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Abstract

This paper describes our submission to SIG-
MORPHON 2019 Task 2: Morphological
analysis and lemmatization in context. Our
model is a multi-task sequence to sequence
neural network, which jointly learns morpho-
logical tagging and lemmatization. On the
encoding side, we exploit character-level as
well as contextual information. We introduce
a multi-attention decoder to selectively focus
on different parts of character and word se-
quences. To further improve the model, we
train on multiple datasets simultaneously and
use external embeddings for initialization. Our
final model reaches an average morphological
tagging F1 score of 94.54 and a lemma accu-
racy of 93.91 on the test data, ranking respec-
tively 3rd and 6th out of 13 teams in the SIG-
MORPHON 2019 shared task.

1 Introduction

This paper presents our model for the SIGMOR-
PHON 2019 Task 2 on morphological analysis and
lemmatization in context (McCarthy et al., 2019).
The task is to generate a lemma and a sequence of
morphological tags, which are called morphosyn-
tactic descriptions (MSD), for each word in a
given sentence. This task is important because it
can be used to improve several downstream NLP
applications such as grammatical error correc-
tion (Ng et al., 2014), machine translation (Con-
forti et al., 2018) and multilingual parsing (Zeman
et al., 2018). Table 1 shows the lemma and mor-
phological tags of: Johnny likes cats.

The first sub-task, Lemmatization, is to trans-
form an inflected word form to its lemma which is
its base-form (or dictionary form), as in the exam-
ple of likes to like. The second sub-task, morpho-
logical tagging, is to predict morphological prop-
erties of words as a sequence of tags, including a
part of speech tag. These morphological tags spec-
ify the inflections encoded in word-forms. In the

35

likes

Lemma | Johnny like cat .
MSD | PROPN;SG V;SG;3;IND;PRS N;PL _

Orig ‘ Johnny cats

Table 1: Example sentence, annotated with lemmas and
morphological tags.

example sentence, the word likes is annotated with
a morphological tag set of {V.SG,3,IND,PRS}.
Both tasks are dependent on context. For example,
while walking is annotated with the lemma walk
and tag set {N,SG} in the sentence: The beach is
within walking distance; it is annotated with walk-
ing and {V.PTCP;PRS;V} in: I was walking.

These two tasks have a clear relation; in most
languages the categories found in the morpholog-
ical tags indicate how the lemma of the word was
inflected to the word-form. In other words, syn-
tactic inflections have a strong correlation with the
morphological properties of the words.

Our approach to solve both of these tasks
consists of an encoder and two separate de-
coders within a multi-task architecture based on
a sequence-to-sequence network. The shared
encoder reads words and sentences to learn
character-level and word-level representations.
The decoders then separately generate lemmas and
morphological tags using these representations by
using multiple attention mechanisms. Our contri-
butions are threefold:

e We introduce the use of multiple attention
mechanisms that selectively focus character and
word sequences in the sentence context.

e We evaluate the effect of a variety of types of ex-
ternal embeddings for lemmatization and mor-
phological tagging.

e We evaluate the effect of combining annotated
datasets from related languages for both tasks
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using dataset embeddings.
2 Related work

Our system is based on three main approaches
which are heavily studied in existing literature.
These are sequence-to-sequence learning, multi-
task learning and multi-lingual learning.

Recent work on computational morphol-
ogy showed that neural sequence-to-sequence
(seq2seq) models (Sutskever et al., 2014;
Bahdanau et al., 2014) have yielded new state-
of-the-art performance on various tasks including
morphological reinflection and lemmatiza-
tion (Cotterell et al., 2016, 2017, 2018). Building
on this, Dayanik et al. (2018) utilize different
levels of representations such as character-level,
word-level and sentence-level in the encoder of
their seq2seq architecture based on previous work
(Heigold et al., 2017).

Multi-task learning approaches for jointly learn-
ing related tasks have been successfully employed
on syntactic and semantic tasks (S@gaard and
Goldberg, 2016; Plank et al., 2016). In the con-
text of morphological analysis, this has been used
by Kementchedjhieva et al. (2018), who jointly
learn morphosyntactic tags and inflections for a
word in a given context, and use a shared encoder
within a multi-task architecture consisting of mul-
tiple decoder similar to our model.

Multi-lingual learning approaches which ben-
efit from joint learning for multiple languages is
also studied on various tasks with different archi-
tectures. Ammar et al. (2016) uses a language em-
bedding that contains information considering the
language, word-order properties and typological
properties for dependency parsing. In multilingual
neural machine translation, Johnson et al. (2017)
use a special token to indicate the target language.
In this work, our model uses the approach of Smith
et al. (2018) who introduce the treebank embed-
ding approach to combine several treebanks for a
single language or closely related languages.

Most similar to our model, Kondratyuk et al.
(2018) use a joint decoder approach for morpho-
logical tagging and lemmatization. However, our
model differs from theirs in substantial ways. Our
model employs an encoder-decoder architecture
which utilizes different levels of attention com-
ponents with a multi-lingual/multi-dataset signal.
Moreover, our model solves the tagging problem
as a sequential prediction task instead of multi-
layer classification so that we can use the same
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architecture for both lemmatization and tagging
which are described in Section 3.2 and 3.3.

3 System Description

Our model is inspired by the architecture
of Dayanik et al. (2018). We employ an encoder-
decoder model over the character and word se-
quences. Following Dayanik et al. (2018), the en-
coder in our model consists of two parts. First, a
word encoder which runs on the character level, is
used to generate embeddings for each word (Sec-
tion 3.1.1). Second, a context encoder is initialized
with these word embeddings, and runs on the sen-
tence level (Section 3.1.4). We also experiment
with two methods to complement the word-level
embeddings (Section 3.1.2 and 3.1.3).

The representations at the different levels which
are generated by the encoder are then passed into
the decoders. Unlike Dayanik et al. (2018) which
uses one decoder for both the lemmas and the mor-
phological tags, we use two different decoders in
a multi-task architecture. The tag decoder pro-
duces a set of morphological tags by using word
representations and joint attention mechanism that
one attention focuses on words and other focuses
on characters (Section 3.2). The lemma decoder
produces a lemma by using the same information
complemented with output embeddings of the tag
decoder (Section 3.3).

Multi-task Learning The decoders work jointly
in a multi-task fashion and they share all internal
representations of the encoder. The whole network
is trained by backpropagating the sum of the losses
of the decoders without any weighting:

L(6)

= Ltag + Llemma (1)

where the morphological tag loss L., and the
lemma loss Ljepmq are separately computed as the
negative log likelihood loss over their softmax out-
puts.

Notation Given a sentence S = wq, ..., w, and
w; = ¢q, ..., Gy Where w denotes words and ¢ de-
notes characters, our model processes S and w
in encoders and jointly produces a set of mor-
phological tags t; = t;1,...,t;, and a lemma

li = 1;1,...,1;  which is a sequence of characters.

3.1 Encoder

In the following subsections, we explain the dif-
ferent parts of the encoder. An overview of the
encoder architecture is shown in Figure 1.
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Figure 1: Overview of the encoder when processing
the third word of the sentence: “Johnny likes cats .”.
Red:word level embeddings. Green: Character level
embeddings.

3.1.1 Word Encoder

We use a bidirectional GRU layer (Cho et al.,
2014) to encode character sequences in the word
encoder. We first pass each character of a word w;
to an embedding layer to map them into the fixed
dimensional character embeddings. The bi-GRUs
process character embeddings in both directions
and produce the hidden states hf y, ..., k7 ,,. The
resulting word embedding ef is computed by con-
catenating the final states of forward and backward

GRUs for the given word:
(i:,l:m = bi_GRU(Ci,lzm) (2)
H <_
e = [him;hiil (3)

3.1.2 Word-Surface Embeddings

In addition to the character-level word embed-
dings, we use surface-level word embeddings
which are either learned in a standalone embed-
ding layer or taken from the pre-trained external
embeddings. Word-surface embeddings are de-
noted by ef’. For the unknown words, we used
a word droupout to overcome the sparsity issue.
Following Kiperwasser and Goldberg (2016), we
replace unknown tokens with a probability that is
inversely proportional to the frequency of the word
so that the word representation for an unknown to-
ken is learned based on infrequent words and their
context.

3.1.3 Dataset Embeddings

In order to train our model on multiple datasets
at once, we use dataset embedding e for each
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Figure 2: An overview of the morphological tag de-
coder.

dataset a which is mapped into a fixed dimensional
vector in an embedding layer. The idea of dataset
embeddings is introduced by Smith et al. (2018).
These embeddings enable us to combine multiple
datasets without losing their monolingual and het-
erogeneous characters. The strategy that we use
to pick and combine datasets is described in Sec-
tion 4.2

3.1.4 Context Encoder

In order to encode sentence level contextual infor-
mation, we use another bidirectional GRU layer.
For a given sentence, we first concatenate the out-
put of the word encoder e, the word-surface em-
bedding e;’ and the dataset embedding ed, for each
word in the sentence. The resulting embedding se-
quence €%, ..., e is then passed into the bi-GRU.
The output of the bi-GRU is a sequence of em-
beddings €3, ..., e;, each representing a word in the
sentence:

mn [ eC: W ed]

171 ) Ta

“4)

3.2 Tag Decoder

As the tag decoder shows in Figure 2, we use a 2
layer stacked bidirectional GRU as the tag decoder
to generate morphological tags t; = t;1,...,t; ~
for the target word w; in a given sentence. In or-
der to utilize both character-level representations
and contextual representations during decoding,
we initialize the first layer of the decoder with
the context-level word embedding e and the sec-
ond layer of the decoder with the character-level
word embedding e after passing them through a
relu layer. The decoder outputs the morphological



tags over a softmax layer based on the final hidden
states h;, which are computed in a joint attention
mechanism described in the following section.

Ry (6)
p(titlhe) (7)
3.2.1 Joint Context and Character Attention

We employ two different attention mechanisms to
allow the decoder to focus on multiple parts of the
sentence and the target word at the same time. We
use the attention mechanism introduced by Bah-
danau et al. (2014) for the context attention layer.
In the context attention, the alignment vector a;,
which consists of weights for each word in the
sentence, is computed based on the previous hid-
den state hy_; at the top layer of the stacked bi-
GRU and context-level embeddings e® of words
by using the concat function described in Luong
et al. (2015). The sentence-level context vector
¢{ which is calculated as a weighted average over
word embeddings, is then passed into a simple
concatenation layer W7 to produce the new hid-
den state h; through the stacked bi-GRU:

decoder(hy, ¢f, ¢;)

softmax (hy )

a;(i) = align®(hi—1,€]) (8)
¢ = Zafef 9)
hy = bi-GRU(WZ[cS; hy_1], hs—1) (10)

Together with the context attention, we also em-
ploy a character-level attention model to take into
account the entire output of the word encoder.
We use the global attention mechanism with the
general score function for alignment vectors (Lu-
ong et al., 2015), for the character attention. The
source-side character-level attention vector ¢ is
computed as a weighted average of the outputs
of the word encoder, each denoted by hf ;. The

resulting output state ﬁt of the tag decoder is
then generated by concatenating the current hid-
den state at the top of the stacked bi-GRU h;
and the context vector cf in a concatenation layer
which has a tanh activation:

ag(j) = align®(hy, h{ ;) (11)

¢ = > afhf, (12)
J

he = tanh(WE[cS; hy)) (13)

3.3 Lemma Decoder

The lemma decoder (Figure 3) produces one char-
acter at a time to sequentially form a lemma /; =
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Figure 3: An overview of the lemma decoder.

li1,...,1; 4 for a target word w;. Similar to the
tag encoder, we use a 2 layer stacked bi-GRU as
lemma decoder. The initial states of the decoder
layers are taken from the word encoder output ef
and the context encoder output e; through a relu
layer similarly as in the tag decoder. The output of
the lemma decoder [; ; is conditioned on the cur-
rent state of the decoder h;, the character attention
¢ and the morphological tags t; 1., of the target
word. The probability of the output lemma char-
acters are then predicted through a softmax layer.

T
p(lz}tﬂt)

decoder(hy, cf, ti1.y) (14)

softmax(ﬁt) (15)

In order to exploit morphological features during
lemmatization, we give the morphological tags ¢;.
which are predicted by the tag decoder, as part of
input to the lemma decoder. Independent of their
order, the entire set of the tags are encoded by a
simple feed-forward layer as described in the base-
line model (Malaviya et al., 2019) and the result-
ing vector is concatenated with the input embed-
dings for each target word.

The last part of the lemma decoder is the atten-
tion network which is the same character-level at-
tention model as in the tag decoder. The character
attention mechanism allows the lemma decoder to
compute an attention vector c§ based on the output
states of the word encoder. The attention vector is
then passed into a concatenation layer to generate
the output state h; of the decoder for each lemma
character [; ;.

ag(j) = align®(h, by ;) (16)

¢ = > ahf; (17)
j

he = tanh(WE[c§; hy)) (18)



Parameter Val. | Parameter Val.
teacher forcing ratio 0.5 | dataset embbedding size () 32
dropout 0.25 | word enc. hidden size (h{) 1,024
patience 4 context enc. hidden size (hj) 1,024
word enc. input size 128 | dec. input size 128

word embedding size (e}”) 256 | dec. hidden size (h;) 1,024

Table 2: Default hyperparameter settings. Encoder and
decoder are denoted by enc and dec respectively.

4 Setup

In this section we will give the details regarding
our experimental setup. The hyperparameters we
used in our experiments are shown in Table 2.
These hyperparameters have been tuned on the
datasets described in Section 5.1. For the train-
ing, we used ADAM (Kingma and Ba, 2014) and
we applied an early stopping strategy with a min-
imum number of 100 epochs. We stop training if
there is no improvement in the development set for
4 consecutive epochs (patience).

4.1 External Embeddings

Because of time-constraints and the large num-
ber of languages in the dataset, we used out-of-
the-box embeddings. We compared the perfor-
mance of three well-known pre-trained embedding
repositories for different training methods. We
use two word-based embeddings: Polyglot em-
beddings (Al-Rfou et al., 2013), and FastText em-
beddings (Grave et al., 2018). For FastText, two
sets of pre-trained embeddings are available: one
is trained only on Wikipedia (Bojanowski et al.,
2017), whereas the newer versions are also trained
on CommonCrawl (Grave et al., 2018). Whenever
available, we pick the newer embeddings, but for
many low-resource languages we fall back to the
older, smaller version. We also experiment with
context-based embeddings, namely ELMo embed-
dings (Peters et al., 2018), we use the pre-trained
models from Che et al. (2018).

All of these embeddings have been trained us-
ing the default settings for the embedding type,
hence their dimensions are substantially different
(Polyglot; 64, FastText:300, ELMo:1,024) . We
decided not to transform these, as their default di-
mensions are tuned towards their training algo-
rithm and we want to provide a fair comparison
for all out-of-the-box settings.
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4.2 Dataset Embeddings

For the dataset embeddings, we only consider
combining pairs of two for efficiency reasons. To
ensure that we match datasets which are informa-
tive, we use word overlap (excluding numberals
and punctuation). As this method is expected to be
most benficial for small datasets, we searched for
datasets which are closest (ie. have a large word
overlap) to the 50 smallest datasets. The final pairs
of datasets can be found in Appendix A.

5 Experiments

In this section, we will describe the data used in
our experiments as well as evaluate the effective-
ness of our external embeddings setup and the
dataset embeddings with in a variety of settings.
In all experiments we use +E and -E to indicate
the model with and without external embeddings,
and +D and -D for dataset embeddings.

5.1 Data

The test data of SIGMORPHON 2019 task 2 con-
sists of a collection of datasets released in the Uni-
versal Dependencies project (Nivre et al., 2018),
which are automatically converted to the Uni-
Morph Schema (McCarthy et al., 2018). In total,
we evaluate our model on 107 datasets, covering
66 languages.

After empirically looking at the trade-off be-
tween data-size and training time, we decided to
limit each dataset to its first 250,000 tokens for all
experiments. This speeded up the training consid-
erably, with almost no loss in performance.

For the tuning of our model, we selected a
sub-set of datasets from the main benchmark.
More specifically, we aimed to get a diversion of
language-family, size, and morphological richness
(here proxied by the average amount of morpho-
logical tags per word). To ensure we do not overfit
on a specific dataset/annotation, we selected two
datasets for each of these languages. The selected
datasets are shown in Table 3.

5.2 Baseline

The baseline consists of two separate parts: a mor-
phological tagger and a lemmatizer. The morpho-
logical tagger, which predicts a set of morpholog-
ical features (as one tag) for each word, is a bilL-
STM model with character level layers. The k-
best predicted morphological tags are then used
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Figure 4: Results of our model when using a variety of
types of external embeddings.

as extra information to improve the lemmatiza-
tion. The lemmatizer, which is based on Wu et al.
(2018), uses a hard attention mechanism within an
encoder-decoder model. Unlike the previous mod-
els, the morphological tags are explicitly given to
the lemmatizer to indicate the morpho-syntactic
features of words. The lemmatizer combines the
given morphological tags with a character encod-
ing to predict the lemma.

5.3 External Embeddings

In Figure 4, we plotted the average performance
of our model when the different types of embed-
dings are used to initialize the word-surface em-
beddings (detailed results are in Appendix B). The
results show that a performance boost of approx-
imately 2.5% can be obtained for lemmatization
and 5% for morphological tagging. Especially the
ELMo embeddings perform very well, and result
in an improvement of 3.77 and 6.35 percentage
points. The Polyglot embeddings perform surpris-
ingly well, considering they only have an embed-
ding size of 64. In addition to the reported settings,
we also experimented with concatenating the vec-
tors from all types of external embeddings. How-
ever, our empirical results showed that this per-
formed worse compared to using any of the em-

Dataset Language Family Sents  words tag/word
en_ewt IE,Germanic 13,297 204,857 1.95
en_pud IE,Germanic 800 16,927 1.88
triimst  Turkic,Southwestern 4,508 46,417 3.58
trpud Turkic,Southwestern 800 13,380 2.78
zh_cfl  Sino-Tibetan 360 5,688 1.00
zh_gsd  Sino-Tibetan 3,997 98,734 1.06
fipud Uralic,Finnic 800 12,556 2.97
fi_ftb Uralic,Finnic 14,978 127,536 3.07
Table 3: The datasets which we used to tune our mod-

els, with data properties based on the training split. IE:
Indo-European
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Figure 5: Average results of our model when using sim-
ple dataset concatenation versus using dataset embed-
dings (+D) on 4 small datasets and 4 large datasets

beddings in isolation.

Because not all types of embeddings are avail-
able for all languages, we use fallback options for
the test data. We choose embeddings in the fol-
lowing order: ELMo, Polyglot, FastText. After
this selection, three languages still have no embed-
dings (Akkadian, Coptic and Naija), we omitted
datasets in these languages from the external em-
bedding experiments.

5.4 Dataset Embeddings

To test whether the dataset embeddings are neces-
sary, we compare them with a naive approach to
combine datasets: simply training on the concate-
nation of both datasets. The average results on 4
small datasets and 4 large datasets which are given
in Table 3, are compared separately in Figure 5. In
both small and large settings, using dataset embed-
dings improves the performance in both morpho-
logical tagging and lemmatization, however the
effect of dataset embeddings is higher on small
datasets, especially in the morphological tagging
task. For the detailed results on our tune datasets,
we refer to Appendix C.

6 Results

In this section, we will compare our final results
for two settings with the baseline. In general, we
compare two setups: use of external data (exter-
nal embeddings, +E) and a constrained setup (-E),
which only uses training data. For the dataset em-
beddings, we could only run for the smallest 50
datasets because of time limitations, so for the de-
velopment data, we only report results for these
datasets. For the test data, we used dataset embed-
dings for datasets for which they have shown to be
beneficial on the development data. Our average
results are shown in Table 7. For the results for all



four settings per dataset, we refer to Appendix D;
here we see that the best setting is generally to use
dataset embeddings when available.

6.1 Morphological Tagging

For the morphological tagging task, external em-
beddings show to be more beneficial for the tag-
ging task, whereas the dataset embeddings are par-
ticularly beneficial for lemmatization, but combin-
ing them leads to the best scores for both tasks.
Furthermore, our model outperforms the baseline
by a large margin. This is because, while the
baseline has a separate component for morpholog-
ical tagging, our model learns both tasks jointly.
This approach implicitly enables the decoder to
access lemma information for morphological tag-
ging. Besides, we use a multi-attention strategy
which combines word level and character level at-
tentions which improves the tagging performance.

6.2 Lemmatization

In contrast to the results on the development
data, the baseline outperforms our model on the
test data (Table 7). Especially on small datasets
which are not paired with another dataset, such
as UD_Akkadian—-PISANDUB, the baseline per-
forms better with a large margin.

There are two main reasons for this perfor-
mance difference. First, the baseline uses a hard
attention to model alignment distribution explic-
itly, whereas, our model uses soft attention for
both tasks. The results show that a hard attention
mechanism performs better on the lemmatization,
confirming the findings of Wu et al. (2018). In-
tegrating a lemma decoder having hard attention
with a morphological tag decoder which employs
soft attention, could be explored in future studies.
Second, as explained in the previous section, we
optimize for both tasks jointly without any weight-
ing. Although this is more elegant, as only one
model is trained, it might not lead to the most op-
timal performance.

7 Conclusion

In this paper, we presented our model for the Sig-
morphon 2019 Task 2 on morphological analysis
and lemmatization. We use an encoder-decoder
model by utilizing multi-task learning approach.
A shared encoder runs on the character and sen-
tence level and two separate decoders jointly learn
to generate morphological tags and the lemma for
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‘ Morph. tags Lemma

Models ‘ Acc F1 Acc Lev
dev (small)

base 69.66 85.38 91.53 0.19
-E-D 83.16 89.45 86.75 0.29
+E-D | 85.84 9154 87.65 0.28
-E+D | 85.58 91.26 89.70 0.27
+E+D | 88.03 9296 91.29 0.24
test (all)

base 73.16 87.92 94.17 0.13
-E 89.00 93.35 93.05 0.16
+E 90.61 94.57 9394 0.15

Table 7: Average results for all evaluation metrics
for development and test data. +E: use external em-
beddings for initialization, +D: use dataset embedding
strategy. On the development data, we report the aver-
age over the datasets where predictions of all settings
were available.

each word.

Our system achieved an average morphological
tagging F1 score of 94.57 and an average lemma
accuracy score of 93.94 on the test data. The ex-
perimental analysis showed that:

Employing a multi-task achitecture having mul-
tiple levels of attention mechanism improved
the morphological tagging over the baseline
strategy.

Using the pre-trained embeddings substantially
improved our scores for both tasks.

Applying a multi-lingual/dataset strategy by
learning special embeddings also improved our
scores, specifically for small datasets. On 50
datasets (Table 7), the multi-dataset strategy im-
proved the performance of our model substan-
tially, by 2.95 (accuracy) on lemmatization and
1.81 (F1) on morphological tagging.

Furthermore, these improvements are highly
complementary: using dataset embeddings si-
multaneously with external embeddings leads to
superior performance.

The code to re-run all experiments can
be found on: https://bitbucket.org/
ahmetustunn/morphology_in_context
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Lemma Morph. tags Lemma Morph. tags

Dataset Acc. Lev. F1  Acc. | +E +D | Dataset Acc. Lev. F1 Acc. | +E +D
af_afribooms 96.44 0.10 98.05 9845 | + + | it_postwita 95.20 0.18 9542 96.64 | + -
akk_pisandub 4752 135 7624 7584 | - + | it_pud 97.11 0.06 93.73 9696 | - +
am_att 9849 0.02 87.81 9152 - - || ja-gsd 98.98 0.01 98.00 97.76 | + +
ar_padt 94.65 0.14 94.16 9690 | + + | ja_modern 96.87 0.04 96.74 96.80 | - +
ar_pud 8253 041 83.61 9416 | + + | japud 99.01 0.02 9856 9839 | + +
be_hse 90.28 0.18 8220 9152 | + + | kmrmg 91.31 0.14 8351 8944 | + -
bg_btb 97.19 0.08 9727 98.79 | + - || ko_gsd 90.09 021 9593 9535 | + -
bm_crb 8747 021 9142 9377 | + - || ko kaist 94.62 0.09 96.84 96.46 | + -
br_keb 9224 0.18 86.57 8950 | + + | ko_pud 99.13 0.01 9238 9559 | + +
bxr_bdt 87.12 031 83.65 8657 | + + | kpv.ikdp 8594 026 6641 7596 | - +
ca_ancora 99.00 0.02 9794 99.04 | + - || kpv-lattice 81.87 0.46 6923 8221 | + +
cop_scriptorium | 96.13 0.08 94.67 96.31 | - - || laiittb 98.33 0.04 9501 97.77 | + -
cs_cac 98.39 0.03 9521 9836 | + - || la_perseus 9273 0.15 83.75 9301 | + +
cs_cltt 97.60 0.29 9330 97.59 | + + || la_proiel 96.76  0.07 90.28 96.60 | + -
cs_fictree 97.78 0.04 93.84 9757 | + - || It-hse 80.14 0.46 6723 8326 | + +
cs_pdt 97.94 0.04 9436 9797 | + - || Ivvtb 95.02 0.09 9296 9691 | + +
cs_pud 96.84 0.05 91.19 9721 | + + | mr.ufal 72.63 0.67 6233 7602 | + +
cu_proiel 95.54 0.10 88.67 9548 | - - || nl_alpino 96.25 0.08 95.10 96.05 | + -
da_ddt 96.96 0.05 96.05 9749 | + + | nllassysmall 9430 0.12 9345 9426 | - -
de_gsd 95.24 0.10 8499 9371 | + - || no_bokmaal 97.72 0.04 9521 97.05| + -
el_gdt 94.64 0.11 9279 9747 | + + | no_nynorsk 95.86 0.08 94.05 9627 | - -
en_ewt 98.39 0.08 96.18 9724 | + + | nonynorsklia | 97.58 0.04 9453 96.62 | + +
en_gum 97.85 0.04 9595 9695 | + + || pcm.nsc 9948 0.02 9479 9301 | + +
en_lines 97.96 0.04 9645 9732 | + - || pllfg 97.06 0.06 9455 9776 | + +
en_partut 9797 0.03 9540 9627 | + + | plsz 97.11 0.05 90.88 96.56 | + +
en_pud 97.20 0.04 9544 9685 | + + | pt-bosque 98.24 0.03 9483 9753 | + -
es_ancora 99.03 0.02 97.83 9891 | + - || pt_gsd 98.14 0.10 98.24 9837 | + -
es_gsd 98.75 0.02 9460 9737 | - + || ro_nonstandard | 96.44 0.07 92.74 96.18 | - +
et_edt 95.07 0.11 9451 9724 | + - || ro_rrt 98.29 0.03 9747 9842 | + -
eu_bdt 96.03 0.09 90.15 9538 | + - || ru_gsd 96.79 0.05 90.69 96.05 | + -
fa_seraji 95.20 023 97.76 9823 | + - || ru_pud 9431 0.10 8793 9550 | + +
fi_ftb 94.65 0.12 95.17 9737 | + - || ru_syntagrus 96.76  0.07 95.10 97.71 | + -
fi_pud 89.35 0.28 9524 9751 | + + | ru_taiga 9344 0.15 8633 9383 | + +
fi_tdt 93.61 0.14 9531 9752 | + - | sa_ufal 5226 1.18 4221 6445 + +
fo_oft 8559 0.29 80.60 90.62 | - + | sk_snk 95.61 0.08 9149 96.75 | + -
fr_gsd 98.12 0.04 9731 9843 | + - || slssj 97.84 0.03 9365 97.13 | + -
fr_partut 96.54 0.05 9496 9771 | + + | slsst 96.24 0.07 90.72 9509 | + +
fr_sequoia 98.27 0.03 97.18 98.77 | + - sme_giella 87.54 027 8622 9138 | + +
fr_spoken 99.52 0.01 98.15 98.18 | + + || srset 96.09 0.07 9238 96.27 | + -
ga_idt 89.07 0.26 8395 90.82 | + - || sv_lines 9643 0.08 93.13 97.03 | + -
gl ctg 98.31 0.03 97.80 97.59 | + - || sv_pud 94.19 0.11 9497 97.09 | + +
gl _treegal 96.56 0.06 9397 9693 | + - sv_talbanken 96.65 0.07 9632 9820 | + -
got_proiel 95.04 0.10 8599 9439 | - - || tattb 88.17 0.28 81.14 9129 | + -
grc_perseus 92.42 0.18 8890 95.69 | + - tl_trg 75.68 224 8649 9130 | + +
grc_proiel 96.70 0.08 91.15 9737 | + - || triimst 96.09 0.07 90.79 9552 | + +
he_htb 96.61 0.06 95.86 97.35| + - || tr_pud 8646 034 87.63 9496 | + +
hi_hdtb 98.61 0.02 91.80 9730 | + - || ukdu 9545 0.09 9192 9642 | + -
hr_set 94.18 0.11 8941 96.02 | + - || ur_udtb 9591 0.07 7731 9202 | + -
hsb_ufal 87.11 021 77.12 86.73 | + + | vivtb 99.20 0.03 89.55 88.18| - +
hu_szeged 94.17 0.12 8795 9622 | + + | yoytb 98.06 0.02 92.64 9327 | - -
hy_armtdp 92.15 0.15 84.64 9166 | + + | yuehk 99.29 0.01 9232 9023 | - +
id_gsd 99.09 0.02 89.32 93.04 | - - || zhfl 96.57 0.04 9161 9035| + +
it_isdt 97.83 0.04 96.78 98.01 | - - || zh_gsd 99.02 0.01 9461 9459 | + +
it_partut 98.25 0.04 9730 9845 | - + || average 93.94 0.15 90.61 94.57

Table 6: All four evaluation metrics for the test data of our best system. E: use of external embeddings. D: use of
dataset embeddings. Results might be different compared to the ones in the overview paper, as we did not have
enough time to run all experiments before the deadline. +E: whether external embeddings were used. +D: whether
dataset embeddings were used.
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A Matching of Datasets

Src Data Additional Emb. type | Src Data Additional Emb. type
af_afribooms nl_alpino poly it_postwita it_isdt elmo
akk _pisandub cs_pdt elmo it_pud it_isdt elmo
am_att ja_gsd ja_pud elmo
ar_padt ar_pud elmo ja_modern ja_gsd elmo
ar_pud ar_padt elmo ja_pud ja_gsd elmo
be_hse ru_syntagrus  poly kmr_mg es_gsd poly
bg_btb ru_syntagrus elmo ko_gsd ko _kaist elmo
bm_crb cs_pdt fast ko kaist ko_gsd elmo
br_keb no_bokmaal poly ko_pud ko_kaist elmo
bxr_bdt ru_syntagrus fast kpv_ikdp ru_syntagrus fast
ca_ancora es_ancora elmo kpv _lattice ru_syntagrus fast
cop_scriptorium la_ittb la_proiel elmo
cs_cac cs_pdt elmo la_perseus la_proiel elmo
cs_cltt cs_pdt elmo la_proiel la_ittb elmo
cs_fictree cs_pdt elmo It_hse Iv_lvtb poly
cs_pdt cs_cac elmo Iv_lvtb hr_set elmo
cs_pud cs_pdt elmo mr_ufal hi_hdtb poly
cu_proiel ru_syntagrus elmo nl_alpino nl_lassysmall elmo
da_ddt no_bokmaal elmo nl_lassysmall nl_alpino elmo
de_gsd fr_gsd elmo no_bokmaal no_nynorsk elmo
el_gdt gre_proiel elmo no_nynorsk no_bokmaal elmo
en_ewt en_gum elmo no_nynorsklia ~ no_nynorsk elmo
en_gum en_ewt elmo pcm_nsc en_ewt elmo
en_lines en_ewt elmo pllfg plsz elmo
en_partut en_ewt elmo pl_sz pllfg elmo
en_pud en_ewt elmo pt-bosque pt-gsd elmo
es_ancora es_gsd elmo pt_gsd pt_bosque elmo
es_gsd es_ancora elmo ro_nonstandard ro_rrt elmo
et_edt cs_pdt elmo ro_rrt ro_nonstandard elmo
eu_bdt es_ancora elmo ru_gsd ru_syntagrus elmo
fa_seraji ur_udtb elmo ru_pud ru_syntagrus elmo
fi_ftb fi_tdt elmo ru_syntagrus ru_gsd elmo
fi_pud fi_tdt elmo ru_taiga ru_syntagrus elmo
fi_tdt fi_ftb elmo sa_ufal hi_hdtb poly
fo_oft no_nynorsk  poly sk_snk cs_pdt elmo
fr_gsd fr_sequoia elmo sl_ssj hr_set elmo
fr_partut fr_gsd elmo sl_sst sl_ssj elmo
fr_sequoia fr_gsd elmo sme_giella no_nynorsk poly
fr_spoken fr_gsd elmo sr_set hr_set poly
ga_idt cs_pdt elmo sv_lines sv_talbanken elmo
gl ctg es_ancora elmo sv_pud sv_talbanken elmo
gl treegal gl ctg elmo sv_talbanken sv_lines elmo
got_proiel no_nynorsk  none ta_ttb

grc_perseus grc_proiel elmo tl_trg es_gsd poly
gre_proiel grc_perseus  elmo tr_imst tr_pud elmo
he_htb ru_gsd elmo tr_pud tr_imst elmo
hi_hdtb mr_ufal poly uk_iu ru_syntagrus elmo
hr_set sr_set poly ur_udtb fa_seraji elmo
hsb_ufal cs_pdt poly vi_vtb en_ewt elmo
hu_szeged et_edt elmo yo_ytb es_gsd poly
hy_armtdp ru_pud poly yue_hk zh_gsd poly
id_gsd es_gsd elmo zh_cfl zh_gsd elmo
it_isdt it_partut elmo zh_gsd ja_gsd elmo
it_partut it_isdt elmo

Table 8: This shows for each dataset, with which dataset it has the highest word overlap, and what their best
common embeddings type is. Three datasets could not be paired, as they had 0% overlap with all other datasets
(ignoring punctuation and numericals).
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B External Embeddings per Dataset
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Figure 6: Results of different types of embeddings on the development splits of our tune datasets.
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C Dataset Embeddings per Dataset

UD _English-EWT UD_English-PUD
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Figure 7: Results of dataset embeddings on the development splits of our tune datasets. We compare the dataset
embeddings with a simple concatenation of the datasets.
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D Results of External and Treebank Embeddings on Development Data

Dataset | Base| -E-D -E+D +E-D +E+D| Lem Mor | Dataset | Base| -E-D -E+D +E-D +E+D| Lem Mor
af afribooms  |95.48]95.14 9595 96.63 97.03|96.49 97.57 |it_postwita  [92.19]95.12 0.00 96.19 0.00| 9524 97.14
akk_pisandub | 74.76 | 63.65 64.76 59.64 63.07 |46.67 82.85||it_pud 94.14|94.06 97.02 90.29 96.80| 97.25 96.79
am_att 9353|9551 0.00 93.77 0.00|98.90 92.12 | ja_gsd 93.98/96.96 97.27 98.08 98.21| 98.91 97.52
ar_padt 93.40|93.74 90.05 93.93 95.92|94.90 96.94 | ja_modern 94.26|94.61 96.55 94.19 96.47| 96.45 96.65
ar_pud 86.58 |84.28 76.56 88.02 88.65|82.70 94.60 | ja_pud 92.91|95.16 98.34 97.02 99.02| 99.46 98.59
be_hse 84.82|80.69 88.10 81.32 89.13|87.48 90.78 | kmr_mg 89.17|87.36  0.00 87.81 0.00| 88.57 87.06
bg btb 95.57|97.43 0.00 97.97 0.0 97.15 98.79 | ko_gsd 89.3891.49 0.00 92.82 0.00| 90.45 95.19
bm_crb 88.86|91.34 0.00 9150 0.00|88.70 94.30 | ko_Kaist 91.99/94.89 0.00 9557 0.00| 94.69 96.45
br_keb 91.00|86.51 0.00 89.14 91.39|91.49 91.29 | ko_pud 93.89|94.02 96.57 96.32 97.55| 98.80 96.30
bxr_bdt 83.66 | 83.46 86.34 84.33 86.36|86.83 85.89 | kpv_ikdp 67.44|61.19 73.16 60.82 72.83| 71.08 75.24
ca_ancora 96.91|98.43  0.00 99.08 0.00|99.11 99.06 | kpv_lattice ~ |75.14|63.65 74.16 62.89 76.29| 78.57 74.01
cop_scriptorium | 94.53 | 95.53  0.00 94.54  0.00|95.12 95.94 || la_ittb 95.85/97.89 0.00 98.17 0.00| 98.39 97.94
cs_cac 95.86|97.31 0.00 9830 0.00 | 98.34 98.26 | la_perseus 83.11(82.97 89.34 87.26 91.25| 90.80 91.70
cs_clit 95.53|94.32 97.20 93.19 97.67 |97.82 97.51 | la_proiel 94.03/95.05 0.00 96.74 0.00| 96.88 96.59
cs_fictree 94.10/96.09 0.00 97.85 0.0097.99 97.72 | It_hse 76.09|70.49 74.93 76.93 81.48| 80.69 82.27
cs_pdt 95.26/96.96 0.00 98.00 0.00|98.02 97.98 | Iv_Ivtb 92.38/93.88 0.00 95.67 95.70| 94.73 96.67
cs_pud 89.85(88.22 96.04 94.17 96.94|97.05 96.83 || mr_ufal 76.22|74.79 76.64 74.80 77.87| 76.71 79.02
cu_proiel 93.47|94.94 0.00 94.78 0.00/95.00 94.87 | nlalpino 9425|9577 0.00 96.17 0.00| 96.35 95.99
da_ddt 93.74|91.53 95.66 97.19 97.35|97.01 97.68 | nl_lassysmall |92.62|95.05 0.00 94.19 0.00| 95.16 94.95
de_gsd 0.00{93.59 94.35 94.44 0.00 9523 93.64 | nobokmaal |95.53(97.45 0.00 97.62 0.00| 97.91 97.32
el_gdt 95.23|95.83 95.36 95.76 96.00 |94.50 97.50 | no_nynorsk 0.00(97.23 0.00 9626 0.00| 97.34 97.13
en_ewt 93.99|94.49 9641 97.66 97.78|98.26 97.29 | no_nynorsklia |91.80(95.52 9525 95.61 96.99| 97.79 96.18
en_gum 93.74|92.04 96.04 93.90 97.53|97.80 97.26 | pcm_nsc 89.2495.87 96.10 95.86 96.17 | 100.00 92.35
en_lines 94.61/96.24 0.00 97.60 0.00|98.01 97.20 | pl_Ifg 92.07 |95.56 95.66 96.82 97.43| 97.03 97.84
en_partut 9333/95.15 96.05 96.11 97.24|98.24 96.25 | plsz 91.10|93.78 95.00 96.15 97.09| 97.37 96.80
en_pud 91.62|92.70 95.00 96.23 97.07 |97.20 96.94 | pt_bosque 94.88/97.08 0.00 97.91 0.00| 98.32 97.50
es_ancora 96.87|98.27 98.38 98.89 0.00 98.96 98.83 | pt_gsd 0.00]97.44 0.00 98.14 0.00| 97.94 98.35
es_gsd 0.00{97.62 98.14 98.13  0.00 |98.68 97.59 | ro_nonstandard | 93.62|95.73 96.20 96.11  0.00| 96.32 96.09
et_edt 93.31|94.50 0.00 96.20 0.00|94.99 97.42 | ro_rrt 95.56|97.39 97.46 98.20 0.00| 9823 98.16
eu_bdt 91.94|94.76  0.00 95.80 0.00|96.03 95.57 | ru_gsd 55.99|94.85 0.00 96.93 0.00| 97.10 96.75
fa_seraji 0.00{95.90 0.00 96.61 0.00 9527 97.96 | ru_pud 89.25|88.21 94.70 94.07 95.94| 95.06 96.82
fi_ftb 92.27|94.23 94.65 96.13 0.00|94.81 97.45 | rusyntagrus |94.37[96.66 0.00 97.25 0.00| 96.75 97.75
fi_pud 88.69 |86.82 92.50 90.42 93.12|87.97 98.27 | ru_taiga 85.09 85.38 92.94 91.17 94.70| 94.28 95.13
fi_tdt 8932|9430 9431 9556 0.00|93.43 97.70 | sa_ufal 68.45|61.87 64.32 62.96 67.69| 63.92 71.46
fo_oft 88.93|88.18 89.65 87.98 89.28|88.11 91.19 | sk_snk 92.44/93.12  0.00 9652 0.00| 96.20 96.85
fr_gsd 96.43|97.93 97.73 9830  0.00|98.13 98.47 | sLssj 9297|9559 0.00 97.35 0.00| 97.60 97.09
fr_partut 94.09|94.62 96.89 96.54 97.47|97.10 97.83 | sLsst 89.78 [89.19 9426 93.20 95.98| 96.89 95.06
fr_sequoia 95.59|96.64 97.98 98.49 0.00|98.43 98.54 | sme_giella 89.69 |89.60 87.56 88.27 90.44| 88.32 92.56
fr_spoken 96.34196.71 97.92 97.94 98.63(99.41 97.84 | sr_set 93.82/95.64 0.00 9591 0.00| 95.84 9598
gaidt 86.92(84.13  0.00 90.14 0.00{89.15 91.13 || sv_lines 93.54|93.97 95.07 96.98 0.00| 96.90 97.07
glctg 95.09|97.48 97.97 98.15 0.00|98.38 97.92 | sv_pud 91.08|89.84 93.61 9503 95.68| 94.48 96.88
gl treegal 92.77|93.38 95.64 96.29 94.91|96.03 96.55 | sv_talbanken | 0.00|96.13 9595 97.61 0.00| 96.85 98.38
got_proiel 94.19/95.40 0.00 95.00 0.00|95.63 95.17 | ta_ttb 9331/89.73 0.00 9146 0.00| 91.15 91.76
gre_perseus 0.00/93.48 0.00 94.02 0.00[92.46 95.57 | tltrg 68.66|73.36 70.36 69.13 78.62| 76.00 81.25
gre_proiel 0.00{95.73  0.00 97.06 0.00|96.72 97.41 | trimst 90.73|93.46 93.81 9540 95.43| 95.50 9535
he_htb 9431|9582 96.55 96.87 0.00|96.47 97.27 | tr_pud 87.86 88.63 90.39 90.83 91.74| 87.96 95.52
hi_hdtb 96.36|97.43 97.55 97.93 97.71|98.53 97.32 | uk_iu 91.39|92.41 94.06 95.75 0.00| 9524 9625
hr_set 9321/93.27 0.00 9525 0.00|94.20 96.30 | ur_udtb 92.12/92.85 0.00 93.59 0.00| 95.61 91.57
hsb_ufal 84.64|82.83 82.98 84.67 84.79|86.28 8331 | vi_vib 89.39(93.37 94.48 94.13  0.00| 99.40 89.56
hu_szeged 91.06|91.65 91.03 90.94 94.70 |93.42 95.98 | yo_ytb 88.72(92.41 91.38 89.07 0.00| 94.40 90.42
hy_armtdp 0.00{92.02 0.00 92.69 93.08 93.16 93.01 | yue hk 85.19[90.97 94.10 89.32 93.94| 98.97 89.22
id_gsd 92.75/96.05 0.00 95.89 0.00|99.08 93.03 | zh_cfl 85.31|89.34 93.05 9133 93.86| 96.26 91.46
it isdt 95.73|97.83 97.62 97.12 97.80|97.63 98.02 | zh_gsd 91.34|94.15 95.04 96.57 96.79| 99.06 94.52
it_partut 95.36|95.59 98.11 97.84 97.73|97.85 98.37

Table 9: Results on all development datasets. The average of lemma accuracy and morphological F1 score is used
as main metric. base: baseline. E: external embeddings. D: dataset embeddings. Bold indicates which model is
used on the test data. Lem: lemma accuracy of the bold model. Mor: morphologic tagging F1 score of bold model.
A score of 0.00 means that we did not have time to run the model for this setting.
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