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Abstract

The issues of algorithmic fairness and bias have
recently featured prominently in many publica-
tions highlighting the fact that training the algo-
rithms for maximum performance may often re-
sult in predictions that are biased against vari-
ous groups. Educational applications based on
NLP and speech processing technologies often
combine multiple complex machine learning algo-
rithms and are thus vulnerable to the same sources
of bias as other machine learning systems. Yet
such systems can have high impact on people’s
lives especially when deployed as part of high-
stakes tests. In this paper we discuss different defi-
nitions of fairness and possible ways to apply them
to educational applications. We then use simulated
and real data to consider how test-takers’ native
language backgrounds can affect their automated
scores on an English language proficiency assess-
ment. We illustrate that total fairness may not be
achievable and that different definitions of fairness
may require different solutions.

1 Introduction

The issues of algorithmic fairness and bias have
recently featured prominently in many publica-
tions highlighting the fact that training the algo-
rithms for maximum performance may often re-
sult in predictions that are biased against various
groups (Kamiran and Calders, 2009; Kamishima
etal.,2012; Luong et al., 2011; Zemel et al., 2013;
Feldman et al., 2015; Friedler et al., 2016). Like
any algorithm, NLP systems are not immune to
such bias (Hovy and Spruit, 2016; Caliskan et al.,
2017). These days it is hardly necessary to justify
the importance of ensuring algorithmic fairness,
especially in applications that can have a substan-
tial impact on users’ lives.

1

Automated test scoring is one such application,
and the educational measurement community has
been concerned with the fairness of automated
scoring since long before this topic gained wide
popularity. There exist a variety of standard mea-
sures generally recommended for evaluating fair-
ness of the automated scoring systems (Clauser
etal., 2002; Williamson et al., 2012; Ramineni and
Williamson, 2013) as well as open-source tools for
computing such measures (Madnani et al., 2017).

In this paper we use the data from an operational
spoken language proficiency assessment and an
automated speech scoring engine to show that the
application of these measures may sometimes lead
to seemingly contradictory results. We apply the
insight from the machine learning community that
there are different ways to formally define algo-
rithmic fairness, and propose a framework which
leverages work from both educational measure-
ment and machine learning to formalize these def-
initions in the context of automated scoring.

2 Fairness in educational applications
and beyond

2.1 Fairness metrics for automated scoring

Fairness research has a long tradition in educa-
tional measurement where “fairness” has been de-
fined with reference to “construct”. A construct
is defined as a set of related knowledge, skills,
and other abilities that a test is designed to mea-
sure (Zieky, 2016). A fair test is one where dif-
ferences in test scores between the test-takers are
due only to differences in skills which are part
of the construct. Any consistent differences in
scores between different non-random groups of
test-takers that result from other factors not im-
mediately related to the construct (i.e., “‘construct-
irrelevant”) may indicate that the test is unfair
(Xi, 2010; Zieky, 2016). Notably such “construct-
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irrelevant” factors include not only protected at-
tributes often considered in studies on algorithmic
bias but also other factors that can affect prede-
fined groups of test-takers, such as screen resolu-
tion on the computers used to administer an as-
sessment (Bridgeman et al., 2001). It follows that
a fair automated scoring system should not intro-
duce additional construct-irrelevant group-related
variance or disadvantage any group of test-takers
in comparison to human scores (Penfield, 2016).

Several standard measures have been used to
evaluate the fairness of the automated scoring sys-
tems across different groups, for example speak-
ers of different languages or test-takers with dis-
abilities (Burstein and Chodorow, 1999; Bridge-
man et al., 2012; Wang and von Davier, 2014;
Wang et al., 2016; An et al., 2016; Loukina and
Buzick, 2017). The two most common analy-
ses are standardized mean score differences and
overall model performance for different groups
with human scores (predictive ability) (Ramineni
and Williamson, 2013; Williamson et al., 2012).
More recently other measures have been used such
as differential feature functioning (Zhang et al.,
2017) to analyze the performance of individual
features or variance in mean model residual across
groups (Yao et al., 2019). The approach taken
in many previous studies on the fairness of auto-
mated scores has been that substantial between-
groups differences in human and automated scores
in any of the measures indicate that the system
might not be fair.

2.2 Algorithmic fairness

There are two key conclusions that emerged from
general research on algorithmic fairness that are
most relevant for this paper. First, there are many
different ways to formally define algorithmic fair-
ness. Second, it may be impossible to achieve fair-
ness according to each and every one of these defi-
nitions at the same time (Friedler et al., 2016; Berk
et al., 2018).

In their review of algorithmic bias in the con-
text of criminal justice risk assessment, Berk et al.
(2018) offer five definitions of fairness: (1) Over-
all accuracy equality: overall classification accu-
racy is the same for all groups; (2) Statistical par-
ity: the marginal distribution of predicted classes
is the same for all groups; (3) Conditional proce-
dure accuracy equality: the prediction is equally
accurate for all groups when conditioned on a

known outcome; (4) Conditional use accuracy
equality: the prediction is equally accurate for all
groups when conditioned on a predicted outcome;
(5) Treatment equality: the ratio of false negatives
and false positives is the same for both groups. To-
tal fairness is achieved when all five definitions are
met. As Berk et al. (2018) show, in practice to-
tal fairness cannot be achieved, except for trivial
cases.

3 Data

The analyses in this paper are based on actual re-
sponses collected during a large-scale assessment
of English language speaking proficiency. For this
assessment all test-takers answered 6 questions
that elicited spontaneous speech. Depending on
the question, the speakers were given 45 seconds
or 1 minute to record their responses.

We will focus on whether automated scoring
might disadvantage test-takers depending on their
native language (L1), a common concern in au-
tomated scoring contexts. Learners with differ-
ent L1 might have different linguistic profile and
it has been shown that it is possible to identify
learner L1 from their written or spoken response
(Malmasi et al., 2017). Therefore there is a danger
that the scoring engine might inadvertently assign
different scores to speakers of different L1 even
when there is no difference in English proficiency,
the actual construct measured by the test. In other
words the system would introduce group-related
construct-irrelevant differences.

In an actual operational scenario there are many
additional factors that can introduce bias to the
performance of an automated scoring system:
some L1s might be over- or under-represented in
the data used for model training and evaluation;
sometimes different versions of the test are admin-
istered in different countries for security reasons,
introducing further scope for conflation between
native language and prompt.

For this study we constructed a corpus of re-
sponses designed to control for these factors. Us-
ing the information about the native language re-
ported by test-takers when taking the test, we
selected responses from native speakers of the
6 most frequently languages among the test-
taker populationl: Chinese (CHI), Korean (KOR),
Japanese (JPN), Spanish (SPA), Arabic (ARA) and

"The metadata does not differentiate between different
linguistic varieties.



German (GER). All test-takers responded to one of
the two versions of the test that were administered
across all these regions.

We then created a corpus with uniform distri-
bution of native languages by randomly sampling
a similar number of test-takers for each version
of the test. The final corpus included 26,710 re-
sponses from 4,452 test-takers (742 for each lan-
guage, about 370 test-takers per version). The
corpus was split into a training set (75%) and a
test set (25%), with 19,942 responses from 3,324
test-takers (554 from each group) allocated to the
former, and the remaining 6,768 responses from
1,128 test-takers (188 from each group) allocated
to the latter.

All responses had been scored by trained human
raters on a scale from 1-4. The raters assigned
a single holistic score to each response using a
scoring rubric that covered different aspects of lan-
guage proficiency including delivery, language use
and content. Most responses were scored by a sin-
gle rater. About 6% of responses were double-
scored. Human-human agreement for responses in
the test set is Pearson’s 7 = 0.66. The scoring pro-
cess was set up following best practices in order to
minimize any possible bias (Wang and von Davier,
2014; Penfield, 2016). Multiple raters took part in
this process and in no instance did a given rater
score multiple responses from the same test-taker.
All raters were monitored throughout the process
using both exemplar responses with known scores
and random back-scoring. Despite all these mea-
sures, there is still some possibility that the human
scores contained bias which would then be learnt
by the model. For the sake of simplicity, however,
in this paper we will ignore such a possibility and
treat the human scores as a gold standard measure.

3.1 Simulated models

When looking at algorithmic fairness, it is often
helpful to look at extreme simulated cases. In all
four models discussed in this section, the ‘system’
scores were produced by training a linear regres-
sion on the training set and using the regression
parameters to generate predictions for the test set.
All evaluations were done on the test set. The
models were trained using the human score as the
dependent variable and four different types of fea-
tures described below.

Random model: The RANDOM model was
based on a single feature: a random sample drawn

from a normal distribution with mean and stan-
dard deviation equal to those of human scores on
the training set. This feature by definition is blind
to a test-taker’s L1 and any properties of their re-
sponse. This model is not valid as it does not
differentiate test-takers on any construct-relevant
dimension but it is not expected to consistently
differentiate based on any construct-irrelevant fac-
tors. To further make sure that no bias is intro-
duced by chance, we repeated the whole procedure
from feature generation to analysis 10 times with
different random states. All reported results are
average values of the corresponding metrics across
these 10 repetitions. As expected, the model failed
to predict human scores on the test set with no cor-
relation between the predicted and observed scores
(average r =-0.004)

A perfect model: The PERFECT model also
contained a single feature, but this time the feature
was equal to the human score with the addition of
random noise. Random noise was also sampled
from a normal distribution with mean =0 and o =
0.2. Like the RANDOM model, this procedure was
applied to the whole data set without using any in-
formation about a test-taker’s L1 or any properties
of their response beyond the human score. We ex-
pect this model to be fair because it distinguishes
test-takers primarily based on their human scores
which are implicitly taken as proxies for language
proficiency. As in case of the RANDOM model, we
repeated the whole procedure 10 times to ensure
no bias had been introduced accidentally during
random sampling. Unsurprisingly, these models
achieved an almost perfect performance on the test
set with average r = 0.97.

An almost perfect model: The
~PERFECT model was identical to the PER-
FECT model, except that the random noise added
to the human score when generating the “feature”
was sampled from a normal distribution with o
= 0.5, that is the model was less accurate. Like
the PERFECT model, this model also distinguishes
test-takers primarily based on their language pro-
ficiency. This model achieved a good performance
on the test set with average r = 0.83.

Metadata-based model: While RANDOM and
PERFECT models were designed to be blind to any
L1-effects, the META model only relied on demo-
graphic information. It included two features: the
native country of the test-taker and the country
where they took the test. While this model did



not directly make use of L1, it used two closely
related features (in our data, L1 was closely re-
lated to the native country and test country). The
model achieved a moderate performance of r =
0.44. Since this model differentiates test-takers
based on their geographic location and not on their
language proficiency, we expect that this model
should not be deemed fair.

4 Fairness evaluations

4.1 Standardized mean differences

We first computed standardized mean difference
(SMD) a standard measure used to evaluate the
fairness of automated scoring engines (Williamson
et al., 2012). To do so, both human and system
scores were converted to z-scores using their re-
spective means and standard deviations. SMD for
each group is the average difference between such
standardized human and system scores within this
group (System score - human score). Absolute
values above 0.1 are considered an issue of con-
cern and require further evaluation (Williamson
et al., 2012).

RANDOM PERFECT ~PERFECT META
ARA | 0.02 -0.00 0.00 0.14
CHI | 0.22 0.01 0.03 -0.40
GER | -0.78 -0.02 -0.13 0.93
JPN | 0.63 0.02 0.11 -0.70
KOR | 0.17 0.00 0.03 -0.30
SPA | -0.20 -0.01 -0.02 0.27

Table 1: Standardized mean difference (system-
human) for 6 languages in our corpus for scores gen-
erated by different models. Absolute values above 0.1
threshold are highlighted in bold

Table 1 shows SMDs for the four models. As we
predicted, the speakers of all languages would be
disadvantaged by using the META model. Yet sur-
prisingly, even in the case of the ~PERFECT model
two of the languages, GER and JPN, show absolute
SMDs slightly above the recommended 0.1 thresh-
old. In other words, the evaluation suggests that
speakers of these two languages are not treated
fairly by the model: GER speakers are underscored
while JPN speakers are over-scored.

Yet we know that the ~PERFECT model by de-
sign is blind to test-taker’s L1. Why then do we
see relatively large SMDs? The reason is the un-
usual score distribution for these two groups of
test-takers and consequently the large difference
in their mean scores. As shown in Table 2, the
scores are not distributed uniformly: the propor-

1 2 3 4 | Mean
ARA | 0.05 0.29 051 0.14 2.74
CHI 0.03 037 055 0.04 2.60
GER | 0.00 0.05 054 041 3.35
JPN 0.11 052 034 0.02 2.29
KOR | 0.05 036 049 0.10 2.63
SPA | 0.02 0.23 058 0.17 2.92

Table 2: Proportion of responses assigned each of the
four possible human scores for test-takers with each L1
and mean human score for each group

tion of ‘2’ and ‘3’ is much higher (80% of all
scores) than the proportion of ‘1’ and ‘4’. Fur-
thermore, proficiency levels as measured by hu-
man scores vary greatly across the 6 groups in our
study: GER speakers have a very high proportion
of score 4 responses (40.9%) and a mean score of
3.35, while JPN speakers have a high number of
responses scored as ‘1’ or ‘2’ (63%) and a mean
score of 2.286. The very uneven score distribu-
tion in the training set, in combination with the
noise we introduced to the ‘feature’, resulted in
greater prediction error at the edges of the scale:
mean standardized score differences is 0.35 for re-
sponses scored 1 and -0.29 for responses scored 4
vs. 0.17 for responses scored 2 and -0.05 for re-
sponses scored 3. This in combination with the
unusual score distribution lead to higher absolute
SMDs for GER and JPN speakers.

To confirm that the observed differences are due
to score distribution and are not an artefact of the
model-training process, we sampled from the test
set a subset of 2,700 responses (450 responses per
group) with identical (but not uniform) distribu-
tions of human scores in each group: the sample
sizes for each score level were determined by the
maximum number of responses available for this
score level from all L1s. As a result, 80% in this
sample received a score of ‘3’, 13% received a
score of ‘2’, 5% received a score of ‘4’ and 1%
received a score of ‘1’. The mean human score
for all subgroups was 2.9. We then recomputed
SMDs using only this subset. While SMDs for the
META model remained high, the absolute SMDs
for the other three models were all below 0.02.

4.2 Measuring different dimensions of
fairness

In this section we propose a set of measures that
capture different definitions of fairness. Note that
not all definitions of fairness considered in Berk
et al. (2018) are applicable to automated scoring



in assessment: thus we do not expect statistical
parity that is the same marginal score distribution
for all groups. The unequal distribution of social,
economic, and educational resources means that
some differences in performance across groups are
to be expected (AERA, 1999).

The three definitions that we will consider in
this paper are: (1) Overall score accuracy; (2)
Overall score difference; (3) Conditional score dif-
ference.”

The overall score accuracy (OSA) measures
whether automated scores are equally accurate for
each group by looking at differences in squared er-
ror (S — H)? (where H is the human score for a
given response and S is the system score). This
measure is essentially the same as predictive ac-
curacy for different groups considered in previ-
ous studies on automated scoring (Ramineni and
Williamson, 2013; Yao et al., 2019). To get a
numeric estimate we fit a linear regression with
squared error as a dependent variable and test-
taker L1 as an independent variable, used the R?
from this model as a measure of model fairness:
larger R? indicates high impact of L1 on score ac-
curacy.’

The overall score difference (0SD) considers
whether automated scores are consistently differ-
ent from human scores for members of a certain
group. Since we are interested in the sign of dif-
ference we are using actual error S — H for each
response rather than squared error. This measure
is generally similar to what is evaluated by SMDs
and similar in spirit to the ‘Treatment equality’ in
Berk et al. (2018). To get a numeric estimate we fit
a linear regression with error as a dependent vari-
able and test-taker L1 as an independent variable,
and used the R? from this model as a measure of
model fairness: larger R? values indicate high im-
pact of L1 on score differences.

The conditional score difference (CSD) shows
whether automated scoring engines assign differ-
ent scores to speakers from different groups de-
spite their having the same language proficiency.

2For the sake of simplicity we will not consider the fifth
definition of fairness: conditional use equality, that is do the
same automated scores assigned to different group members
correspond to the same proficiency level? This is another im-
portant dimension of fairness that affects score use and inter-
pretation and we will return to it in future work.

3We treat all responses as independent since mixed linear
model analysis showed no clustering by speaker in our data.
This assumption may not hold for all data sets in which case
mixed models might be necessary.

This is similar to conditional procedure equality in
Berk et al. (2018). In educational measurement, a
similar approach has been applied to feature anal-
ysis and is known as “differential feature function-
ing” (Zhang et al., 2017). Using human scores as
a proxy for language proficiency, we can estimate
this metric by fitting a linear regression with er-
ror S — H as a dependent variable, and both test-
taker L1 and human score as independent vari-
ables. To evaluate the impact of L1 beyond human
scores, we first fit the model with human scores
only and then compared the difference in R? val-
ues between the two models. We use analysis of
variance to establish whether the difference is sig-
nificant. As with overall score difference, larger
R? values indicate higher impact of L1 on auto-

matic scores®.
Actual Equal
OSA OSD CSD | OSA OSD CSD
RANDOM 020 .189 ns ns ns ns
PERFECT ns 012 ns ns ns ns
~PERFECT | .003 .058 ns ns ns ns
META 011 .002 .207 | .050 .352 .354

Table 3: Adjusted R? showing the percentage of vari-
ance in scoring error attributed to L1 for different mod-
els and score distributions (equal and actual score dis-
tribution). Larger values correspond to the greater im-
pact of L1 on scoring error. Cells marked ‘ns’ mean
that the effect of L1 was not significant at a=0.01. See
section 4.2 for further explanation.

4.3 Evaluation on simulated models

Table 3 shows the results of these evaluations for
the four models considered in this section. Since
based on the results in previous section we expect
the overall difference to be dependent on score dis-
tribution, we conducted all analyses twice: once
using the whole test set (“‘actual score distribu-
tion”) and once using the subset with identical
score distribution across all groups described in
4.1.

As expected, Table 3 shows a striking differ-
ence in results between the two samples. When
the score distribution is held constant across the
groups, we see the results we expect from the de-
sign of the model: L1 was observed to have a sig-
nificant effect on only the META model. For all

“The code used to compute these met-
rics is  open-sourced as part of RSMTool:
https://github.com/Educational TestingService/rsmtool
(Madnani et al., 2017)
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Figure 1: Average system score conditioned on human score for different models and native languages

other models, there was no significant impact of
L1 on scores.

A different picture emerges when we consider
results on the actual score distribution. As we
already observed for SMDs, we saw a signifi-
cant impact of L1 on the OSD. It was particu-
larly large for the RANDOM and ~PERFECT mod-
els, but we also saw a consistent, albeit small, ef-
fect for the PERFECT model. In addition, there
was a difference in OSA for both RANDOM and
~PERFECT models. As expected, no CSD was ob-
served for any of the models other than META. We
will return to this finding in the discussion.

5 Application to automated speech
scoring

5.1 Automated scoring engine

We will now now apply these evaluations to the ac-
tual scores produced by an automated speech scor-
ing engine similar to the one described in Chen
et al. (2018). The ASR system was trained using
the Kaldi toolkit (Povey et al., 2011) on a propri-
etary corpus consisting of 800 hours of non-native
speech from 8,700 speakers of more than 100 na-
tive languages. There was no overlap of speakers
or questions between the ASR training corpus and
the corpus used in this paper. We did not addition-
ally adapt the ASR to the speakers or responses in
this study.

For each response, we extracted 77 non-sparse
continuous features which covered two of the three
aspects of language proficiency considered by the
human raters: delivery (i.e., prosody, pronuncia-
tion, fluency) and language use (i.e., grammar, vo-
cabulary). The correlation between different fea-
tures and human scores varied between 7=0.05 and
r=0.63. For this study we did not use any features

that cover the content of the response.

5.2 Scoring models

Baseline model: As a baseline (BASE) we used a
model which included all 77 features. The model
was fitted using Ridge regression available via
RSMTool, an open-source tool for training auto-
mated scoring models (Madnani et al., 2017). The
model coefficients were estimated using all re-
sponses in the training set with human score as
the dependent variable and features as indepen-
dent variables. The model parameters were used
to generate predictions on the test set. The corre-
lation between automated and human scores was r
=0.71.

L1-specific model: We also trained a separate
L1 model for each native language using only re-
sponses from test-takers from this group and the
same general procedure as for the BASE model
and then pooled together predictions from these
six models for evaluation. The overall correlation
for all pooled predictions was r = 0.72, similar to
the BASE model. We expect that this model might
reduce the score error for each L1 but will likely
increase CSD as it makes use of speaker L1 in the
scoring process.

Model with “fairer” feature subset: Some of
the features in our model showed greater differen-
tial feature performance; in other words, feature
values differed across groups even for the same
score level. This, in turn, could result in differ-
ent scores for different groups. To identify such
features, we repeated the same analysis as used to
compute conditional procedure accuracy but using
each feature as a dependent variable. The amount
of variance attributed to native language for dif-
ferent features varied between <0.1% and 11%
with median at 3.4%. We used 3% as a thresh-



old and excluded features where more than 3% of
feature variance could be attributed to native lan-
guage. This left us with 34 out of 77 features.
These analyses were done using the training set.
We then used this subset of 34 features to re-fit the
Ridge regression to the training set and to generate
predictions for the test set. This FAIR(ER) model
achieved r = 0.67, a small loss in performance
considering that we removed more than half of
all features. This model was optimized to reduce
CSD but it might do so at the cost of other mea-
sures.

5.3 Model fairness

The fairness evaluations for these three models are
summarized in Table 4. For the BASE model, test-
taker L1 explained 1.7% of variance in OSD and
6.2% of variance in CSD. There also was a small
difference in OSA. In other words, these evalua-
tions pointed towards a small but significant bias
in model performance.

Actual Equal

OSA OSD CSD | OSA OSD CSD
BASE .002 .017 .062 | .008 .112 .112
L1 .003 ns 135 | 014 222 223
FAIR(ER) | .004 .045 .030 | .004 .054 .055

Table 4: Adjusted R? showing percentage of variance
in scoring error attributed to L1 for different models
and score distributions. See caption to Table 3 and sec-
tion 4.2 for further explanation

To further understand the nature of these differ-
ences, we can look at the estimates for each group
produced by the model in Table 5. For estimates
computed on the actual score distribution we see
that not only the size but also the direction of dif-
ferences differs depending on whether we look at
the overall or conditional difference. Thus, for
example, the overall difference for GER speakers
suggests lower overall automated scores relative to
human scores than for the reference group (SPA),
while the conditional difference implies that the
automated scores are higher relative to human rat-
ings than for the reference group when speaker
language proficiency is held constant.

Since we already saw that overall differences
may be affected by the score distributions, Table
5 also shows the estimates for the model fitted
to the subset of responses where the score dis-
tribution is held constant across all groups. In
this case, OSA and OSD estimates are identi-
cal and show that given the same level of profi-

ciency the model in fact assigns higher scores to
GER speakers relative to human scores and lower
scores to JPN speakers relative to human scores. In
other words, in the actual data this difference for
GER speakers is compensated by the score distri-
bution effects. Conditional score differences for
the three models are illustrated in Figure 2. For
comparison, Figure 1 shows the same plots for
simulated models.

Actual Equal
OSA OSD CSD OSA OSD CSD
ARA | ns 0.06 ns ns ns ns
CHI | ns 0.09  -0.10 | ns -0.12  -0.12
GER | ns -0.11 0.16 | 0.06 020 0.20
JPN ns ns -0.33 | 0.08 -0.31 -0.31
KOR | ns 0.06 -0.11 | ns -0.10 -0.10

Table 5: Model estimates for 6 languages in our corpus
for scores generated by the BASE model. SPA is used as
a reference category.

For the other two models the evaluations
in Table 4 are consistent with our predictions:
FAIR(ER) model has the lowest CSD (0.03) while
for the L1 model CcSD more than doubled and
reached 0.135. At the same time OSD shows the
reverse pattern with the L1 model outperforming
both BASE and FAIR(ER) model. All three mod-
els show small but significant OSA.

Finally, we compared these results with the
standardized mean differences in Table 6. As in
the case of simulated models, SMDs allowed us
to reach the same general conclusion: L1 model
is the least fair and FAIR(ER) model is proba-
bly the most fair of the three models. Yet in
this case SMDs also obscure the fact that both
BASE and FAIR(ER) model might be over-scoring
GER speakers: in fact the SMDs for the two mod-
els have the opposite sign.

BASE  FAIR(ER) L1
ARA | 0.07 0.08 -0.01
CHI 0.04 0.10 -0.13
GER | 0.08 -0.07 0.35
JPN -0.26 -0.18 -0.24
KOR | 0.00 0.05 -0.11
SPA 0.06 0.02 0.11

Table 6: Standardized mean difference for 6 languages
in our corpus for scores generated by different models.
Absolute values above the 0.1 threshold are highlighted
in bold
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Figure 2: Average system score conditioned on human score for different models and native languages

6 Discussion

In this paper we considered three definitions of
fairness in the context of automated scoring: (1)
Overall score accuracy - are automated scores
equally accurate for all groups of interest? (2)
Overall score difference - are automated scores
consistently higher or lower than human scores
for members of different groups? (3) Conditional
score difference - are automated scores consis-
tently higher or lower for members of different
groups despite them having the same language
proficiency? These three metrics capture different
dimensions of fairness and answer different ques-
tions.

Ideally, automated scores should be fair along
all of these dimensions and as we showed it is
possible if the automated scores are a perfect pre-
diction of human scores (error = 0 for all scores)
or if the human score distributions are the same
across all groups. Yet in practice, achieving
such total fairness may not be possible. Thus,
even scores from the PERFECT model (r=0.97)
failed to achieve overall score difference equal-
ity. The scores from the ~PERFECT model, with
slightly less accurate automated scores than the
PERFECT model, failed to achieve both overall
score accuracy equality and overall score differ-
ence equality when evaluated on the data with ac-
tual score distribution.

Notably when the score distributions differ
across groups, the three different dimensions of
fairness are not necessarily aligned with each
other. Thus the META model based on metadata
only was better than the PERFECT model in terms
of the overall score difference equality: there was
almost no variation between the groups. Yet as
expected, it failed the conditional score difference

equality test since the scores were assigned based
on test-taker geographic location rather than lan-
guage proficiency.

Similarly for actual models, the model trained
separately for each native language is most fair in
terms of overall score differences since the predic-
tions for each group are centered around the group
mean. Yet this model is the worst of the three we
considered in terms of conditional score difference
which is unsurprising given that test-taker native
language is considered when assigning the score.

None of these definitions of fairness is in prin-
ciple more important than another. Overall score
accuracy equality might be more desirable if a sys-
tem is deployed independently in many countries
and the scores are never compared across coun-
tries. At the same time a system that achieves high
overall score accuracy equality but fails to achieve
conditional score difference equality would not be
acceptable in a high-stakes international assess-
ment context.

In automated scoring model fairness issues have
often been interpreted as emerging from particular
linguistic patterns exhibited by a group in ques-
tion or implicit use of group membership in scor-
ing procedure. As we have shown throughout this
paper, not all measures of fairness are good indica-
tors of such group awareness. Thus overall score
accuracy was in fact higher for the META model
than for the RANDOM model. It also did not differ-
entiate between generic and L1-specific models.
It is also not the case that group unaware models
will be more fair across all dimensions: the RAN-
DOM model was blind to group membership and
yet it was not deemed totally fair. And indeed a
system that assigns a random score would clearly
disadvantage a very proficient speaker but might
be advantageous for a low proficiency speaker. If



proficiency is aligned with group membership, this
can mean that the model favors certain groups over
others.

Finally, the distinction between different as-
pects of fairness is crucial for fine-tuning the auto-
mated scoring models, especially the ones that do
not lend themselves easily to interpretation. Thus
for example the model optimized to minimize the
overall score differences might in fact learn to
“hold the thumb on the scale” by indirectly us-
ing group membership as was the case with our
L1 model. On the other hand, the model opti-
mized for minimal conditional score differences
may not be equally accurate for all groups. Un-
like SMDs, that conflate different aspects of fair-
ness into the same dimension, different measures
discussed in this paper provide different informa-
tion that helps better understand subgroup differ-
ences in the performance of an automated scor-
ing engines. Thus for example in a hypothetical
scenario where the ~PERFECT model is deployed
for scoring, SMDs rightly point out that German
speakers as a group would see a reduction in their
scores: the mean score for this group would de-
crease from 3.35 to 3.16. This could be a problem
if old and new scores are ever compared at indi-
vidual or group levels. Yet it would be counter-
productive to search for solutions by looking for
idiosyncrasies in the way the scoring engine han-
dles the responses from German speakers. To re-
solve this problem the engine developers would
need to focus on generally improving model per-
formance, especially at scale edges.

7 Conclusion

We considered different definitions of fairness
of an automated scoring system and argued that
achieving all of them simultaneously may not be
possible as long as the automated scores are not
in perfect agreement with human scores and the
score distributions vary across groups. In this pa-
per we considered human scores to be the true
‘gold standard’ measure of language proficiency.
Yet in most practical applications human scores
are likely to contain a certain amount of error and
possibly even bias which brings additional com-
plexity to fairness evaluations. At the same time,
at least in some contexts, automated scoring can
improve overall score reliability and consistency
which benefits all takers. Ultimately, both the
magnitude and the nature of the impact of auto-

mated scores on score differences between groups
needs to be weighed against other benefits of us-
ing automated scoring in a particular educational
application and the consequences for the final user.
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