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Abstract

For morphologically rich languages, word em-
beddings provide less consistent semantic rep-
resentations due to higher variance in word
forms. Moreover, these languages often al-
low for less constrained word order, which fur-
ther increases variance. For the highly agglu-
tinative Hungarian, semantic accuracy of word
embeddings measured on word analogy tasks
drops by 50-75% compared to English. We
observed that embeddings learn morphosyntax
quite well instead.

Therefore, we explore and evaluate several
sub-word unit based embedding strategies —
character n-grams, lemmatization provided
by an NLP-pipeline, and segments obtained
in unsupervised learning (morfessor) — to
boost semantic consistency in Hungarian word
vectors.  The effect of changing embed-
ding dimension and context window size have
also been considered. Morphological analysis
based lemmatization was found to be the best
strategy to improve embeddings’ semantic ac-
curacy, whereas adding character n-grams was
found consistently counterproductive in this
regard.

1 Introduction

Word embeddings show amazing capabilities
in representing semantic relations, which has
been demonstrated in analogical reasoning tasks
(Mikolov et al.,, 2013b; Gladkova and Drozd,
2016). They are also capable of learning mor-
phosyntax, showing again a consistent mapping of
grammatical operations, i.e. inflections (see Sec-
tion 2). Word embeddings obtain such semantic
and syntactic capabilities by matching the words
to their observed contexts (or vice versa). Since
the size of the word vector table is the vocabu-
lary size times the embedding dimension, for lan-
guages with rich morphology (especially aggluti-
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native ones), this results in huge matrices (Takala,
2016). The vocabulary needs to be increased for
morphologically rich languages to ensure a high
enough coverage for the overall occurring words.
Furthermore, to obtain a reliable estimate of word
vectors, a larger training corpus is required so that
theoretically the same convergence of the estima-
tion can be reached than for a non agglutinative
language. Finally, morphologically rich languages
can express grammatical relations through suffixes
(i.e. case endings) and hence let the word order
becoming less constrained than in configurational
languages. This can result in higher context vari-
ability, which translates again into less accurate
estimates (i.e. the effect of migrating words out-
side the context window can be imagined as a
kind of smoothing, making representation more
blurred). Augmenting the size of the context win-
dow is not a effective counter-measure, as it will
result again in higher variability of the context.

Bojanowski et al. (2017) proposes character
level enhancement for word embeddings to over-
come difficulties caused by unseen or rare words.
It is demonstrated for a large set of languages
that adding character n-grams to the embeddings
can be a powerful way of generating word vec-
tors for unseen words, and this augments both se-
mantic and syntactic consistency (and accuracy)
of the embeddings. However, Bojanowski et al.
(2017) tests no highly agglutinative language for
their embeddings’ syntactic and semantic accura-
cies with and without n-grams.

We conduct proper evaluation on an analogy set
for Hungarian (Makrai, 2015) designed accord-
ing to the standard Mikolov et al. (2013a), and
show that the already weak baseline semantic ac-
curacy consistently decreases when character n-
grams are added. On the other hand, embeddings
learn the complex Hungarian morphosyntax quite
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well. Our ambition in this work is to address these
issues emerging from large vocabulary and less
constrained word order. We systematically inves-
tigate and analyze sub-word embedding strategies
for the very highly agglutinating Hungarian lan-
guage. We are basically interested in benchmark-
ing syntactic and semantic accuracies with each of
the methods, therefore we are primarily engaged
in testing morphological analysis, lemmatization
and stemming based alternatives.

2 Related work

The closest work to ours is a concurrent study
(Zhu et al., 2019) of subword models especially
for morphologically rich languages across differ-
ent tasks. Unfortunately they miss Hungarian,
which leaved a huge gap, as they find that per-
formance is both language- and task-dependent.
They find that unsupervised segmentation (e.g.,
BPE, Morfessor, see later in this section) is some-
times comparable to or even outperform super-
vised word segmentation.

Morphology in word embeddings The mor-
phologically informed approach to composition-
ally gained word embedding vectors start with
Lazaridou et al. (2013) and Luong et al. (2013),
who train a Recursive Neural Network, which
builds representations for morphologically com-
plex words from their morphemes.

The work of Soricut and Och (2015) can be re-
garded as the unsupervised counterpart of Mikolov
et al. (2013b)-style analogical questions. Soricut
induces morphological relations as the systematic
difference of embedding vectors in an unsuper-
vised manner. They evaluate on word-similarity.

Relying on existing morphological resources,
Cotterell et al. (2016) introduce a latent-variable
morphological model that extrapolates vectors for
unseen words, and smoothes those of observed
words over several languages.

Cao and Rei (2016) introduce a joint model
for unsupervised segmentation and weighted
character-level composition. Cotterell et al. (2018)
compute supervised models for the same two
sub-tasks of morphological analysis, also in-
duces a canonical form (i.e. models orthographic
changes).

Language modeling and characters Morpho-
logically compositional language modeling proper
begins with Botha and Blunsom (2014)’s decoder
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in machine translation to morphologically rich
languages, which is unsupervised with respect
to morphological segmentation. Cotterell and
Schiitze (2015) augment the log-bilinear language
model (LM) (Mnih and Hinton, 2007) with a
multi-task objective for morphological tags along
with the next word.

Character n-gram features proved to be pow-
erful as the basis of Facebook’s fastText classi-
fier (Joulin et al., 2016). Subword units based
on byte-pair encoding have been found to be par-
ticularly useful for machine translation (Sennrich
et al., 2016), and even in models based on matrix
factorization (Salle and Villavicencio, 2018).

Hungarian In their de-glutinatve method, Bor-
bély et al. (2016) and Nemeskey (2017) split all
inflectional prefixes into separate tokens for bet-
ter morphological generalization. Nemeskey opts
for supervised morphological knowledge because
of linguistic interpretability. Lévai and Kornai
(2019) analyze Hungarian word embedding vec-
tors grouped by the morphological tag of the cor-
responding word. They investigate whether the
coherence of these classes correlate with the speci-
ficity or the frequency of the tag.

3 Experiments

3.1 Corpus, segmentation, and embeddings

For training the word vector models, we rely on
the fastText (Joulin et al., 2016) tool, which also
allows for augmentation with character n-grams,
if desired. We do not use stemming, but go in-
stead for some more sophisticated analysis. As we
explained, our primary goal is benchmarking the
individual approaches.

For a true morphological analysis, we use the
magyarldnc (Zsibrita et al., 2013) toolkit, which
provides lemmatization in the form of a stem
plus a suffix series, also decomposed into individ-
ual component morphemes. Although some dis-
ambiguation capability arises from sentence level
part-of-speech tagging, magyarlanc may end up
with several hypotheses for the morphological
composition of the input word. Fortunately this
happens rarely at the lemma level. If still, the
shortest lemma is used.

For unsupervised pseudo-morphemic analysis,
we use Morfessor (Virpioja et al., 2013). Mor-
fessor has been used to provide subword unit to-
kens for Automatic Speech Recognition in heav-



Parameter Value range

Frequency cut-off 5
Min length of char ngram none or 3
Max length of char ngram  none or 6
Embedding dimension 100-200
Context window 5-25
Learning rate (o) 0.05

« update interval 100
Number of epochs 15
Negative sampling loss yes
Negative samples 5
Pretraining none

Table 1: Embedding vector trainer parameters.

ily agglutinative languages, with improved accu-
racy (Enarvi et al., 2017) over word based vocab-
ularies and models. Morfessor is based on statis-
tical machine learning. In order to reflect that the
provided subword units are not true morphemes in
the grammatical sense, they are called morfs.

The text corpus we use is a contemporary dump
of Hungarian language web pages constructed for
this paper, which covers mostly online newspapers
in various fields from years 2014-2018. The cor-
pus has over 70 M word tokens. Text normaliza-
tion is performed with a Python script.

3.2 Analogical questions

Our approach is to train word embeddings in dif-
ferent scenarios and assess syntactic and seman-
tic accuracies based on a Hungarian analogy test
(Makrai, 2015) that has been constructed accord-
ing to (Mikolov et al., 2013a). For the seman-
tic accuracy, we use country-capital and
country—-currency pairs. For the syntactic
accuracy we use singular—-plural for nouns,
present-past tense for verbs and base
vs comparative forms for adjectives.

3.3 Fasttext settings

There are three main parameters which are con-
trolled during the experiments: (i) whether we use
character n-gram augmentation or not; (ii) the size
of the context window; and (iii) the target dimen-
sion of the resulting embedding vectors. We pre-
ferred to preserve all other parameters of fastText
at their default value. The most important of these
parameters are summarized in Table 1.
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3.4 Embedding strategies

Word vectors (W) This constitutes our baseline.
A standard word embedding is trained with fast-
Text, no prior stop word filtering is applied.

Lemma vectors (L) The magyarldnc toolkit is
used for morphological analysis. Lemmas are
identified and used as embedded entities. Note
that whereas ambiguity on the entire morphologi-
cal composition may arise, ambiguity affecting the
lemma’s surface form is rare. If this still occurs,
the shortest form is used.

Morf vectors (M) Running Morfessor yields a
morf based split-up. Morfs become the model-
ing unit (subword unit). As an alternative, using
the root (R) yielded by Morfessor is evaluated as
well. The word embedding is trained on the cor-
pus with words divided into segments (as if they
were separate words). During testing in analogi-
cal questions, query words are also spitted to seg-
ments, and their vectors are computed as the sum
of the segments’ vectors.

Vector dimension is changed between 100 and
200. We did not consider using higher dimensions
to avoid making down-stream applications heavy.

More experimental details and related work can
be found in a longer version of this paper, which
appeared at Repl4dNLP 2019. We will refer to the
individual setups by specifying the unit out of {W,
L, M, R} and the dimension, e.g. L200 will refer to
lemma as unit and 200-dimensional embeddings.

4 Results

4.1 Extending the context window

As we pointed out in Section 1, using wider con-
text may help in overcoming the difficulties result-
ing from the less constrained word order of Hun-
garian. A wider context window allows for captur-
ing words further apart, but it may have an adverse
effect as well, because the context becomes more
noisy (variable). Relative data sparsity may also
be a problem when a larger context is considered.
So basically our research question related to the
context of a word is that whether the benefits of
capturing further apart words can be superior com-
pared to the negative effect of increasing variance
w.r.t the occurring context words.

It has been reported (Lebret and Collobert,
2015) that semantic analogical questions benefit
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Figure 1: Semantic accuracies of Hungarian 100 di-
mensional embeddings with different strategies.
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Figure 2: Syntactic accuracies of Hungarian 100 di-
mensional embeddings with different strategies.

from larger windows, while syntactic ones do not.
On the contrary, experimenting with SVD models
and different window sizes, Gladkova and Drozd
(2016) find that all categories of analogical ques-
tions are best detected between window sizes 2—4,
although a handful of them yield equally good per-
formance in larger windows. They find no one-on-
one correspondence between semantics and larger
windows. We consider unusually large contexts of
up to 25 words (see Table 1). i

Semantic and syntactic accuracies with 100 di-
mensional embeddings are shown in Figures 1
and 2, respectively. Comparing strategies, using
the lemma (L) for embedding is yielding the high-
est semantic accuracy. Regarding the context win-
dow, our hypothesis that long context windows
may be a better fit is confirmed. All the four strate-
gies consistently show increasing semantic accu-
racy as context window is extended to cover 21
units. Compared to W, L embeddings yield higher
semantic accuracy by 75%. Nevertheless, syn-
tactic accuracies decrease tendentiously when ex-
tending the context window, which is a negative
effect, most likely resulting from the higher varia-
tion seen in a larger window.

Semantic and syntactic accuracies on W100 with/without char Ngrams
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Figure 3: Semantic and syntactic accuracies of Hungar-
ian 100 dimensional word embeddings with (chr) and
without (nochr) character n-grams.

4.2 Adding character n-grams

We have already mentioned in the Introduction
that in contrast to many other languages (Bo-
janowski et al., 2016), the very highly agglutina-
tive Hungarian cannot profit from adding charac-
ter n-grams to the embeddings: semantic (but also
syntactic) accuracy gets lower. We suppose that
this happens because agglutination is frequent and
hence word vectors become universal (i.e. they
cannot specialize for the context). The less con-
strained word order interplays in this, too.

Figure 3 shows how semantic and syntactic ac-
curacies change when adding character n-grams
(sem-+chr and syn+chr, respectively) in the W100
case. We present again a trend with increasing
context window size on the horizontal axis to al-
low for easy comparison with the previous results.

Regarding semantic accuracies, no benefit is
registered when adding character n-grams with
any of the 4 investigated embedding strategies.

Adding character n-grams becomes helpful at
the syntax level in some cases, syntactic accura-
cies augment for the L.100, L200 and R200 sce-
narios. Nevertheless, the basis is very low as for
using the lemmas or morf roots, most of the mor-
phosyntactic information is lost. Not surprisingly,
semantics improves with a large window, while
morphosyntax does not.

4.3 Embedding dimension

Figure 4 compares semantic accuracies of 100 and
200 dimensional scenarios with a context window
of 21. Increasing the embedding dimension has
a positive effect on semantic accuracies, as far as
up to 50% relative increase in accuracy. Accu-
racy in individual relations (whose importance has
been shown by Gladkova and Drozd (2016)) are
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Semantic accuracies of 100 vs 200 dimensional embeddings
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Figure 4: Semantic accuracies of Hungarian 100 and
200 dimensional embeddings with different strategies;
context window covers 21 units.

capital-common-countries
capital-world
county-center

66.0% (101/153)
40.3% (2595/6441)
18.2% (12/66)

currency 6.4% (26/406)
family 16.5% (15/91)
Semantic 38.41% (2749/7157)

Table 2: Results in individual semantic relations with
the best setting (magyarldanc, window 21, dimension
200, no character n-grams).

reported in Table 2. We can again observe that
adding character n-grams consistently results in
decreased semantic accuracy.

Increasing embedding dimensions above 200
could be expected to yield further improvement is
semantic accuracies, but we did not address this is-
sue in our current work, which focuses mostly on
the modeling unit and its optimal context.

5 Conclusions

In this work, we analyzed embedding strategies
for the morphologically very rich Hungarian lan-
guage. Unlike may other languages, Hungarian
cannot profit from character n-gram enhancement
of word embeddings, whereas rich morphology re-
sults in very large vocabulary and less constrained
word order, both contributing to very high varia-
tion in the data used for training the embeddings.
Therefore we analyzed subword embedding strate-
gies above the character level. Results showed
that using the lemmas instead of the words was
by far the most effective approach by maximizing
semantic accuracy of the embeddings. Using the
roots yielded by the morfessor tool also con-
tributed to an increase in semantic accuracy, but
to a smaller extent compared to lemmas learned
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in a supervised fashion. Obviously, syntactic ac-
curacies were found decreasing when switching
to lemma units. Adding character n-grams was
counterproductive with any investigated strategy
w.r.t semantic accuracy. Analyzing the effect of
extending the context window showed that despite
the higher variance of units seen in a larger con-
text, embeddings can still profit from these to in-
crease their semantic consistence. This found-
ing was consistent with all investigated sub-word
strategies, and is therefore an efficient way of deal-
ing with the weakly constrained word order.

Future work may investigate whether results
generalize to other embedding algorithms (besides
fastText, the original and the enhanced (Mikolov
et al., 2018) word2vec and the GloVe (Rehﬁfek
and Sojka, 2010) implementations of the continu-
ous bag of words and the skip-gram models could
be tried); extend the ablation over dimensional-
ity up to a few hundred dimensions; and ana-
lyze other morphologically rich languages (e.g.
Finnish, Turkish, or Slavic languages). The bot-
tleneck is that we are restricted to languages to
which the analogical questions have been trans-
lated. As a reviewer noted, the semantic part of
the Mikolov-style analogical questions consist of a
handful of semantic relations between named enti-
ties. It is questionable how appropriate it is to use
them for the evaluation of the embedding strate-
gies, especially that of encoding lexical seman-
tic relations and not the world knowledge. Glad-
kova and Drozd (2016) examine Mikolov et al.
(2013b)-style analogical questions systematically,
finding that different systems shine at different
sub-categories of the morphological and semantic
tasks. They publish a test set which is more dif-
ficult than existing ones. Translating this test set
to morphologically rich languages would be very
useful.
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