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Abstract

Reduction of the number of parameters is one
of the most important goals in Deep Learn-
ing. In this article we propose an adaptation
of Doubly Stochastic Variational Inference for
Automatic Relevance Determination (DSVI-
ARD) for neural networks compression. We
find this method to be especially useful in lan-
guage modeling tasks, where large number of
parameters in the input and output layers is of-
ten excessive. We also show that DSVI-ARD
can be applied together with encoder-decoder
weight tying allowing to achieve even better
sparsity and performance. Our experiments
demonstrate that more than 90% of the weights
in both encoder and decoder layers can be re-
moved with a minimal quality loss.

1 Introduction

The problem of neural networks compression has
recently gained more interest as the number of pa-
rameters (and hence memory size) of modern neu-
ral networks increased drastically. Moreover, only
a few weights prove to be relevant for prediction
while the majority are de facto redundant (Han
et al., 2015).

In this paper we suggest an adaptation of a
Bayesian approach called Automatic Relevance
Determination (ARD) for neural networks com-
pression in language modeling tasks, where the
first and the last linear layers often have enormous

*These two authors contributed equally; the ordering of

their names was chosen arbitrarily. The work was done when
the first author was an intern at the Samsung R&D Institute.

40

Artem Grachev*
Samsung R&D Institute,
National Research University
Higher School of Economics
Moscow, Russia
grachev.art@gmail.com

Dmitry Vetrov
Samsung Al Center,
National Research University
Higher School of Economics
Moscow, Russia

size. We derive the Doubly Stochastic Variational
Inference (DSVI) algorithm for non-iid (not in-
dependent and identically distributed) objects, a
common case in language modeling, and use it to
perform optimization of our models.

Furthermore, we extend this approach so that
it could be applied together with the weight ty-
ing technique (Press and Wolf, 2017; Inan et al.,
2016), i.e., using the same set of parameters for
both weight matrices of the first and the last lay-
ers, which has been proved highly efficient.

2 Related works

Most of the works on neural networks com-
pression can be roughly divided into two cate-
gories: those dealing with matrix decomposition
approaches (Lu et al., 2016; Arjovsky et al., 2016;
Tjandra et al., 2017; Grachev et al., 2019) and
those that leverage pruning techniques (Han et al.,
2015; Narang et al., 2017). From this point of view
methods based on Bayesian techniques (Louizos
et al., 2017; Molchanov et al., 2017) can be con-
sidered as a more mathematically justified version
of pruning.

We have focused on the pruning in application
to word-level language modeling as this task usu-
ally involves a large vocabulary, hence, causing
weight matrices of the first and the last layers to
be huge. Chirkova et al. (2018) also consider
Bayesian pruning in language modeling, though
their approach is based on the Variational Dropout
(VD) technique, which has been proved to be
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poorly theoretically justified (Hron et al., 2018),
whereas ARD does not encounter these issues
while maintaining similar efficacy (Kharitonov
et al., 2018).

At last, as far as we are concerned, combin-
ing DSVI-ARD (or other Bayesian prunning tech-
niques) with weight tying has not been considered
previously.

3 Language modeling with neural
networks

The language modeling problem is one of the im-
portant classical NLP problems and has various
applications such as machine translation and text
classification.

This problem is wusually formulated as
probabilistic prediction of a word sequence
(wi,...,wr) = (wl)T , as follows:

P

(w))) = P(wrl (w)5)P((w) )
T T
1;[ (wt| wZ ) HP(wt| wZ To)

t=1
)

The last equation in (1) is approximated as it is
almost always impossible to calculate this expres-
sion exactly for a sequence of words of arbitrary
length. Therefore, the calculation is performed
only within a context of a fixed size Tj.

Nowadays, approaches that perform the approx-
imation for whole words involve different vari-
ations of RNNs (Bengio et al., 2003; Mikolov,
2012) such as LSTM or GRU (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014). In word-
level models the input layer maps words from the
vocabulary V to some vector representation, and
vice versa for the output layer: from a vector to a
distribution over words in the vocabulary. It leads
to sizes of these layers being proportional to the
vocabulary size |V| which is tens of thousands in
a typical use case.

Assume using LSTM cells as recurrent units.
We can compute the total number of parameters
in a network via the following formula:

Niotal = SLD? + 2|V|D, (2)
where L is the number of recurrent hidden layers,
and D is the hidden layers size (for simplicity we
let all hidden layers be of the same size). Various
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pWY | X, A) =

designs (Bengio and Senecal, 2003; Chen et al.,
2016) have been proposed to reduce it, but still in
word-level language modeling tasks with a signif-
icantly large vocabulary size the second term in
the sum (2) makes the largest contribution. Some-
times the softmax (decoder) layer can solely oc-
cupy up to a third of the whole network memory
space.

The following section describes the technique
that performs efficient reduction of parameters in
linear layers. This technique can be applied to
the decoder layer of RNN (or to both decoder and
encoder layers in tied-weight setting) providing
the overall network compression with a negligible
drop in quality.

4 DSVI-ARD

In this section we describe how the Dou-
bly Stochastic Variational Inference algorithm
for Automatic Relevance Determination (DSVI-
ARD) originally proposed in (Titsias and Léazaro-
Gredilla, 2014) can be adopted for solving mul-
ticlass classification task and, thus, leveraged in
neural networks training for compressing their
dense layers (in particular, decoder layers in
RNNs).

4.1 Automatic Relevance Determination

We formulate the multiclass classification problem
in a Bayesian framework that can provide a useful
tool for feature selection — the so-called Auto-
matic Relevance Determination (ARD).!

Consider a discriminative probabilistic model
given a training dataset (X,Y) = {(@n,yn)};
of IV independent objects:

N
pW [ A) [ pyn | W) =

n=1

D N
HJ\/(wij ‘ 0, Aij) H Softmax (W:En)yn
j=1

K
=1 n=1

3)

Here x,, € RP is the feature vector of the n-th
object, y, € {1,...,K} is the label of the n-
th object’s class, W € RE*P ig the matrix of
model parameters and A € RX*P is the matrix
of hyperparameters defining the prior distribution

p(W | A) over parameters V.

"Here we consider linear classification for simplicity, al-
though the same model is applicable to neural networks, see
subsection 4.3.



The prior distribution p(W | A) is considered
to be element-wise factorized Gaussian over each
element w;; (zero mean and tunable variance \;;).
The likelihood function p(y, | W, x,,) is the y,-
th element of the softmax vector of linear logits
Wx,. Such a likelihood function is quite typical
in classification tasks and can be encountered in
multivariate Logistic Regression.

The two goals of the subsequent Bayesian infer-
ence are, first, obtaining posterior distribution over
the model parameters conditioned on the training
dataset p(W | X, Y, A), which can be leveraged
in prediction on the test set, and, second, opti-
mal model selection, i.e., hyperparameters tuning.
Both problems can be solved simultaneously by
maximizing the Evidence Lower Bound (ELBO):

L(q,A) = Ewqow) [logp(Y | W, X)] — @
— KL (gW)[[p(W | A)).
ELBO is a function of two variables: an ar-

bitrary variational distribution over parameters
g(W) and model hyperparameters A, and can
be decomposed into two parts: the data term
Ew~qmw) llogp(Y | W, X)] and the negative KL-
divergence between the variational approximation
g(W') and the prior distribution p(W | A) (KL-
term) —K L (¢q(W)||[p(W | A)). We further show
that maximization of ELBO with respect to both
q and A solves the model selection problem while
also fitting g to the posterior.

ELBO has several useful properties such as
L(q,A) <logp(Y | X,A),Vq, A (bounds the ev-
idence logarithm logp(Y | X,A) from be-
low) and L(g,A) =logp(Y | X, A) if and only
if q(W)=p(W | X,Y,A), so maximization of
ELBO with respect to ¢ for fixed A is equivalent
to fitting ¢ to the posterior p(W | X, Y, A), hence
solving the first of the mentioned Bayesian infer-
ence problems.

Maximization of the evidence p(Y | X, A)
with respect to hyperparameters A is a well-known
Bayesian model selection method, also known
as empirical Bayes estimation (Carlin and Louis,
1997). A model with the highest evidence is con-
sidered to be “the best” in terms of both data fit and
model complexity. Evidence maximization can be
performed via ELBO maximization as

mﬁxlogp(Y | X,A) = mz}\xﬁ(q,A).

q,

&)

Finally, this double maximization procedure, as
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we have shown above, handles the model selection
problem while also fitting g to the posterior.

From the view of the ELBO functional it is clear
that only the KL-term KL (¢(W)||[p(W | A) de-
pends on A, hence maximization of ELBO with
respect to A is equivalent to minimization of the
KL-term with respect to A.

Now we restrict the variational distribution ¢ to
the factorized Gaussian:

W’“’ HHNwlj |:u‘l]) z]) (6)
1=1j5=1
where p, 0 € REXD are the variational parame-

ters.

This way ELBO maximization (or equivalently,
KL-term minimization) with respect to A can be
performed analytically with the solution at

(7

After substituting A* from (7) into the ELBO
equation (4) and taking into account the varia-
tional family restriction (6) we can rewrite the
maximization problem (5) as follows:

EWNq(Wlu o) logp(Y | W, X)] +

o2
+ = ZZlog > _ %y

11]1 Ml]

* _ 2 2
Nij = Hij + 055

3
— max
o

This equation (8) is the final form of the ARD
ELBO maximization problem. We can see that
the first term (data term) induces the variational
parameters to describe the observed data well by
sharpening the variational distribution at the maxi-
mum likelihood point, while the second term (KL-
term) makes irrelevant parameters shrink. The
mutual maximization of both terms leads to a
sparse solution (in the limit), at which all redun-
dant features are zeroed. The following subsec-
tions describe how it can be performed in practice,
especially in application to recurrent neural net-
works.

4.2 DSVI

The Doubly Stochastic Variational Inference
(DSVI) is a method of stochastic gradient maxi-
mization of ELBO with respect to the variational
parameters. We provide the standard DSVI-ARD
description in Algorithm 1. At each iteration
two types of random variables are sampled: a
mini-batch of objects {Zm,ym}M_; C (X,Y)



and a set of “proto-weights”
in the mini-batch €, ~N(0,1), €, €
which are used to obtain stochastic gradients
of the log-likelihood with respect to the varia-
tional parameters via the reparametrization trick
(RT) (Kingma et al., 2015). DSVI does not de-
pend on a specific form of the log-likelihood func-
tion logp(y | W, x), but only requires its gradi-
ent Vyy logp(y | W, x), so the same procedure is
applicable for different models with differentiable
log-likelihoods. DSVI can also be regarded as ef-
ficient SGD minimization of the negative ELBO
loss functional (8), which consists of the data term
and the KL-regularizer.

for each object
RKXD

Algorithm 1 Doubly stochastic variational infer-
ence

Input: log-likelihood log p(y | W, x), training
dataset (X,Y) of size N, learning rates {py},
mini-batch size M
Initialize the variational parameters p(?), o(?),
k=0
repeat

E=k+1

Sample a mini-batch

{@m, ymIm—r © (X,Y)

for all objects (x;,, ¥y, ) in the mini-batch do

Sample €,, ~ N(0,1), €, € REXP

W = u(k_l) + O'(k_l) © €

end for
M

ggata — % Zmzl vﬂ« ]ogp(ym | Wm7$m)
M

ghata .= K5 Vo logp(ym | Win, Tn,)

glIL(L _ Z Z log uQ ‘“ (=D
i=1j= i T o= (k-1

gKL = Z Z log Hz ‘“:uw—l)
z 1j= at =g(k=1)

o=0

9= 90" g "
9o = 95" + g5t
p® = p D+ gy,
U(k) = U(k_l) + PkYo
until convergence criterion is met

4.3 DSVI-ARD in Recurrent Neural
Networks

As was noted above, DSVI can be applied to any
probabilistic ARD model with differentiable like-
lihood. A neural network with a softmax layer in-
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Algorithm 2 Doubly stochastic variational infer-
ence for non-independent data

Input: log-likelihood log p(y | W, x), training
dataset (X,Y) of size N, learning rates {px},
mini-batch size M
Initialize the variational parameters f(), o),
k=0
repeat
E=k+1
Sample a mini-batch
{@m, ym }M_, C (X,Y) of non-iid objects
Sample one € ~ N(0, 1), e € REXP
W= =D 4 oD o ¢

M

ggata — % Y ome1 Vi log p(ym | W, )
M

gDate — %Zm Vo logp(ym | W, )

O R
i=1j= it o=c-1)

95" = Z Z log ;ﬁ ‘u:ﬂ(k‘”
i= 1] TJ a_zo,(kfl)

9= gL+ gy
Jo = gData +g KL
) = =D g,
ok = U(k’—l) + prgo
until convergence criterion is met

troduces a likelihood function similar to the one
considered in (3). Hence, we suggest replacing
the softmax output layer with the ARD layer for
multiclass classification and train it with the DSVI
algorithm computing its log-likelihood gradients
via backpropagation due to the usage of the RT.

When training RNN with a DSVI-ARD layer
as a decoder (softmax layer in this case) we en-
counter the question of sampling strategy for pa-
rameters: one sample per object or once for the
whole mini-batch of objects. The first strategy is
typical for standard classification tasks and is im-
plemented in the classical DSVI algorithm 1. The
second one is more justified in the RNN case be-
cause objects in one sequence (mini-batch) are not
independent and should better be processed with
the same weights. We propose Algorithm 2, which
is applicable in the case of non-iid objects in a
mini-batch. Summing it up, it differs from the
standard DSVI only in that the “proto-weights”
€ € RE>P are sampled once for the whole mini-
batch at each iteration.

We also consider applying DSVI-ARD in a tied-
weight setting. For that we slightly change the



model so that both the encoder and decoder layers
contribute into the likelihood via the same set of
weights. Now (in the non-iid DSVI algorithm 2)
the same set of parameters (weight matrix) is sam-
pled for both layers, and their gradients with re-
spect to the variational parameters are summed
to obtain the mutual gradient of logp(y | W, x)
for the data term update g”%®. The KL-term re-
mains the same as neither new random variables
are added to the model nor its prior distribution
or variational approximation changes. The only
thing that varies is the likelihood of the model, i.e.,
the data term: now the encoder is also conditioned
on the variational parameters p and o. This basi-
cally means that the gradients w.r.t. the encoder’s
weights are propagated back to the variational pa-
rameters.

5 Experiments

We have conducted several experiments to test the
DSVI-ARD compression approach in language
modeling. We used LSTM and LSTM with tied
weights models from (Zaremba et al., 2014; Inan
et al., 2016) respectively as our baselines: the
experiments involved the same LSTM architec-
ture with two hidden layers of size 650 and two
datasets: PTB (Mikolov et al., 2010) and Wiki-
text2 (Merity et al., 2016); also each mini-batch of
objects was constructed from bs word sequences
(bs = 10 and bs = 20 for evaluation and training
respectively) of length bptt = 35.

We applied dropout after the embedding (except
for the tied-weight ARD models because ARD can
be regarded as a special form of regularization by
itself) and hidden layers, with a dropout rate as a
hyperparameter. We used stochastic gradient de-
scent (SGD) as an optimization procedure, with
adaptive learning rate decreasing from the start-
ing value by a multiplicative factor (both are hy-
perparameters) each time validation perplexity has
stopped improving.

We also compared our approach to other
compression techniques: matrix decomposition-
based (Grachev et al, 2019) and VD-
based (Chirkova et al., 2018). For the last
one we used a similar model: a network with one
LSTM layer of 256 hidden units.

5.1 Training and evaluation

The whole set of parameters of a model with
DSVI-ARD layers can be divided into the varia-
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Figure 1: Plots of validation cross-entropy (red line) of
a LSTM model with a DSVI-ARD softmax layer on the
PTB dataset and its corresponding sparsity (blue line)
for different possible threshold log A¢p,-esn Values (top)
and the distribution histogram of its prior log-variances
log A;; (bottom). We display the density on a log scale
due to a very sparse distribution. The threshold cho-
sen for further model evaluation (the best in terms of
perplexity on the validation set) log AY%"_ . is marked
with a green dashed line.

tional parameters p, o and all the other network
parameters (including biases of the DSVI-ARD
layers). Variational optimization is performed
with the DSVI-ARD algorithm, which, in turn,
only requires gradients of the log-likelihood and
KL-divergence. Therefore, overall model training
is a standard gradient optimization of parameters
based on backpropagation (specifically, BPTT in
the RNN case) with negative ELBO as the loss
function.

For more efficient training we applied the KL-
cost annealing technique (Sgnderby et al., 2016).
The idea is to multiply the KL-term in ELBO by
a variable weight, called the KL-weight, at train-
ing time. The weight gradually increases from
zero to one during the first several epochs of train-
ing. This technique allows achieving better final
performance of the model because such a train-



Number Removed parameters, %
Original model Dataset Architecture of parameters, M 4 Perplexity Accuracy,
(Full / Softmax)

(Full / Softmax) %
Original 19.8 / 6.5 No compression 80.85 27.4%
PTB DSVI-ARD (ours) 134 / 0.14 321% / 97.8% 91.84 27.2%
LSTM, (Zaremba LR for Softmax, (Grachev et al., 2019) 145 /7 1.19 26.8% / 81.7% 84.12 N/A
etal., 2014) TT for Softmax, (Grachev et al., 2019) 143 / 1.03 278 % | 842 % 88.55 N/A
Wikitext2 Original 50.1 / 21.6 No compression 94.27 27.5%
DSVI-ARD (ours) 289 / 043 42.3% | 98.0% 103.54 27.6%
. Original 133 / 6.5 No compression 75.68 27.7%
ﬁgﬁ: Siin P18 DSVI-ARD (ours) 7.4 7 0.66 34.0% / 89.9% 82.27 273%
ctal 2616) Wikitext2 Original 284 / 21.6 No compression 86.62 27.9%
’ DSVI-ARD (ours) 8.7 / 1.94 69.3% / 91.0% 87.36 28.1%
. Original 5.64 / 2.56 No compression 129.3 N/A
:[S;Mz’o(lcgh)“k‘wa PTB VD, (Chirkova et al., 2018) 32 7 012 33% 1 955% 109.2 N/A
” DSVI-ARD (Ours) 318 / 0.1 43.6 % / 96.1 % 106.2 259 %

Table 1: Language modeling experiments results. We provide the number of parameters left after pruning (in
millions) and the achieved compression ratios (in percents) of the whole network and the softmax layer alone
along with the final quality (perplexity and accuracy) on the test set for each evaluated model. The original
(uncompressed) models quality is provided for comparison.

logA density histogram

Density

-4
logA

-10

Figure 2: Distribution histogram of the prior log-
variances log \;; obtained for a LSTM model with a
DSVI-ARD softmax layer on the PTB dataset. We pro-
vide the standard-scaled density to justify the usage of
a log scale in Fig. 1 (bottom).

ing procedure can be considered as pre-training on
data (when the data term in ELBO dominates) and
then starting fair optimization of the true ELBO
(when the KL-weight reaches one). We used a
simple linear KL-weight increasing strategy with
a step selected as a hyperparameter.

During the evaluation of our models we do not
sample parameters as we do in the training phase
but instead set the approximated posterior mean
p as DSVI-ARD layers weights. Then we zero
out the weights with the corresponding logarithms
of prior variances lower than a certain threshold
log A\tpresh (a hyperparameter selected on valida-
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tion):
)]

This procedure essentially provides the desired
sparsity as redundant weights are being literally
removed from the network.

Each experiment was conducted as follows.
We trained several models for some number of
epochs with different hyperparameter initializa-
tion (such as dropout rate, learning rate, etc.).
Then we picked the best model in terms of cross-
entropy (log-perplexity) on the validation set at
the last training epoch. We did not zero weights
during evaluation at this phase, in other words,
log Athresn, = —00 in equation (9). After that, we
started threshold selection for the picked model:
we iterated over possible values of log Aipresh
from the “leave-all” to the “remove-all” extreme
values and chose the one (denoted by log A% )
at which the best validation perplexity was ob-
tained. Finally, we evaluated the model on the test
set using the chosen optimal threshold log A%

thresh®
In our results we report the achieved compres-

K D * t
sion ratio cr = Yiz1 2= M;’f 5‘ij<log Ahresh)

plexity and accuracy? on the test set.

log )‘:(] < log Athresh = Wi = 0.

, per-

5.2 Results

Table 1 concludes all the results obtained during
our experiments.
The comparison of DSVI-ARD with other
dense layers compression approaches revealed
2By accuracy, we mean the fraction of correctly predicted

words. The prediction is performed by taking the argmax of
the softmax distribution over vocabulary words.



that our models can exhibit comparable perplex-
ity quality while achieving much higher compres-
sion (in Gracheyv et al. (2019) case) and even sur-
pass models based on similar Bayesian compres-
sion techniques (in Chirkova et al. (2018) case).

Also it can be seen that encoder-decoder weight
tying helps to obtain higher overall compression
(from almost 45% to 70% reduction of all model
weights), due to a smaller number of parameters in
the whole network, and even better results in both
perplexity and accuracy on both datasets. Quality
improvement after weight tying is a common case,
however, we see that it helps to especially enhance
the performance of our models (perplexity drops
by almost 10 points in PTB case and more than
16 points in Wikitext2 case), which gives grounds
for the proposed combination of DSVI-ARD and
weight tying.

One can argue that DSVI-ARD may lead to
overpruning (Trippe and Turner, 2018) because in
all our experiments (except the last one, compar-
ing with Chirkova et al. (2018) results) a slight
quality drop in terms of perplexity can be ob-
served. However, we specifically provide the test
accuracy as well, in terms of which we achieve
comparable or even better results than original
models. We suggest that this effect might be
caused by prediction uncertainty (or entropy) in-
crease rather than model quality deterioration.

Fig. 1 demonstrates plots of cross-entropy
(log-perplexity) and sparsity for different thresh-
olds log Atpresn — essentially the compression-
quality trade-off plot — and the log-scaled dis-
tribution histogram of the decoder layer’s prior
log-variances log )\fj obtained for a DSVI-ARD
LSTM model trained on the PTB dataset. We
also provide the same distribution on the stan-
dard scale (Fig. 2) for comparison. The dashed
green line denotes the value of the chosen thresh-
old log \%!_ . which provides the best validation
perplexity. We can observe that the overwhelm-
ing majority of weights in the last layer are indeed
redundant, i.e., have small prior variances, do not
contribute to the inference, and can be removed
without harming much model performance. We
argue that DSVI-ARD eliminates weights that ob-
struct generalization while leaving only those ac-
tually necessary for correct prediction.
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6 Conclusion

In this paper we adopted the DSVI-ARD algo-
rithm for compressing recurrent neural networks.
Our main contributions are extending DSVI-ARD
to the case of non-iid objects and combining it
with the weight tying technique. In our ex-
periments involving LSTM networks in language
modeling tasks, we have managed to obtain sub-
stantially high compression ratios at an acceptable
quality loss. The proposed method turned out to
be comparable to or even surpassing other com-
pression techniques like matrix decomposition and
variational dropout.

There are several possible avenues for future
work. An intriguing application of the proposed
DSVI-ARD method for RNNs is the compres-
sion of current state-of-the-art models (Yang et al.,
2017; Dai et al., 2019), which require enormous
amounts of memory and computational resources.
At the same time, one of the drawbacks of the cur-
rent Bayesian compression approaches is a lack
of their expressive ability, i.e., most of them are
based on oversimplified posterior approximations
and prior distributions (e.g., factorized Gaussian),
which may lead to overly rough estimates and
overall model inefficiency. A rigorous study of
this problem is required. Another possible direc-
tion is bringing Bayesian framework into matrix
decomposition-based methods as well. This fu-
sion may lead to more effective and justified com-
pression techniques.
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