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Abstract

We propose a novel application of self-
attention networks towards grammar induc-
tion. We present an attention-based supertag-
ger for a refined type-logical grammar, trained
on constructing types inductively. In addition
to achieving a high overall type accuracy, our
model is able to learn the syntax of the gram-
mar’s type system along with its denotational
semantics. This lifts the closed world assump-
tion commonly made by lexicalized grammar
supertaggers, greatly enhancing its generaliza-
tion potential. This is evidenced both by its
adequate accuracy over sparse word types and
its ability to correctly construct complex types
never seen during training, which, to the best
of our knowledge, was as of yet unaccom-
plished.

1 Introduction

Categorial Grammars, in their various incarna-
tions, posit a functional view on parsing: words
are assigned simple or complex categories (or:
types); their composition is modeled in terms of
functor-argument relationships. Complex cate-
gories wear their combinatorics on their sleeve,
which means that most of the phrasal structure is
internalized within the categories themselves; per-
forming the categorial assignment process for a se-
quence of words, i.e. supertagging, amounts to al-
most parsing (Bangalore and Joshi, 1999).

In machine learning literature, supertagging is
commonly viewed as a particular case of sequence
labeling (Graves, 2012). This perspective points to
the immediate applicability of established, high-
performing neural architectures; indeed, recur-
rent models have successfully been employed
(e.g. within the context of Combinatory Categorial
Grammars (CCG) (Steedman, 2000)), achieving
impressive results (Vaswani et al., 2016). How-
ever, this perspective comes at a cost; the su-
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pertagger’s co-domain, i.e., the different cate-
gories it may assign, is considered fixed, as de-
fined by the set of unique categories in the train-
ing data. Additionally, some categories have dis-
proportionately low frequencies compared to the
more common ones, leading to severe sparsity is-
sues. Since under-represented categories are very
hard to learn, in practice models are evaluated and
compared based on their accuracy over categories
with occurrence counts above a certain threshold,
a small subset of the full category set.

This practical concession has two side-effects.
The first pertains to the supertagger’s inability to
capture rare syntactic phenomena. Although the
percentage of sentences that may not be correctly
analyzed due to the missing categories is usually
relatively small, it still places an upper bound on
the resulting parser’s strength which is hard to ig-
nore. The second, and perhaps more far reach-
ing, consequence is the implicit constraint it places
on the grammar itself. Essentially, the grammar
must be sufficiently coarse while also allocating
most of its probability mass on a small number of
unique categories. Grammars enjoying a higher
level of analytical sophistication are practically
unusable, since the associated supertagger would
require prohibitive amounts of data to overcome
their inherent sparsity.

We take a different view on the problem, in-
stead treating it as sequence transduction. We
propose a novel supertagger based on the Trans-
former architecture (Vaswani et al., 2017) that is
capable of constructing categories inductively, by-
passing the aforementioned limitations. We test
our model on a highly-refined, automatically ex-
tracted type-logical grammar for written Dutch,
where it achieves competitive results for high fre-
quency categories, while acquiring the ability to
treat rare and even unseen categories adequately.
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2 Type-Logical Grammars

The type-logical strand of categorial grammar
adopts a proof-theoretic perspective on natural
language syntax and semantics: checking whether
a phrase is syntactically well-formed amounts to a
process of logical deduction deriving its type from
the types of its constituent parts (Moot and Re-
toré, 2012). What counts as a valid deduction de-
pends on the type logic used. The type logic we
aim for is a variation on the simply typed frag-
ment of Multiplicative Intuitionistic Linear Logic
(MILL), where the type-forming operation of in-
terest is linear implication (for a brief but instruc-
tive introduction, refer to Wadler (1993)). Types
are inductively defined by the following grammar:

Tu=A|Ty 4 Ty

(D

where T, Ty, To are types, A is an atomic type and

< an implication arrow, further subcategorized
by the label d.

Atomic types are assigned to phrases that are
considered ‘complete’, e.g. NP for noun phrase,
PRON for pronoun, etc. Complex types, on the
other hand, are the type signatures of binary func-
tors that compose with a single word or phrase to
produce a larger phrase; for instance NP — S cor-
responds to a functor that consumes a noun phrase
playing the subject role to create a sentence — an
intransitive verb.

The logic provides judgements of the form I' -
B, stating that from a multiset of assumptions
I' = Aq,... A, one can derive conclusion B. In
addition to the axiom A A, there are two rules of
inference; implication elimination (2) and impli-
cation introduction (3)!. Intuitively, the first says
that if one has a judgement of the formT' - A —
B and a judgement of the form A + A, one can
deduce that assumptions I and A together derive
a proposition B. Similarly, the second says that
if one can derive B from assumptions A and T"
together, then from I" alone one can derive an im-
plication A — B.

''-rA—-B AFA

— F

I''AFB ()
ATFB
rrasB 1 3)

T d
"For labeled implications —s, we make sure that compo-
sition is with respect to the d dependency relation.
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The view of language as a linear type system
offers many meaningful insights. In addition to
the mentioned correspondence between parse and
proof, the Curry-Howard ‘proofs-as-programs’ in-
terpretation guarantees a direct translation from
proofs to computations. The two rules necessary
for proof construction have their computational
analogues in function application and abstraction
respectively, a link that paves the way to seam-
lessly move from a syntactic derivation to a pro-
gram that computes the associated meaning in a
compositional manner.

3 Constructive Supertagging

Categorial grammars assign denotational seman-
tics to types, which are in turn defined via a set
of inductive rules, as in (1). These, in effect, are
the productions a simple, context-free grammar; a
grammar of types underlying the grammar of sen-
tences. In this light, any type may be viewed as
a word of this simple type grammar’s language; a
regularity which we can try to exploit.

Considering neural networks’ established abil-
ity of implicitly learning context-free gram-
mars (Gers and Schmidhuber, 2001), it is reason-
able to expect that, given enough representational
capacity and a robust training process, a network
should be able to learn a context-free grammar
embedded within a wider sequence labeling task.
Jointly acquiring the two amounts to learning a)
how to produce types, including novel ones, and b)
which types to produce under different contexts,
essentially providing all of the necessary build-
ing blocks for a supertagger with unrestricted co-
domain. To that end, we may represent a single
type as a sequence of characters over a fixed vo-
cabulary, defined as the union of atomic types and
type forming operators (in the case of type-logical
grammars, the latter being n-ary logical connec-
tives). A sequence of types is then simply the con-
catenation of their corresponding representations,
where type boundaries can be marked by a special
separation symbol.

The problem then boils down to learning how
to transduce a sequence of words onto a sequence
of unfolded types. This can be pictured as a case
of sequence-to-sequence translation, operating on
word level input and producing character level
output, with the source language now being the
natural language and the target language being the
language defined by the syntax and semantics of



our categorial grammar.

4 Related Work

Supertagging has been standard practice for lex-
icalized grammars with complex lexical entries
since the work of Bangalore and Joshi (1999). In
its original formulation, the categorial assignment
process is enacted by an N-gram Markov model.
Later work utilized Maximum Entropy models
that account for word windows of fixed length,
while incorporating expanded lexical features and
POS tags as inputs (Clark and Curran, 2004). Dur-
ing the last half of the decade, the advent of word
embeddings caused a natural shift towards neural
architectures, with recurrent neural networks be-
ing established as the prime components of recent
supertagging models. Xu et al. (2015) first used
simple RNNs for CCG supertagging, which were
gradually succeeded by LSTMs (Vaswani et al.,
2016; Lewis et al., 2016), also in the context of
Tree-Adjoining Grammars (Kasai et al., 2017).
Regardless of the particular implementation, the
above works all fall in the same category of se-
quence labeling architectures. As such, the type
vocabulary (i.e. the set of candidate categories)
is always considered fixed and pre-specified — it
is, in fact, hard coded within the architecture itself
(e.g. in the network’s final classification layer).
The inability of such systems to account for un-
seen types or even consistently predict rare ones
has permeated through the training and evaluation
process; a frequency cut-off is usually applied on
the corpus, keeping only categories that appear at
least 10 times throughout the training set (Clark
and Curran, 2004). This limitation has been ac-
knowledged in the past; in the case of CCG, cer-
tain classes of syntactic constructions pose sig-
nificant difficulties for parsing due to categories
completely missing from the corpus (Clark et al.,
2004). An attempt to address the issue was made
in the form of an inference algorithm, which it-
eratively expands upon the lexicon with new cat-
egories for unseen words (Thomforde and Steed-
man, 2011) — its applicability, however, is nar-
row, as new categories can often be necessary even
for words that have been previously encountered.
We differentiate from relevant work in not em-
ploying a type lexicon at all, fixed or adaptive.
Rather than providing our system with a vocab-
ulary of types, we seek to instead encode the type
construction process directly within the network.
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Type prediction is no longer a discernible part of
the architecture, but rather manifested via the net-
work’s weights as a dynamic generation process,
much like a language model for types that is con-
ditioned on the input sentence.

5 Data

5.1 Corpus

The experiments reported on focus on Dutch, a
language with relatively free word order that al-
lows us to highlight the benefits of our non-
directional type logic. =~ For our data needs,
we utilize the Lassy-Small corpus (van Noord
et al., 2006). Lassy-Small contains approximately
65000 annotated sentences of written Dutch, com-
prised of over 1 million words in total. The anno-
tations are DAGs with syntactic category labels at
the nodes, and dependency labels at the edges. The
possibility of re-entrancy obviates the need for ab-
stract syntactic elements (gaps, traces, etc.) in the
annotation of unbounded dependencies and related
phenomena.

5.2 Extracted Grammar

To obtain type assignments from the annotation
graphs, we design and apply an adaptation of
Moortgat and Moot’s (2002) extraction algorithm.
Following established practice, we assign phrasal
heads a functor (complex) type selecting for its
dependents. Atomic types are instantiated by a
translation table that maps part-of-speech tags and
phrasal categories onto their corresponding types.

As remarked above, we diverge from stan-
dard categorial practice by making no distinc-
tion between rightward and leftward implication
(slash and backslash, respectively), rather collaps-
ing both into the direction-agnostic linear impli-
cation. We compensate for the possible loss in
word-order sensitivity by subcategorizing the im-
plication arrow into a set of distinct linear func-
tions, the names of which are instantiated by the
inventory of dependency labels present in the cor-
pus. This decoration amounts to including the la-
beled dependency materialized by each head (in
the context of a particular phrase) within its corre-
sponding type, vastly increasing its informational
content. In practical terms, dependency labeling
is no longer treated as a task to be solved by the
downstream parser; it is now internal to the gram-
mar’s type system. To consistently binarize all of
our functor types, we impose an obliqueness or-
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(a) Derivation for “we geven enkele voorbeelden” (we give some examples), showcasing a simple transitive verb derivation.
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(b) Derivation for “welke rol spelen typen” (which role do types play), showcasing object-relativisation via second-order types.

Type sv1 stands for verb-initial sentence clause.

L

L« onj mod
en - ADJ® — N — N

eenvoudig -+ ADJ

degelijk - ADJ L

L

eenvoudig, en, degelijk - N moe N

od

det
een - N — NP
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een (a), eenvoudig (simple), en (and), degelijk (solid), idee (idea) - NP

(c) Derivation for “een eenvoudig en degelijk idee” (a simple and solid idea), showcasing non-polymorphic conjunction of two

adjectives forming a noun-phrase modifier.

Figure 1: Syntactic derivations of example phrases using our extracted grammar. Lexical type assignments are
the proofs’ axiom leaves marked L. Identity for non-lexically grounded axioms is marked ¢d. Parentheses are
right implicit. Phrasal heads are associated with complex (functor) types. Phrases are composed via function
application of functors to their arguments (i.e. implication elimination: — E)). Hypothetical reasoning for gaps is
accomplished via function abstraction of higher-order types (i.e. implication introduction: — I).

dering (Dowty, 1982) over dependency roles, cap-
turing the degree of coherence between a depen-
dent and the head. Figure 1 presents a few exam-
ple derivations, indicating how our grammar treats
a selection of interesting linguistic phenomena.

The algorithm’s yield is a type-logical treebank,
associating a type sequence to each sentence. The
treebank counts approximately 5700 unique types,
made out of 22 binary connectives (one for each
dependency label) and 30 atomic types (one for
each part-of-speech tag or phrasal category). As
Figure 2 suggests, the comprehensiveness of such
a fine-grained grammar comes at the cost of a
sparser lexicon. Under this regime, recognizing
rare types as first-class citizens becomes impera-
tive.

Finally, given that all our connectives are of a
fixed arity, we may represent types unambiguously
using polish notation (Hamblin, 1962). Polish no-
tation eliminates the need for brackets, reducing
the representation’s length and succinctly encod-
ing a type’s arity in an up-front manner.
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Figure 2: Percentage of types and sentences covered as
a function of type frequency. The vast majority of types
(80%) are rare (have less than 10 occurrences). At least
one such type is present in a non-negligible part of the
corpus (12% of the overall sentences). A significant
portion of types (45%) appears just once throughout the
corpus.



6 Model

Even though prior work suggests that both the su-
pertagging and the CFG-generation problems are
learnable (at least to an extent) in isolation, the
composition of the two is less straightforward.
Predicting the next atomic symbol requires for the
network to be able to model local, close-range
dependencies as ordained by the type-level syn-
tax. At the same time, it needs a global recep-
tive field in order to correctly infer full types from
distant contexts, in accordance with the sentence-
level syntax.

Given these two requirements, we choose to
employ a variant of the Transformer for the task
at hand (Vaswani et al., 2017). Transformers
were originally proposed for machine translation;
treating syntactic analysis as a translation task is
not, however, a new idea (Vinyals et al., 2015).
Transformers do away with recurrent architec-
tures, relying only on self-attention instead, and
their proven performance testifies to their strength.
Self-attention grants networks the ability to selec-
tively shift their focus over their own representa-
tions of non-contiguous elements within long se-
quences, based on the current context, exactly fit-
ting the specifications of our problem formulation.

Empirical evidence points to added benefits
from utilizing language models at either side of
an encoder-decoder architecture (Ramachandran
et al.,, 2017). Adhering to this, we employ a
pretrained Dutch ELMo (Peters et al., 2018; Che
et al., 2018) as large part of our encoder.

6.1 Network

Our network follows the standard encoder-decoder
paradigm. A high-level overview of the architec-
ture may be seen in Figure 3. The network accepts
a sequence of words as input, and as output pro-
duces a (longer) sequence of tokens, where each
token can be an atomic type, a logical connective
or an auxiliary separation symbol that marks type
boundaries. An example input/output pair may be
seen in Figure 4.

Our encoder consists of a frozen ELMo fol-
lowed by a single Transformer encoder layer. The
employed ELMo was trained as a language model
and constructs contextualized, 1024-dimensional
word vectors, shown to significantly benefit down-
stream parsing tasks. To account for domain adap-
tation without unfreezing the over-parameterized
ELMo, we allow for a transformer encoder layer
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of 3 attention heads to process ELMo’s output?.

Our decoder is a 2-layer Transformer decoder.
Since the decoder processes information at a dif-
ferent granularity scale compared to the encoder,
we break the usual symmetry by setting its num-
ber of attention heads to 8.

At timestep ¢, the network is tasked with model-
ing the probability distribution of the next atomic
symbol a;, conditional on all previous predic-

tions ag, ...,a;—1 and the whole input sentence
wo, -..,w;, and parameterized by its trainable
weights 0:

p@(at|a07 ceey Gt—1, Wo, - .- 7w‘l')

We make a few crucial alterations to the original
Transformer formulation.

First, for the separable token transformations
we use a two-layer, dimensionality preserving,
feed-forward network. We replace the recti-
fier activation of the intermediate layer with
the empirically superior Gaussian Error Linear
Unit (Hendrycks and Gimpel, 2016).

Secondly, since there are no pretrained embed-
dings for the output tokens, we jointly train the
Transformer alongside an atomic symbol embed-
ding layer. To make maximal use of the extra pa-
rameters, we use the transpose of the embedding
matrix to convert the decoder’s high-dimensional
output back into token class weights. We obtain
the final output probability distributions by ap-
plying sigsoftmax (Kanai et al., 2018) on these
weights.

6.2 Training

We train our network using the adaptive training
scheme proposed by Vaswani et al (2017). We ap-
ply stricter regularization by increasing both the
dropout rate and the redistributed probability mass
of the Kullback-Leibler divergence loss to 0.2.
The last part is of major importance, as it effec-
tively discourages the network from simply mem-
oizing common type patterns.

2Given that no gradient flow is allowed past the trans-
former encoder layer, in practice we compute the ELMo em-
beddings of our input sentences in advance, and feed those
onto the rest of the network.
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Figure 3: The model architecture, where o and o denote the sigsoftmax and argmax functions respectively, grayed
out items indicate non-trainable components and the dotted line depicts the information flow during inference.
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Figure 4: Input-output example pair for the sentence “zijn er toepassingen voor lineaire logica?” (are there applica-
tions for linear logic?). The first two lines present the input sentence and the types that need to be assigned to each
word. The third line presents the desired output sequence, with types decomposed to atomic symbol sequences

under polish notation, and # used as a type separator.

7 Experiments and Results

In all described experiments, we run the model?
on the subset of sample sentences that are at most
20 words long. We use a train/val/test split of
80/10/10*. We train with a batch size of 128, and
pad sentences to the maximum in-batch length.
Training to convergence takes, on average, eight
hours & 300 epochs for our training set of 45000
sentences on a GTX1080Ti. We report averages
over 5 runs.

Accuracy is reported on the type-level; that is,
during evaluation, we predict atomic symbol se-
quences, then collapse subtype sequences into full
types and compare the result against the ground
truth. Notably, a single mistake within a type is
counted as a completely wrong type.

3The code for the model
cessing  scripts can be found @ at
//github.com/konstantinosKokos/
Lassy-TLG-Supertagging.

“It is worth pointing out that the training set contains
only ~85% of the overall unique types, the remainder being
present only in the validation and/or test sets.

and pro-
https:
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7.1 Main Results

We are interested in exploring the architecture’s
potential at supertagging, as traditionally formu-
lated, as well as its capacity to learn the grammar
beyond the scope of the types seen in the training
data. We would like to know whether the latter is
at all possible (and, if so, to what degree), but also
whether switching to a constructive setting has an
impact on overall accuracy.

Digram Encoding Predicting type sequences
one atomic symbol or connective at a time pro-
vides the vocabulary to construct new types,
but results in elongated target output sequence
lengthss. As a countermeasure, we experiment
with digram encoding, creating new atomic sym-
bols by iteratively applying pairwise merges of the
most frequent intra-type symbol digrams (Gage,
1994), a practice already shown to improve gen-
eralization for translation tasks (Sennrich et al.,
2016). To evaluate performance, we revert the
merges back into their atoms after obtaining the

Note that if lexical categories are, on average, made out
of ¢ atomic symbols, the overall output length is a constant
factor of the sentence length, i.e. there is no change of com-
plexity class with respect to a traditional supertagger.


https://github.com/konstantinosKokos/Lassy-TLG-Supertagging
https://github.com/konstantinosKokos/Lassy-TLG-Supertagging
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predictions.

With no merges, the model has to construct
types and type sequences using only atomic types
and connectives. As more merges are applied, the
model gains access to extra short-hands for sub-
sequences within longer types, reducing the tar-
get output length, and thus the number of inter-
actions it has to capture. This, however, comes
at the cost of a reduced number of full-type con-
structions effectively seen during training, while
also increasing the number of implicit rules of the
type-forming context-free grammar. If merging is
performed to exhaustion, all types are compressed
into single symbols corresponding to the indivis-
ible lexical types present in the treebank. The
model then reduces to a traditional supertagger,
never having been exposed to the internal type
syntax, and loses the potential to generate new
types.

We experiment with a fully constructive model
employing no merges (Mg), a fully merged one
i.e. a traditional supertagger, (M), and three
in-between models trained with 50, 100 and 200
merges (Msg, Mjgg and Mggg respectively). Ta-
ble 1 displays the models’ accuracy. In addition to
the overall accuracy, we show accuracy over dif-
ferent bins of type frequencies, as measured in the
training data: unseen, rare (1-10), medium (10-
100) and high-frequency (> 100) types.

Type Accuracy
Overall Unseen Freq Freq Freq
Model Types 1-10 10-100  >100
My 88.05 19.2 45.68 65.62 89.93
M50 88.03 1597 43.69 64.33 90.01
Mioo 87.87 15.02 41.61 63.71 89.9
Maoo 87.54 11.7 3956 624 89.64
Moo 87.2 - 2391 59.03 89.89

Table 1: Model performance at different merge scales,
with respect to training set type frequencies. M; de-
notes the model at ¢ merges, where M, means the fully
merged model. For the fully merged model there is a
1 to 1 correspondence between input words and output
types, so we do away with the separation symbol.

Table 1 shows that all constructive models per-
form overall better than M, owing to a consis-
tent increase in their accuracy over unseen, rare,
and mid-frequency types. This suggests signifi-
cant benefits to using a representation that is aware
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Model New Types Unique Correct (%)
Generated

My 213.6 199.2  44.39 (20.88)

Msg 186.6 1742 37.89 (20.3)

Migo 187.8 173.4  34.31 (18.27)

Magg 190.4 178.8  27.46 (14.42)

Table 2: Repetition-averaged unseen type generation
and precision.

of the type syntax. Additionally, the gains are
greater the more transparent the view of the type
syntax is, i.e. the fewer the merges. The merge-
free model My outperforms all other constructive
models across all but the most frequent type bins,
reaching an overall accuracy of 88.05% and an un-
seen category accuracy of 19.2%.

We are also interested in quantifying the mod-
els’ “imaginative” precision, i.e., how often do
they generate new types to analyze a given input
sentence, and, when they do, how often are they
right (Table 2). Although all constructive mod-
els are eager to produce types never seen during
training, they do so to a reasonable extent. Simi-
lar to their accuracy, an upwards trend is also seen
in their precision, with Mg getting the largest per-
centage of generated types correct.

Together, our results indicate that the type-
syntax is not only learnable, but also a represen-
tational resource that can be utilized to tangibly
improve a supertagger’s generalization and over-
all performance.

7.2 Other Models

Our preliminary experiments involved RNN-based
encoder-decoder architectures. We first tried train-
ing a single-layer BiIGRU encoder over the ELMo
representations, connected to a single-layer GRU
decoder, following Cho et al. (2014); the model
took significantly longer to train and yielded far
poorer results (less than 80% overall accuracy and
a strong tendency towards memoizing common
types). We hypothesize that the encoder’s fixed
length representation is unable to efficiently cap-
ture all of the information required for decoding a
full sequence of atomic symbols, inhibiting learn-
ing.

As an alternative, we tried a separable LSTM
decoder operating individually on the encoder’s
representations of each word.  Even though
this model was faster to train and performed



marginally better compared to the previous at-
tempt, it still showed no capacity for generaliza-
tion over rarer types. This is unsurprising, as this
approach assumes that the decoding task can be
decomposed at the type-level; crucially, the sepa-
rable decoder’s prediction over a word cannot be
informed by its predictions spanning other words,
an information flow that evidently facilitates learn-
ing and generalization.

8 Analysis
8.1 Type Syntax

To assess the models’ acquired grasp of the type
syntax, we inspect type predictions in isolation.
Across all merge scales and consistently over all
trained models, all produced types (including un-
seen ones) are well-formed, i.e. they are indeed
words of the type-forming grammar. Further, the
types constructed are fully complying with our im-
plicit notational conventions such as the oblique-
ness hierarchy.

Even more interestingly, for models trained on
non-zero merges it is often the case that a type is
put together using the correct atomic elements that
together constitute a merged symbol, rather than
the merged shorthand trained on. Judging from
the above, it is apparent that the model gains a
functionally complete understanding of the type-
forming grammar’s syntax, i.e. the means through
which atomic symbols interact to produce types.

8.2 Sentence Syntax

Beyond the spectrum of single types, we examine
type assignments in context.

We first note a remarkable ability to correctly
analyze syntactically complex constructions re-
quiring higher-order reasoning, even in the pres-
ence of unseen types. An example of such an anal-
ysis is shown in Fig 5.

For erroneous analyses, we observe a strong
tendency towards self-consistency. In cases where
a type construction is wrong, types that interact
with that type (as either arguments or functors)
tend to also follow along with the mistake. On
one hand, this cascading behavior has the effect
of increasing error rates as soon as a single er-
ror has been made. On the other hand, how-
ever, this is a sign of an implicitly acquired no-
tion of phrase-wide well-typedness, and exempli-
fies the learned long-range interdependencies be-
tween types through the decoder’s auto-regressive
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formulation. On a related note, we recognize the
most frequent error type as misconstruction of
conjunction schemes. This was, to a degree, ex-
pected, as coordinators display an extreme level
of lexical ambiguity, owing to our extracted gram-
mar’s massive type vocabulary.

8.3 Output Embeddings

Our network trains not only the encoder-decoder
stacks, but also an embedding layer of atomic
symbols. We can extract this layer’s outputs
to generate vectorial representations of atomic
types and binary connectives, which essentially
are high-dimensional character-level embeddings
of the type language.

Considering that dense supertag representations
have been shown to benefit parsing (Kasai et al.,
2017), our atomic symbol embeddings may be fur-
ther utilized by downstream tasks, as a highly re-
fined source of type-level information.

8.4 Comparison

Our model’s overall accuracy lies at 88%, which
is comparable to the state-of-the-art in TAG su-
pertagging (Kasai et al., 2017) but substantially
lower than CCG (Clark et al., 2018). A direct nu-
meric comparison holds little value, however, due
to the different corpus, language and formalism
used. To begin with, our scores are the result of
a more difficult problem, since our target gram-
mar is far more refined. Concretely, we measure
accuracy over a set of 5700 types, which is one
order of magnitude larger than the CCGBank test
bed (425 in most published work; CCGBank itself
contains a little over 1100 types) and 20% larger
than the set of TAGs in the Penn Treebank. Practi-
cally, a portion of the error mass is allotted to mis-
labeling the implication arrow’s name, which is
in one-to-one correspondence with a dependency
label of the associated parse tree. In that sense,
our error rate is already accounting for a portion
of the labeled attachment score, a task usually de-
ferred to a parser further down the processing line.
Further, the prevalence of entangled dependency
structures in Dutch renders its syntax considerably
more complicated than English.

9 Conclusion and Future Work

Our paper makes three novel contributions to cat-
egorial grammar parsing. We have shown that
attention-based frameworks, such as the Trans-



in (t0) hoeverre (what-degree)  zal (will) het (the)
Apv 2 (anE ™4 inE) = sV Y wao APV INF ~5 NP =5 svl oy 9% p
rapport (report)  dan (then)  nog (still) een (a) rol (role)  spelen (play)
N mod mod det N objl
INF — INF  INF — INF N — NP NP — INF

Figure 5: Type assignments for the correctly analyzed wh-question “in hoeverre zal het rapport dan nog een rol
spelen” (fo what extent will the report still play a role) involving a particular instance of pied-piping. The type of
“in” was never seen during training; it consumes an adverb as its prepositional object, to then provide a third-order
type that turns a verb-initial clause with a missing infinitive modifier into a wh-question. Such constructions are a
common source of errors for supertaggers, as different instantiations require unique category assignments.

former, may act as capable and efficient supertag-
gers, eliminating the computational costs of re-
currence. We have proposed a linear type sys-
tem that internalizes dependency labels, expand-
ing upon categorial grammar supertags and eas-
ing the burden of downstream parsing. Finally,
we have demonstrated that a subtle reformulation
of the supertagging task can lift the closed world
assumption, allowing for unbounded supertagging
and stronger grammar learning while incurring
only a minimal cost in computational complexity.

Hyper-parameter tuning and network optimiza-
tion were not the priority of this work; it is en-
tirely possible that different architectures or train-
ing algorithms might yield better results under the
same, constructive paradigm. This aside, our work
raises three questions that we are curious to see
answered. First and foremost, we are interested
to examine how our approach performs under dif-
ferent datasets, be it different grammar specifica-
tions, formalisms or languages, as well as its po-
tential under settings of lesser supervision. A nat-
ural continuation is also to consider how our su-
pertags and their variable-length, content-rich vec-
torial representations may best be integrated with
a neural parser architecture. Finally, given the
close affinity between syntactic derivations, log-
ical proofs and programs for meaning computa-
tion, we plan to investigate how insights on se-
mantic compositionality may be gained from the
vectorial representations of types and type-logical
derivations.
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