 as a spell
checker. This tool uses Levenshtein distance to
obtain permutations within an edit distance of 2
over the words included in a word list. We made
the word list from One Billion Word Benchmark
and included words that occur more than five
times.

We report precision, recall, and F0.5 score based
on the dev data and official test data. The output
of dev data was evaluated using ERRANT scorer
(Bryant et al., 2017) similarly to official test data.

3.2 Results
Table 2 shows the results of the GEC experiments
with test data. The F0.5 score for our system
(TMU) is 28.31; this score is eighth among the
nine teams. In particular, the number of false pos-
itives of our system is 4,314; this is the worst result
of all.

4 Discussion

Table 3 shows the results of the dev data listed
in Table 1. On the dev data, the system of itera-
tion 1 is the best among all. According to the im-
provement of iteration from 0 to 1, it is confirmed
that the refinement method works well. However,
it is observed that the system is not improved af-
ter iteration 1. The source-side data is fixed, and
target-side data is generated from the source-side
for each iteration. Therefore, the quality of the

9https://github.com/barrust/pyspellchecker
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iter P R F0.5

Unsupervised SMT 0 12.33 16.13 12.94
w/o spell check 1 17.59 14.63 16.91

2 17.30 14.15 16.56
3 16.04 14.17 15.63
4 17.06 14.01 16.35
5 15.88 13.88 15.44

spell check→ SMT 1 20.58 18.04 20.01
SMT→ spell check 1 19.42 16.86 18.85

Table 3: GEC results with dev data. The bold scores
represent the best score without the spell checker.

source-side data is important for this refinement
method. In this study, we use the automatically
translated text as source-side data; thus, it is con-
sidered that the quality is not high and the refine-
ment after iteration 1 does not work.

The results of Table 3 confirm that the spell
checker works well. We also investigate the im-
portance of the order; SMT or spell check, which
is suitable for the first system for a better result?
As a result, it is better to use the SMT system af-
ter using the spell checker. That is because the
source-side data does not include the misspelled
words as mentioned above.

Table 4 shows the error types that our system
corrected well or mostly did not correct on the dev
data. SPELL means the misspell errors; the cor-
rection of these errors depends only on the spell
checker. PUNCT means the errors about the punc-
tuation; e.g., ‘Unfortunately when we...→ Unfor-
tunately, when we...’. It is considered that our sys-
tem can correct errors such as these owing to the
n-gram co-occurrence knowledge derived from the
language models.

In contrast, our system struggled to correct con-
tent word errors. For example, NOUN includes
an error like this; ‘way → means’ and VERB in-
cludes an error like this; ‘watch → see’. It is con-
sidered that our system is mostly not able to cor-
rect the errors regarding word usage based on the
context because the phrase table was still noisy.
Although we observed some usage error examples
of ‘watch’ in the synthetic source data, our model
was not able to replace ‘watch’ to ‘see’ based on
the context.

5 Related Work

Unsupervised Machine Translation Studies on
unsupervised methods have been conducted for
both NMT (Lample et al., 2018; Marie and Fu-
jita, 2018) and SMT (Artetxe et al., 2018b). In

　 P R F0.5

Top2
SPELL 39.93 59.24 42.71
PUNCT 28.91 38.14 30.38

Bottom2
NOUN 0.87 1.74 0.97
VERB 2.13 0.99 1.73

Table 4: Error types for which our best system cor-
rected errors well or mostly did not correct on the dev
data. Top2 denotes the top two errors, and Bottom2
denotes the lowest two errors in terms of the F0.5

10.

this study, we apply the USMT method of Artetxe
et al. (2018b) and Marie and Fujita (2018) to GEC.
The UNMT method (Lample et al., 2018) was in-
effective under the GEC setting in our preliminary
experiments.

GEC with NMT/SMT Several studies that in-
troduce sequence-to-sequence models in GEC
heavily rely on large amounts of training data. Ge
et al. (2018), who presented state-of-the-art re-
sults in GEC, proposed a supervised NMT method
trained on corpora of a total 5.4 M sentence pairs.
We mainly use the monolingual corpus because
the low resource track does not permit the use of
the learner corpora.

Despite the success of NMT, many stud-
ies on GEC traditionally use SMT (Susanto
et al., 2014; Junczys-Dowmunt and Grund-
kiewicz, 2014). These studies apply an off-
the-shelf SMT toolkit, Moses, to GEC. Junczys-
Dowmunt and Grundkiewicz (2014) claimed that
the SMT system optimized for BLEU learns to not
change the source sentence. Instead of BLEU,
they proposed tuning an SMT system using the
M2 score with annotated development data. In
this study, we also tune the weights with an F0.5

score measured by the M2 scorer because the offi-
cial score is an F0.5 score.

6 Conclusion

In this paper, we described our GEC system for the
low resource track of the shared task at BEA2019.
We introduced an unsupervised approach based
on SMT for GEC. This track prohibited the use
of learner data as training data, so we created a
synthetic comparable corpus using Google Trans-
lation. The experimental results demonstrate that

10We investigate the frequent error types; the errors occur
more than one hundred times in the dev data.
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our system achieved an F0.5 score of 28.31 points
with the test data.
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