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Abstract

We present Deep Generalized Canonical Cor-
relation Analysis (DGCCA) — a method for
learning nonlinear transformations of arbitrar-
ily many views of data, such that the resulting
transformations are maximally informative of
each other. While methods for nonlinear two-
view representation learning (Deep CCA, (An-
drew et al., 2013)) and linear many-view rep-
resentation learning (Generalized CCA (Horst,
1961)) exist, DGCCA combines the flexibil-
ity of nonlinear (deep) representation learning
with the statistical power of incorporating in-
formation from many sources, or views. We
present the DGCCA formulation as well as an
efficient stochastic optimization algorithm for
solving it. We learn and evaluate DGCCA rep-
resentations for three downstream tasks: pho-
netic transcription from acoustic & articula-
tory measurements, recommending hashtags,
and recommending friends on a dataset of
Twitter users.

1 Introduction

Multiview representation learning refers to set-
tings where one has access to many “views” of
data at train time. Views often correspond to dif-
ferent modalities about examples: a scene repre-
sented as a series of audio and image frames, a so-
cial media user characterized by the messages they
post and who they friend, or a speech utterance and
the configuration of the speaker’s tongue. Multi-
view techniques learn a representation of data that
captures the sources of variation common to all
views.

Multiview representation techniques are attrac-
tive since a representation that is able to explain
many views of the data is more likely to capture
meaningful variation than a representation that
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is a good fit for only one of the views. These
methods are often based on canonical correlation
analysis (CCA), a classical statistical technique
proposed by Hotelling (1936). CCA-based tech-
niques cannot currently model nonlinear relation-
ships between arbitrarily many views. Either they
are able to model variation across many views, but
can only learn linear mappings to the shared space
(Horst, 1961), or they can learn nonlinear map-
pings, but they cannot be applied to data with more
than two views using existing techniques based
on Kernel CCA (Hardoon et al., 2004) and Deep
CCA (Andrew et al., 2013).

We present Deep Generalized Canonical Cor-
relation Analysis (DGCCA). DGCCA learns a
shared representation from data with arbitrarily
many views and simultaneously learns nonlinear
mappings from each view to this shared space.Our
main methodological contribution is the deriva-
tion of the gradient update for the Generalized
Canonical Correlation Analysis (GCCA) objective
(Horst, 1961).! We evaluate DGCCA-learned rep-
resentations on three downstream tasks: (1) pho-
netic transcription from aligned speech & articu-
latory data, (2) Twitter hashtag and (3) friend rec-
ommendation from six text and network feature
views. We find that features learned by DGCCA
outperform linear multiview techniques on these
tasks.

2 Prior Work

Some of the most successful techniques for multi-
view representation learning are based on canon-
ical correlation analysis and its extension to the
nonlinear and many view settings (Wang et al.,
2015b,a).

ISee https://bitbucket.org/adrianbenton/
dgcca-py3 for an implementation of DGCCA along with
data from the synthetic experiments.
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Canonical correlation analysis (CCA) Canon-
ical correlation analysis (CCA) (Hotelling, 1936)
is a statistical method that finds maximally cor-
related linear projections of two random vectors.
It is a fundamental multiview learning technique.
Given two input views, X; € R% and Xy €
R% with covariance matrices, Y11 and g9, re-
spectively, and cross-covariance matrix Y19, CCA
finds directions that maximize the correlation be-
tween these two views:
(ui,uy) = argmax corr(u; X1, uy Xs)
u1 ERM ug CR2

Since this formulation is invariant to affine trans-
formations of u; and uy, we can write it as the

following constrained optimization formulation:

argmax

T
Uy 21271,2 (1)
u1 ERM juseR92

(ui,uz) =

such that ulTEnul = U;ZQQUQ = 1. This tech-

nique has two limitations that have led to signifi-

cant extensions: (1) it is limited to learning rep-

resentations that are linear transformations of the

data in each view, and (2) it can only leverage two
input views.

Deep Canonical Correlation Analysis (DCCA)
Deep CCA (DCCA) (Andrew et al., 2013) ad-
dresses the first limitation by finding maximally
correlated non-linear transformations of two vec-
tors. It passes each of the input views through neu-
ral networks and performs CCA on the outputs.
Let us use fl(Xl) = /7 and fQ(XQ) = Zy
to represent the network outputs. The weights,
W7 and W, of these networks are trained through
standard backpropagation to maximize the CCA
objective:
(uf,wh, Wi W3) = argmax corr(u; Z1,uq Z2)
u1,u2
Generalized Canonical Correlation Analysis
(GCCA) Generalized CCA (GCCA) (Horst,
1961) addresses the limitation on the number of
views. It solves the optimization problem in Equa-
tion 2, finding a shared representation G of J
different views, where NN is the number of data
points, d; is the dimensionality of the jth view,
r is the dimensionality of the learned representa-
tion, and X; € RL* is the data matrix for the
Jth view.

J
minimize |G — U]TXjH%
UjERdeT,GERTXN ]:1 (2)
subject to GG' = I,

Solving GCCA requires finding an eigendecompo-
sition of an NV x N matrix, which scales quadrat-
ically with sample size and leads to memory con-
straints.

Unlike CCA and DCCA, which only learn pro-
jections or transformations on each of the views,
GCCA also learns a view-independent represen-
tation GG that best reconstructs all of the view-
specific representations simultaneously. The key
limitation of GCCA is that it can only learn linear
transformations of each view.

3 Deep Generalized Canonical
Correlation Analysis (DGCCA)

We present Deep GCCA (DGCCA): a multi-
view representation learning technique that bene-
fits from the expressive power of deep neural net-
works and can leverage statistical strength from
more than two views. More fundamentally, Deep
CCA and Deep GCCA have very different objec-
tives and optimization problems, and it is not im-
mediately clear how to extend deep CCA to more
than two views.

DGCCA learns a nonlinear map for each view
in order to maximize the correlation between the
learned representations across views. In train-
ing, DGCCA passes the input vectors in each
view through multiple layers of nonlinear trans-
formations and backpropagates the gradient of the
GCCA objective with respect to network param-
eters to tune each view’s network. The objective
is to train networks that reduce the GCCA recon-
struction error among their outputs. New data can
be projected by feeding each view through its re-
spective network.

Problem Consider a dataset of J views and let
X; € R%*N denote the 5 input matrix. The net-
work for the j** view consists of K j layers. As-
sume, for simplicity, that each layer in the j** view
network has ¢; units with a final (output) layer of
size 0;.  The output of the k" layer for the j*
view is hi = S(nghi_l), where s : R -+ Risa
nonlinear activation function and W,ﬁ € Rek> k-1
is the weight matrix for the k" layer of the j**
view network. We denote the output of the final
layer as f;(X;).

DGCCA can be expressed as the following op-
timization problem: find weight matrices Wi =
{(wi,.. .,W}(j} defining the functions f;, and
linear transformations U; (of the output of the j th



network), for j = 1,..., J, that

J

MG -U HEXDIF 3

Jj=1

minimize
U;ER% T GERTXN

where G € R™*¥ is the shared representation we
are interested in learning, subject to GG = I,.

Optimization We solve the DGCCA optimiza-
tion problem using stochastic gradient descent
(SGD) with mini-batches. In particular, we es-
timate the gradient of the DGCCA objective in
Equation 3 on a mini-batch of samples that is
mapped through the network and use backpropa-
gation to update the weight matrices, W7’s. Be-
cause DGCCA optimization is a constrained opti-
mization problem, it is not immediately clear how
to perform projected gradient descent with back-
propagation. Instead, we characterize the objec-
tive function of the GCCA problem at an optimum
and compute its gradient with respect to the in-
puts to GCCA (i.e. with respect to the network
outputs), which are subsequently backpropagated
through the network to update W7s.

Gradient Derivation The solution to the GCCA
problem is given by solving an eigenvalue prob-
lem. In particular, define C;; = f(X;)f(X;)" €
R9i*%  to be the scaled empirical covariance
matrix of the j** network output, and P, =
f(Xj)TCj*jlf(Xj) € RV*N to be the corre-
sponding projection matrix that whitens the data;
note that P; is symmetric and idempotent. We de-
fine M = 23‘1:1 Pj. Since each P; is positive
semi-definite, so is M. One can then check that
the rows of GG are the top r (orthonormal) eigen-
vectors of M, and U; = Cj_jlf(Xj)GT. Thus, at
the minimum of the objective, we can rewrite the
reconstruction error as follows:

J
Yolla =) (X))l =rJ - Te(GMGT)
j=1

Minimizing the GCCA objective (with respect
to the weights of the neural networks) means max-
imizing Tr(GMG), which is the sum of eigen-
values L = )7, \;(M). Taking the derivative of
L with respect to each output layer f;(X;) gives:

oL
= 2U;G - 2U;U] fi(X;
8fJ(X]) J v f]( J)
Thus, the gradient is the difference between the r-
dimensional auxiliary representation G' embedded
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Figure 1: Three synthetic views are displayed in the top
row, and the bottom rows displays the matrix G learned
by GCCA (left) and DGCCA (right).

into the subspace spanned by the columns of U;
(the first term) and the projection of the actual data
in f;(X;) onto said subspace (the second term).

4 Experiments

4.1 Synthetic Multiview Mixture Model

We apply DGCCA to a small synthetic data set
to show how it preserves the generative structure
of data sampled from a multiview mixture model.
The three views of the data we use for this experi-
ment are plotted in the top row of Figure 1. Points
that share the same color across different views are
sampled from the same mixture component.

Importantly, in each view, there is no linear
transformation of the data that separates the two
mixture components. This point is reinforced
by Figure 1 (bottom left), which shows the two-
dimensional representation GG learned by applying
linear GCCA to the data in plotted in the top row.
The learned representation completely loses the
structure of the data. In contrast, the representa-
tion GG learned by DGCCA (bottom right) largely
preserves the structure of the data, even after pro-
jection onto the first coordinate. In this case, the
input neural networks for DGCCA had three hid-
den layers with ten units each, with randomly-
initialized weights.

4.2 Phoneme Classification

We perform experiments on the University of
Wisconsin X-ray Microbeam Database (XRMB)
(Westbury, 1994), a collection of acoustic & ar-
ticulatory recordings along with phonemic labels.
We present phoneme classification results on the
acoustic vectors projected using DCCA, GCCA,
and DGCCA. Acoustic and articulatory data are
set as the first two views and phoneme labels are
set as the third view for GCCA and DGCCA, and
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Figure 2: Confusion matrices over phonemes for
speaker-dependent GCCA (left) and DGCCA (right).
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K-nearest neighbor classification (Cover and Hart,
1967) is then run on the projected result.

Data We use the same split of the data as Arora
and Livescu (2014). To limit experiment runtime,
we use a subset of speakers for our experiments.
We run a set of cross-speaker experiments using
the male speaker JW11 for training and two splits
of JW24 for tuning and testing. We also perform
parameter tuning for the third view with 5-fold
cross validation using a single speaker, JW11. For
both experiments, we use acoustic and articulatory
measurements as the two views in DCCA. Fol-
lowing the pre-processing in Andrew et al. (2013),
we get 273 and 112 dimensional feature vectors
for the first and second view respectively. Each
speaker has ~50,000 frames. For the third view in
GCCA and DGCCA, we use 39-dimensional one-
hot vectors corresponding to the labels for each
frame, following Arora and Livescu (2014).

Parameters We use a fixed network size and
regularization for the first two views, each con-
taining three hidden layers. Hidden layers for
the acoustic view were all width 1024, and lay-
ers in the articulatory view all had width 512
units. L2 penalty constants of 0.0001 and
0.01 were placed on the acoustic and articula-
tory view networks, with 0.0005 on the label
view. The output layer dimension of each net-
work is set to 30 for DCCA and DGCCA. For
the 5-fold speaker-dependent experiments, we per-
formed a grid search for the network sizes in
{128,256,512,1024} and covariance matrix reg-
ularization in {1072,1074,1076,1078} for the
third view in each fold. We fix the hyperparame-
ters for these experiments optimizing the networks
with minibatch stochastic gradient descent with a
step size of 0.005, and a batch size of 2,000.

Results DGCCA improves upon both the lin-
ear multiview GCCA and the non-linear 2-view
DCCA for both the cross-speaker and speaker-

Table 1: KNN phoneme classification performance.

CROSS-SPEAKER SPEAKER-DEPENDENT

DEV/TEST REC DEV/TEST REC
METHOD Acc ERR Acc ERR
MFCC 48.9/49.3 66.3/66.2
DCCA 45.4/46.1 65.9/65.8
GCCA 49.6/50.2 40.7 69.5/69.8 40.4
DGCCA  53.8/54.2 359 72.6/72.3 20.5

dependent cross-validated tasks (Table 1). In addi-
tion to accuracy, we examine the reconstruction er-
ror (i.e. the objective in Equation 3) obtained from
the objective in GCCA and DGCCA. The sharp
improvement in reconstruction error shows that a
non-linear algorithm can better model the data.

In this experimental setup, DCCA under-
performs the baseline of simply running KNN on
the original acoustic view. Prior work consid-
ered the output of DCCA stacked on to the cen-
tral frame of the original acoustic view (39 dimen-
sions). This poor performance, in the absence of
original features, indicates that it was not able to
find a more informative projection than original
acoustic features based on correlation with the ar-
ticulatory view within the first 30 dimensions.

To highlight the improvements of DGCCA over
GCCA, Figure 2 presents a subset of the the confu-
sion matrices on speaker-dependent test data. We
observe large improvements in the classification of
D, F, K, SH, V and Y. For instance, DGCCA
rectifies the frequent misclassification of V' as P,
R and B by GCCA. In addition, commonly in-
correct classification of phonemes such as S and
T is corrected by DGCCA, which enables better
performance on other voiceless consonants such
as like F', K and SH. Vowels are classified with
almost equal accuracy by both the methods.

4.3 Hashtag & Friend Recommendation

Linear multiview techniques are effective at rec-
ommending hashtag and friends for Twitter users
(Benton et al., 2016). In this experiment, six views
of a Twitter user were constructed by applying
principal component analysis (PCA) to the bag-
of-words representations of (1) tweets posted by
the ego user, (2) other mentioned users, (3) their
friends, and (4) their followers, as well as one-
hot encodings of the local (5) friend and (6) fol-
lower networks. We learn and evaluate DGCCA
models on identical training, development, and
test sets as Benton et al. (2016), and evaluate



Table 2: Dev/test performance at Twitter friend and
hashtag recommendation tasks.

FRIEND HASHTAG
ALGORITHM P@lK R@IK P@IK R@IK
PCA[T+N] .445/.439 .149/.147 .011/.008 .312/.290
GCCA[T] .244/.249 .080/.081 .012/.009 .351/.326
GCCA[T+N] .271/.276 .088/.089 .012/.010 .359/.334

DGCCA[T+N] .297/.268 .099/.090.013/.010 .385/.373

WGCCA[T] .269/.279 .089/.091 .012/.009 .357/.325
WGCCA[T+N] .376/.364 .123/.120 .013/.009 .360/.346

the DGCCA representations on macro precision
at 1,000 (P@1K) and recall at 1,000 (R@ 1K) for
the hashtag and friend recommendation tasks de-
scribed there.

We trained 40 different DGCCA model ar-
chitectures, each with identical network architec-
tures across views, where the width of the hid-
den and output layers, c; and co, for each view
are drawn uniformly from [10, 1000], and the aux-
iliary representation width r is drawn uniformly
from [10, c2].2 All networks used rectified linear
units in the hidden layer, and were optimized with
Adam (Kingma and Ba, 2014) for 200 epochs.
Networks were trained on 90% of 102,328 Twitter
users, with 10% of users used as a tuning set to es-
timate held-out reconstruction error for model se-
lection. We report development and test results for
the best performing model on the downstream task
development set. The learning rate was set to 10~%
with regularization of £; = 1072, 05 = 1074

Table 2 displays the precision and recall at
1000 recommendations of DGCCA compared to
PCA[T+N] (PCA applied to concatenation of text
and network view feature vectors), linear GCCA
applied to the four text views [T/, and all text and
network views [T+N], along with a GCCA variant
with discriminative view weighting (WGCCA).
We learned PCA, GCCA, and WGCCA represen-
tations of width r € [10, 1000}, and select embed-
dings based on development set R@1K.

There are several points to note: First is that
DGCCA outperforms linear methods at hashtag
recommendation by a wide margin in terms of
recall. This is exciting because this task was
shown to benefit from incorporating more than
just two views from Twitter users. These results
suggest that a nonlinear transformation of the in-

2We only consider architectures with single-hidden-layer
networks identical across views so as to avoid a fishing ex-
pedition. If DGCCA is an appropriate method for learning
Twitter user embeddings, then it should require little archi-
tecture exploration.

put views can yield additional gains in perfor-
mance. In addition, WGCCA models sweep over
every possible weighting of views with weights in
{0,0.25,1.0}. The fact that DGCCA is able to
outperform WGCCA at hashtag recommendation
is encouraging, since WGCCA has much more
freedom to discard uninformative views. As noted
in Benton et al. (2016), only the friend network
view was useful for learning representations for
friend recommendation (corroborated by perfor-
mance of PCA applied to friend network view), so
it is unsurprising that DGCCA, when applied to all
views, cannot compete with WGCCA representa-
tions learned on the single useful friend network
view.

5 Discussion

There has also been strong work outside of CCA-
related methods to combine nonlinear representa-
tion and learning from multiple views. Kumar et
al. (2011) outlines two main approaches to learn
a joint representation from many views: either
by (1) explicitly maximizing similarity/correlation
between view pairs (Masci et al., 2014; Rajen-
dran et al., 2015) or by (2) alternately optimizing
a shared, “consensus” representation and view-
specific transformations (Kumar et al., 2011; Xi-
aowen, 2014; Sharma et al., 2012). Unlike the
first class of methods, the complexity of solving
DGCCA does not scale quadratically with num-
ber of views, nor does it require a privileged pivot
view (G is learned). Unlike methods that esti-
mate a “consensus” representation, DGCCA ad-
mits a globally optimal solution for both the view-
specific projections Uj ... Uy, and the shared rep-
resentation GG. Local optima arise in the DGCCA
objective only because we are also learning non-
linear transformations of the input views.

We present DGCCA, a method for non-linear
multiview representation learning from an arbi-
trary number of views. We show that DGCCA
clearly outperforms prior work in phoneme recog-
nition when using labels as a third view, and
can successfully exploit multiple views to learn
Twitter user representations useful for downstream
tasks, such as hashtag recommendation. To date,
CCA-style multiview learning techniques were ei-
ther restricted to learning representations from no
more than two views, or strictly linear transfor-
mations of the input views. This work overcomes
these limitations.
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