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Abstract

This paper describes two related systems
for cross-lingual morphological inflection for
SIGMORPHON 2019 Shared Task participa-
tion. Both sets of results submitted to the
shared task for evaluation are obtained using
a simple approach of predicting transducer ac-
tions based on initial alignments on the training
set, where cross-lingual transfer is limited to
only using the high-resource language data as
additional training set. The performance of the
system does not reach the performance of the
top two systems in the competition. However,
we show that results can be improved with fur-
ther tuning. We also present further analyses
showing that the cross-lingual gain is rather
modest.

1 Introduction

Morphological inflection generation is the task of
generating a word based on its lemma and mor-
phological features. For example, given the Ger-
man lemma aufgeben ‘to give up’ and the mor-
phological tags {V.PTCP, PST}, the task is to
predict the inflected form aufgegeben (morpho-
logical tags are described in McCarthy et al.,
2019; Kirov et al., 2018). Traditionally, finite-
state methods (Koskenniemi, 1985) are used for
morphological generation (and analysis). Since
such systems typically require man-months of ex-
pert work, and difficult to maintain and adapt to
changes in the language, data driven approaches to
inflection generation have recently become popu-
lar (Durrett and DeNero, 2013; Nicolai et al., 2015;
Ahlberg et al., 2015; Faruqui et al., 2016). The task
is further popularized by the past three SIGMOR-
PHON morphological (re)inflection shared tasks
(Cotterell et al., 2016, 2017, 2018). The primary
focus of the task tackled in this paper, the task 1
of the present SIGMORPHON shared task (Mc-
Carthy et al., 2019), is the cross-lingual transfer

learning of the inflection generation.
The dominant approach to morphological

inflection has been sequence-to-sequence neu-
ral networks with attention (e.g., Kann and
Schütze, 2016; Makarov et al., 2017; Makarov
and Clematide, 2018). Furthermore, there seems
to be a shift from soft attention models towards
models with monotonic attention (Ahlberg et al.,
2015; Makarov and Clematide, 2018; Wu and
Cotterell, 2019), which indicate that the predic-
tions of the decoder benefit most from a (short)
window in the output. Although we do not use an
encoder-decoder architecture, the simple systems
presented here are similar to hard-monotonic
attention models in the sense that they predict
the transduction actions based on a window on
the input and output. The method presented here
is much simpler, however. The predictions are
not conditioned on any hidden (continuous or
discrete) state or variable.
A particular reason of interest for data-driven

approaches to morphological inflection genera-
tion is to avoid the considerable amount of expert
time required for building rule-based finite-state
systems. This is particularly important for low-
resource languages, where experts, and maybe
even native speakers, are hard to come by. As
past SIGMORPHON shared tasks demonstrated,
however, satisfactory results in the morphologi-
cal inflection task requires relatively large amount
of data. The low-resource settings in earlier SIG-
MORPHON shared tasks often resulted in much
worse accuracy compared to the high-resource
settings. A potential solution to this problem,
the focus of the current inflection shared task,
is cross-lingual or transfer learning, which has
been demonstrated to be useful a number of lan-
guage processing tasks (e.g., Yarowsky et al.,
2001; Faruqui and Kumar, 2015; Johnson et al.,
2017; Barnes et al., 2018). In cross-lingual learn-
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ing, the data or resources that exist for a related
language are leveraged to improve the learning
in low-resource setting. The method we use for
cross-lingual learning is rather simple. We only
use the (related) high-resource language as addi-
tional training data.

2 The method

The inflection systems in this study operate by
predicting a number of transduction actions based
on current position in the lemma, morphological
tags, and the output produced so far. The general
idea is similar to transition-based parsers (Yamada
and Matsumoto, 2003; Nivre et al., 2004) where
the aim is to predict the parsing action in a given
state of the parser. The similar ideas were used
in the past for morphological inflection generation
as well. The system presented here is most simi-
lar to the baseline system of SIGMORPHON 2016
shared task (Cotterell et al., 2016), and also shares
many aspects of the inflection generation systems
that follow an align-and-transduce strategy in the
earlier SIGMORPHON shared tasks (e.g., Alegria
and Etxeberria, 2016; Nicolai et al., 2016; Liu and
Mao, 2016). Our current models do not make use
of any hidden representations, such as the parser
state in transition based parsing, or hidden repre-
sentations learned in a recurrent neural network.

2.1 Alignment

During training, we need to determine the gold-
standard transduction actions, which requires
aligning the lemmas and word forms. Better se-
quence alignment is one of the concerns for the
similar inflection systems cited above, as well
as the sequence-to-sequence models that operate
with hard monotonic attention. Better alignments
are also a common concern and studied exten-
sively in other areas of computational linguistics
such as dialectometry (Wieling et al., 2009; Prokić,
2010) and historical linguistics (List, 2012; Jäger,
2013). Standard alignment algorithms that use
equal penalties for edit operations often fail to cap-
ture the similarities and differences between char-
acters (or phonetic segments). As a result, often
a weighted method is used such that similar char-
acters in one of the sequences are more likely to
be aligned with the similar characters in the other.
The weights are most often learned from the data
using an unsupervised method. The data-driven
weights are found to be more effective than manu-

e r i m e k - - - - -
e r i y e c e k l e r

e r i m - - e k - - -
e r i y e c e k l e r

- - a u f g e b e n
a u f g e g e b e n

a u f - - g e b e n
a u f g e g e b e n

Figure 1: Example alignments of two lemma–form
pairs from Turkish (top) and German (bottom). In each
box, upper part shows the alignment based on longest
common substring, while lower part shows minimum
edit distance solution.

ally assigned weights based on linguistic knowl-
edge/intuitions (Sofroniev and Çöltekin, 2018).
We tried a few of these more informed weighted
alignment methods. However, in preliminary ex-
periments, a simple alignment mechanism based
on longest common substring (LCS) worked best.
Hence, in all the experiments reported here, align-
ments are performed first by finding the longest
common substring of lemma and the word from,
and aligning the two strings such that the LCS is
aligned correctly. The rest of the characters are
aligned disregarding whether they match or not.
The method introduces gaps only at the beginning
and end of the sequences. If there are two match-
ing substrings of equal length, we pick the first se-
quence.
Figure 1 presents two example alignments based

on the LCS and the edit distance. In the first exam-
ple (top figure), minimum edit distance aligns sub-
string ek, part of the infinitive marker mek used in
verbal lemmas in the data set, to a substring string
that matches accidentally in the word form. The
intuition here is that even if we do not have a good
reason for aligning the infinitive marker mek with
the initial part of the suffix, doing this consistently
facilitates learning. The example from German
(and in general infixes) is a potentially problematic
case for the LCS-based aligner. Minimum edit dis-
tance here produces an alignment that is intuitively
better. However, since in most cases we expect a
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Lemma (input) Form (output) Action

s s copy
c c copy
h h copy
r r copy
e i replace(i)
i e replace(e)
b b copy
e e copy
n s replace(s)
# t insert(t)
# # copy

Table 1: The sequence of actions mapping the German
lemma schreiben ‘to write’ to its second person singular
past form schriebst.

limited number prefixes to precede ‘infixed’ ma-
terial, the LCS solution still provides reasonably
regular patterns to predict.

2.2 Transduction actions

The inflection systems use four character-to-
character transduction actions:

copy copies the current character of the lemma to
the word form, and advances to the next char-
acter on the lemma

replace(c) inserts the character c to the word form,
and advances to the next character on the
lemma

insert(c) inserts the character c to the word form,
without advancing the current lemma pointer

delete deletes the current character of the lemma,
and advances to the next character on the
lemma

All actions are character-to-character operations
based on one-to-one alignments, and each action is
represented individually, i.e., we do not compress
consecutive actions of the same type to a single
complex action. Table 1 demonstrates the series
of transductions for an example lemma–word form
pair. Both lemmas and words are appended with
a special end-of-sequence symbol (indicated with
‘#’ in Table 1). The decoding stops when any of
the actions predict the end-of-sequence symbol.

2.3 Classifiers
Given the gold standard action sequences extracted
from a training set as described above, we can use
any multi-class classification method for predict-
ing the next action. We experimented both with
traditional linear classifiers, in particular SVMs,
and feed-forward neural network classifiers. Re-
gardless of the classification method, however, the
features are based on the morphological tags, char-
acters within a local window around the current
lemma character, and the last few (predicted) char-
acters of the word form. During training we use
the gold-data for extracting features from the word
forms.
Since the linear methods cannot represent non-

linear combinations of the features, we use the fol-
lowing feature (combinations).

• The current lemma character.

• The varying-length, overlapping n-grams to
the left and right of the current lemma charac-
ter. For example, at the fourth step in Table 1,
with current lemma character r, and assum-
ing a window size of three, we include h, ch,
and sch as n-grams before the current point,
and e, ei, and eib as n-grams after the cur-
rent point.

• The varying-length, overlapping n-grams of
the last part of the output already predicted.
For the same position, this would amount to
n-grams h, ch, and sch.

• Morphological tags, including a special tag
indicating the language, and all binary com-
bination of tags. For example, with input
tags {V, PST, S} we also include {V-PST,
V-S, PST-S} as additional tag features.

• Cross product of all tag features with the other
features.

All features for the linear classifiers are com-
bined as a single sparse feature vector. The fea-
tures are weighted using TF-IDF, but no pruning
or any other feature selection step is employed.
As well as the choice of the window size, the

choice of the features and feature combinations
clearly is important for the linear models. Vari-
ations on this feature scheme, e.g., also includ-
ing interactions between the n-grams, and includ-
ing skip-grams may improve model’s predictions.
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However, they also increase the feature set size,
resulting in an increases in the time it takes to tune
the classifiers. The choice above was a compro-
mise between accuracy and demands on computa-
tion (which may be an important factor when tun-
ing models for 100 language pairs).
Intuitively, and also shown in similar tasks ear-

lier, the neural models here have an expected ad-
vantage as they can learn useful combinations of
arbitrary features automatically. The features for
the neural classifier used in this study are based on
the same set of characters and the tags, but without
explicit combinations of the features.
For both type classifiers, a straightforward op-

tion is to train a single multi-class classifier is pre-
dicting all possible actions (including the compos-
ite actions such as replace(i)). Alternatively, one
can first predict one of the four action types, and
then predict the parameter of the action if the ac-
tion is replace or insert. For the linear classifier,
this means training three separate classifiers, and
applying two of them in correct order at predic-
tion time. For the neural model, a similar approach
is used. The model first predicts the action, and
then the parameter of the action, for which action is
also given as an additional predictor. The different
parts of the network are trained jointly, and share
some of the weights which may provide additional
benefits. We experimented with both approaches.
Initial experiments produced mixed results, one or
the other option performing better in different data
sets. The results presented here are based on the
two-level classifiers, chosen somewhat arbitrarily.
At prediction time we decode the sequence

greedily, choosing the single-best action according
to the model at each step. However, both systems
can produce multiple outputs with minor modifi-
cation to the decoding algorithm.

2.4 Cross lingual transfer
The main focus of the present task is cross-lingual
transfer. Although we entertained a few ideas,
including the use of cross-lingual character em-
beddings and translation of transition sequences,
the approach used at the end was straightforward
inclusion of the high-resource language data in
training the models. During cross-lingual training,
however, we include an additional hyperparame-
ter that determines the weight training instances
belonging to the source language. This way the
model also learns ‘how much to learn from the
source language’ during tuning.

Since a sizable number of language pairs do not
use the same writing system, a learner relying on
categorical character inputs cannot learn from the
source language data. Even when the script used
by both languages are the same, there are often
differences in the writing traditions that make the
transfer difficult. Without success from our pre-
liminary experiments with cross-lingual character
embeddings, we used the inputs as is, only experi-
menting with transliteration of the source language
input to the target language input for a limited set
of language pairs.
Performing the correct, or useful, translitera-

tions for this task seems difficult. There are no
standard transliteration methods defined for most
language pairs in the data. The standard translit-
eration methods for some languages exists, where
the standard typically defines how to transliterate
a language written with a non-Latin script to some
version of the Latin script. However, the stan-
dard methods are often designed for easy read-
ing/phonetization by English speakers. Even in
cases of target languages that use a version of the
Latin script, there are significant differences to
hinder cross-lingual learning considerably. As a
result, we report below some of the experiments
with transliterations between Latin and Cyrillic
scripts for only eight language pairs (all Turkic lan-
guages) to demonstrate the potential gains that can
be obtained with transliteration. The translitera-
tion method follows Çöltekin and Barnes (2019).
The method does not follow any transliteration
standards (e.g., one set by ISO), but tries to max-
imize the similarities of the writing traditions in
these particular languages.

3 Experimental setup

3.1 Data and preprocessing

The shared task data used in this study consists
of 100 language pairs, which is described in de-
tail in McCarthy et al. (2019). Here we only
provide a basic overview that is relevant to our
discussion below. All language pairs feature a
high-resource training set from the source lan-
guage, a low-resource training set and a develop-
ment set, both from the target language. Num-
ber of unique source and target languages are both
44. The number of source languages for a target
language, and number of target languages for a
source language differ. Some languages also ap-
pear as both source and target languages in dif-
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ferent pairs. Most source languages have 10 000

training instances, with a few exceptions (notably
Uzbek with only 1 060 word forms). The num-
ber of training instances for all target languages
is 100, with a single exception of Telugu with 61

word forms. Development set sizes vary more be-
tween 50, 100 and 1 000 word forms. The number
of unique lemmas and tag combinations also vary
among different training and development sets.
The relation of language pairs also differ. Most

pairs have shared ancestry, ranging from very
close (e.g., Turkish–Azeri) to rather far modern
relatives (e.g., Russian–Portuguese), or histori-
cal relatives (e.g., Polish–Old Church Slavonic).
There are also a few pairs where the relation is
rather through geographical contact (e.g., Italian–
Maltese). As noted above, one obstacle for cross-
lingual learning is the different writing systems
used in these languages. The data set includes 11
different scripts, and 30 of language pairs do not
use the same script. It should be noted, however,
that the use of common script does not necessar-
ily solve all the problems regarding mapping char-
acter sequences across languages reliably. Even
when they use the same script, e.g., Latin or Cyril-
lic, the differences adopted in the writing tradition
of each languages may still introduce difficulties.
To overcome the differences in scripts, we

transliterated source language data in eight
pairs (Bashkir–Azeri, Bashkir–Crimean-Tatar,
Bashkir–Tatar, Bashkir–Turkmen, Turkish–
Kazakh, Turkish–Khakas, Uzbek–Kazakh, and
Uzbek–Khakas) into the script used by the target
language. The transliteration method used tries
to maximize the similarity of the transliterations
with the writing system of the target language.

3.2 Classifier tuning
For both classifiers we performed a random search
through the hyperparameter space, which included
the weight of the source language instances.
Hence, both classifiers are tuned to make use of
the source language based on their usefulness. The
other common parameter for both the linear and the
neural classifier included window size, which de-
termines the number of characters to the left and
right of the current lemma position, the number of
characters from the end of the word form predicted
so far. For linear models the only other hyperpa-
rameter we tune is the regularization constant.
For the neural model we fixed the architecture

after some initial experimentation, where the ac-

tion classifier had two hidden layers of 100 units
with ReLU activation, followed by a softmax clas-
sifier. The part of the network that predict the pa-
rameter of insert and replace actions had one layer
with ReLU activation followed by a softmax clas-
sifier. The input to the parameter classifier was the
output of the hidden layer of the activity classifier,
as well as the activity prediction. We used early
stopping, stopping when the mean edit distance on
the development set did not improve. We use only
a single-best system, without any weight averag-
ing or ensembling.
Both models are tuned on the training sets of tar-

get language, and both source and target combi-
nation with a parameter controlling the weight of
the source language instances. Random search for
transfer model includes the best model parameters
tuned on mono-lingual low-resource setting with a
source weight parameter set to 0. Hence, the trans-
fer models for each language pair does at
All linear models were implemented in scikit-

learn Python library (Pedregosa et al., 2011) using
liblinear back end (Fan et al., 2008). The neural
model was implemented with Tensorflow (Abadi
et al., 2015) using Keras API (Chollet et al., 2015).

4 Results

The official results obtained by our linear and neu-
ral model alongside the best and worst baseline
results published by the organizers presented in
Table 2. The organizers offer a large number of
baseline results. We only present the best (unpub-
lished transformermodel) and theworst (‘untuned’
monotonic alignment model). The best system in
the competition (CMU-03) achieves an accuracy
of 58.79 and mean edit distance of 1.52.
Besides the official results, we also present re-

sults obtained after the competition in Table 2. The
row labeled ‘∗Linear’ presents the results obtained
with the same linear classifier after fixing a bug
in feature extraction and further tuning. The row
marked as ‘target only’, presents results that are
obtained using only the target language, without
any attempt of cross-lingual learning. Both scores
are obtained using the official evaluation script on
the test data released after the end of the evaluation
period.
The neural predictor performed worse than the

linear predictor, within the (rather limited) effort
and computational resources put into developing
it. Although the performance is still below the top
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Figure 2: Detailed accuracy scores obtained using the linear predictor with and without source language data. The
language pairs are sorted by the target language.
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System Accuracy MED

Linear 34.49 1.88

Neural 20.86 2.36
∗Linear 43.67 1.43
∗Linear, target only 41.00 1.50

Baseline (worst) 28.76 2.07

Baseline (best) 54.25 1.13

Table 2: Overall results obtained by our systems in
comparison to the official state-of-the-art baseline (Wu
and Cotterell, 2019). The scores are word-form accu-
racy and mean edit distance (MED) averaged over all
100 language pairs. The rows marked with asterisk in-
dicate post-evaluation scores obtained using the linear
predictor, after fixing a bug and further tuning.

performing systems, the post-evaluation fixes and
tuning results in a dramatic increase in the perfor-
mance of the linear model. The more interesting
result, however, is the small difference between
the transfer learning results and the ‘target only’
results. We present the target-only and transfer ac-
curacy scores for each language pair in Figure 2. In
general, the gains from cross-lingual learning are
modest. There is no improvement at all for 59 of
the language pairs. As expected, this includes all
30 pairs with writing system mismatch, excluding
some of the language pairs for which we translit-
erated the source data. The effect of transliteration
is rather modest as well, yielding an improvement
between 4 to 12 percentage points of accuracy for
four of the eight language pairs where it was used.
The effect of the transliteration to the overall score
is a 0.29% increase in accuracy. Not surprisingly,
the highest increases due to cross-lingual learn-
ing are obtained when source and target languages
are closely related. The highest increase is ob-
tained from Turkish to Azeri with 33%, followed
by Turkish–Turkmen and Adyghe–Kabardian with
26% and 18% respectively.

5 Summary and outlook

We presented a simple inflection system based on
predicting transduction actions. Of the predictors
we tried, the linear predictor performs reasonably
well. Although its performance is lower than the
top performing systems in the shared task, the sys-
tem is far from being well-tuned, and as demon-
strated above simple improvements may have a
major effects on the performance. Furthermore,

the linear predictor has the advantage of requir-
ing relatively less computational resources, which
may be advantageous in some cases. One further
advantage is the ease of analyses of linear learn-
ers. What the linear model learns is often much
simpler to understand and interpret, and although
the need for crafting feature combinations is one
of its weaknesses, it may also provide further in-
sight through more interpretable ablation studies.
Our neural predictor did not perform as well as the
linear predictor. This, however, is by no means a
conclusive result. If tuned well, neural networks
should in fact work well in this task because of
their capability of learning arbitrary combinations
of their inputs.
On the cross-lingual side of the problem, the

improvements we get are rather modest. In fact,
there is a only small overall improvement due
to cross-lingual learning over learning only from
low-resource target language. Since our relatively
simple system can get up to 40% accuracy by
learning only from the small target language train-
ing sets, there is also a good chance that more suc-
cessful systems are also relying more on the target
language data rather than benefiting from trans-
fer learning. Some of the reasons for low suc-
cess is probably the make up of the data. Not all
language pairs are close enough to facilitate the
transfer learning. However, there are many possi-
ble directions for exploiting the cross-lingual sig-
nal better. The simple method used in this study
can be improved in many ways. Although our ini-
tial experiments were not successful. We believe
cross-lingual character embeddings, and ’translat-
ing’ transduction actions from source language to
target language may be potential ways to get a bet-
ter cross-lingual input.
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