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Abstract

In this study, we present Morpheus, a joint
contextual lemmatizer and morphological tag-
ger. Morpheus is based on a neural sequential
architecture where inputs are the characters of
the surface words in a sentence and the out-
puts are the minimum edit operations between
surface words and their lemmata as well as the
morphological tags assigned to the words. The
experiments on the datasets in nearly 100 lan-
guages provided by SigMorphon 2019 Shared
Task 2 organizers show that the performance
of Morpheus is comparable to the state-of-the-
art system in terms of lemmatization. In mor-
phological tagging, on the other hand, Mor-
pheus significantly outperforms the SigMor-
phon baseline. In our experiments, we also
show that the neural encoder-decoder architec-
ture trained to predict the minimum edit op-
erations can produce considerably better re-
sults than the architecture trained to predict the
characters in lemmata directly as in previous
studies. According to the SigMorphon 2019
Shared Task 2 results, Morpheus has placed
3rd in lemmatization and reached the 9th place
in morphological tagging among all partici-
pant teams.

1 Introduction

Lemmatization is the process of reducing an in-
flected word into its dictionary form known as the
lemma. Morphological tagging, on the other hand,
is the process of marking up words with their mor-
phological information and part of speech (POS)
tags. Lemmatization and morphological tagging
are essential tasks in natural language processing
since they usually represent initial steps of sub-
sequent tasks such as dependency parsing (Chen
and Manning, 2014; McDonald and Pereira, 2006)
and semantic role labeling (Haghighi et al., 2005).
Morphological information of words is utilized in
various tasks including statistical machine trans-

lation (Huck et al., 2017), neural machine trans-
lation (Conforti et al., 2018) and named entity
recognition (Güngör et al., 2019) to improve the
performance. Morphological tagging and lemma-
tization is crucial especially in morphologically
rich languages such as Turkish and Finnish since
inflected and derived words carry a substantial
amount of information such as number, person,
case, tense and aspect. Moreover, lexical ambigu-
ities can occur in highly inflectional and deriva-
tional languages such as Turkish. The correct
lemma and morphological tags may differ accord-
ing to the context in which words appear. As
shown in table 1, the Turkish word “dolar” may
have different lemma and morphological proper-
ties according to the context it is used.

To achieve lemmatization and morphological
tagging in highly inflectional languages, tradi-
tional approaches employ finite state machines
which are constructed to model grammatical rules
of a language (Oflazer, 1993; Karttunen et al.,
1992). Building a state machine for morphological
analysis is not a trivial task and requires consid-
erable effort necessitating linguistic knowledge.
Furthermore, morphological analyzers frequently
produce multiple analyzes for each word which
introduces morphological ambiguities. Morpho-
logical disambiguation which is the process of se-
lecting correct analyzes of words according to the
context (Yildiz et al., 2016; Shen et al., 2016) is
mostly needed after morphological analysis step.
Morphological disambiguation is also a difficult
problem due to the fact that it requires the clas-
sification of both lemmata and the correspond-
ing labels. Therefore, researchers have studied
language-agnostic data-driven solutions for both
lemmatization and morphological tagging. In
most of the studies, applying machine learning
or statistical methods over morphologically an-
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Table 1: Different lemmata and morphological properties of Turkish word “dolar” according to the context

Turkish Sentence English Translation Lemma of the word “dolar” Morhoplogical Properties of the word “dolar”

atkıyı boynuna dolar She/he wraps the scarf around his/her neck dola (Eng. wrap) Verb, Third Person Singular, Present Tense
su kovaya dolar The water fills the bucket dol (Eng. fill) Verb, Third Person Singular, Present Tense
dolar yine yükseldi The dollar increased again dolar (Eng. dollar) Noun, Nominative, Singular

notated corpora (mostly on UniMorph dataset1

(Kirov et al., 2018)) have been proposed to per-
form joint morphological tagging and lemmatiza-
tion. One of the early studies, Morfette (Chrupała
et al., 2008) utilized a Maximum Entropy Clas-
sifier to find lemmata and morphological tags of
each word in a sentence. Two separate classifiers
are employed in their architecture: one for assign-
ing morphological tags to the words and one for
predicting the shortest edit script between the sur-
face word and its lemma. Shortest edit script is the
shortest sequence of instructions (insertions, dele-
tions, and replacements) which transforms a string
into another one. In this way, the system is able to
apply lemmatization to out of vocabulary words
by predicting the transformation which should be
applied to the surface word to obtain the lemma
of the word. More recent work, namely Lem-
ming (Müller et al., 2015) has out-performed Mor-
fette by using a Conditional Random Field classi-
fier to classify each candidate sequences of lem-
mata and morphological tags jointly. The feature
space of Lemming differs from Morfette as Lem-
ming also uses external lexical features such as the
occurrences of a candidate lemma in a dictionary.
As deep neural networks gain popularity and lead
state-of-the-art results in various natural language
processing tasks, sequential neural networks have
been successfully employed for lemmatization and
morphological tagging in recent studies (Bergma-
nis and Goldwater, 2018; Malaviya et al., 2019;
Dayanık et al., 2018; Chakrabarty et al., 2017).
Promising results are obtained through standard
encoder-decoder neural architectures where inputs
are the character sequences of the words and out-
puts are the character sequences of lemmata and
morphological tags (Bergmanis and Goldwater,
2018; Dayanık et al., 2018). Neural architectures
which are designed to predict the edit operations
between surface words and lemmata are also pro-
posed in recent works (Chakrabarty et al., 2017).
The current state of the art is held by Malaviya
et al. (2019) using a neural hard attention mecha-
nism to align the characters of surface words and

1https://unimorph.github.io/

lemmata. Morphological tagging and lemmatiza-
tion are jointly modeled in their architecture and a
dynamic programming approach is used to maxi-
mize both morphological tagging and lemmatiza-
tion scores.

In SigMorphon 2019 workshop, a shared
task about morphological tagging and contextual
lemmatization in nearly 100 distinct languages
is organized (McCarthy et al., 2019). In this
study, we propose a neural network architecture,
namely Morpheus for SigMorphon 2019 Shared
Task 2. Our architecture is inspired by Mor-
phNet (Dayanık et al., 2018), which has produced
promising results in Turkish using an encoder-
decoder neural architecture. In MorphNet, all
characters are represented with a vector, and word
vectors are generated by using long short term
memories (LSTM) over character vectors. An-
other bidirectional LSTM is applied over word
vectors to obtain context-aware representations of
each word in a sentence. An LSTM based de-
coder inputs context-aware word representations
and produces lemmata and morphological tags,
respectively. Our architecture differs from Mor-
phNet as we use two separate decoders for gener-
ating lemmata and morphological tags. Another
difference of our architecture is that we follow the
minimum edit script prediction approach consid-
ering the promising performance outputs of prior
work (Chrupała et al., 2008; Müller et al., 2015;
Chakrabarty et al., 2017). The lemma decoder of
our network is optimized to predict the minimum
edit operations between surface words and lem-
mata instead of predicting the character sequences
of the lemmata as in MorphNet and Lematus.

Our experiments show that predicting the min-
imum edit operations instead of characters im-
proves the performance significantly on Uni-
Morph dataset, which is provided in SigMorphon
2019 Shared Task 2. The performance of the pro-
posed architecture is comparable to the current
state-of-the-art system (Malaviya et al., 2019),
which is provided as a strong baseline by Sig-
Morphon 2019 organizers. All of the experiments
in this paper are reproducible using the codes we
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make publicly available2.

2 Method

The input of our neural network based model
is a sentence containing surface form words and
the outputs are edit operations between surface
words and their lemmata and morphological tags
assigned to the words. The problem can be de-
fined as we are searching a function whose in-
puts are surface words of a sentence f([wo, .., wn])
and whose output is the set of (oi,mi) tuples
[(o0,m0), .., (on,mn)] where oi is the set of edit
operations to generate the lemma of the surface
form wi and mi is the set of morphological tags
assigned to the surface form wi. The overall ar-
chitecture of the system is illustrated in Figure 1.
The system comprises 3 neural components that
are running sequentially:

• The first component generates word vectors
using LSTMs over the vector representations
of its characters.

• The second component generates context-
aware word vectors applying bidirectional
LSTMs over word vectors

• Two separate LSTM decoders accept the
same context-aware word vectors. The first
decoder generates edit operations between
surface words and lemmata while the second
decoder generates morphological tags

In the final step, lemmata are generated by apply-
ing predicted edit operations to the surface words.

2.1 Generating minimum edit operations

The proposed model is designed to predict min-
imum edit operations to obtain the lemma from
a surface word. The fundamental edit operations
are Same, Delete, Replace, and Insert operations.
To find minimum edit operations between surface
word and its lemma, we use a dynamic program-
ming approach3 which is based on Levenshtein
distance. Some sample edit operations between
surface words and lemmata are given in Figure
2 for several languages. As seen in Figure 2,
Same and Delete operations have only one version
whereas Replace and Insert operations have mul-
tiple versions combined with the character to be

2https://github.com/erayyildiz/Morpheus/
3https://github.com/faircloth-lab/python-levenshtein

replaced or inserted. So the actual number of ele-
ments in the edit operations set are determined for
each language separately by processing the train-
ing data.

Generally, the length of a lemma is shorter than
or equals to the length of the corresponding sur-
face form and consequently, the number of edit
operations are usually the same as the length of the
surface form. However, for some languages, lem-
mata longer than the corresponding surface forms
are observed. Since our minimum edit prediction
decoder predicts an edit operation label for each
character in the surface (see Section 2.4.1 for de-
tails), it fails in generating lemmata longer than
the surface forms. Thus we make some modifica-
tions over the base operations generated by stan-
dard Levenshtein distance based algorithm. To en-
sure the length of the operation labels is the same
as the length of the surface words, we merge con-
secutive Insert labels in the same position into
one Insert label with multiple characters. We also
combine the Replace labels and the following con-
sequent Insert labels in the same position into one
Replace label with multiple characters. For exam-
ple, the minimum edit operations for the Russian
surface-lemma pair "видна"-"видный" have four
Same operation labels and one Replace_ый la-
bel, respectively. Note that the last character in
the surface word "a" is replaced with the character
"ы" and then the character й is inserted into the
end. The base labels Replace_ы and Insert_й
are merged into one label Replace_ый to ensure
that edit operations and surface words have the
same length (Figure 2).

2.2 Word representations

The first component of our network inputs char-
acter sequences of each word in a sentence and
generates vector representations of the words us-
ing an LSTM network. Let wi represents the ith

word with Li characters in a sentence and wij is
jth character in wi. In our model, each charac-
ter wij is represented by a vector aij ∈ IRda and
we calculate the vector representation of ith word
ei ∈ IRde by applying an LSTM over the vector
representations of its constituent characters from
left to right as shown in eq. (1). The last hidden
state vector of the LSTM hLi ∈ IRde is considered
as the vector representation of the word wi.

ei = hLi = LSTM(aLi , hLi−1) (1)
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Figure 1: The illustration of the proposed neural network architecture which consists of 3 components: (a) word
vector generator (b) context vector generator (c) decoders to generate minimum edit operations for lemmatization
and morphological tags. (N indicates the number of words in the sentence. L indicates both the number of charac-
ters in the word and the number of edit operations between the word and the lemma. K represents the number of
morphological tags assigned to the word)

2.3 Context-aware word representations

The context of the words have a substantial impact
on morphological tagging and lemmatization in
most languages (Shen et al., 2016; Malaviya et al.,
2019). In order to take into account the context of
the words we employ another LSTM which is bidi-
rectional and inputs vector representations ei and
outputs context-aware representations ci ∈ IRdc

for each surface word in the context as shown in
eqs. (2) to (4)

c→i = LSTM(ei, c
→
i−1) (2)

c←i = LSTM(ei, c
←
i+1) (3)

ci = [c→i , c←i ] (4)

The final output is context-aware vector repre-
sentation ci for each word wi in the sentence.

2.4 Decoding Components
One of the important differences of the proposed
network from previous studies (Bergmanis and
Goldwater, 2018; Dayanık et al., 2018) is that it
has two separate decoders for lemmatization and
morphological tagging. The parameters of the de-
coders are not shared. However, they are both fed
with the same word vectors ei and context-aware
word vectors ci that are generated in the encoding
step.

2.4.1 Minimum edit prediction decoder
The minimum edit prediction decoder component
consists of a two layer bidirectional LSTM net-
work and an embedding layer which maps each
character wij in surface word to a one dimensional
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Figure 2: Minimum edit operations between surface
words and their lemmata

vector uij ∈ IRdu . Forward LSTM network inputs
previous hidden states g→1

j−1, g
→2
j−1 ∈ IRdg and out-

puts current hidden states g→1
j , g→2

j and an output
vector y→j ∈ IRdy . Backward LSTM network, on
the other hand, applies the same operations in op-
posite direction and outputs g←1

j , g←2
j ∈ IRdg and

y←j . Softmax function is then applied to the mul-
tiplication of trainable matrix Wo ∈ IRdy×|o| with
the concatenation vector of output vectors y→j and
y←j where |o| represents the number of distinct edit
operations observed in the dataset. The output of
softmax operation is the probabilities of each min-
imum edit operation p(oij) corresponding to the
character wij as shown in eqs. (5) to (7).

y→j , g→1
j , g→2

j = LSTM(uij , g
→1
j−1, g

→2
j−1) (5)

y←j , g←1
j , g←2

j = LSTM(uij , g
←1
j+1, g

←2
j+1) (6)

p(oij) = softmax(Wo × [y→j , y←j ]) (7)

The first hidden states of both forward and back-
ward LSTMs are initialized with the word vector
ei (see section 2.2) and a linear transformation of
the context-aware word vector: Wc×ci where Wc

is a matrix in IRdc×de (see section 2.3), respec-
tively (see eq. (11)).

g→1
0 = ei (8)

g→2
0 = Wc × ci (9)

g←1
Li

= ei (10)

g←1
Li

= Wc × ci (11)

2.4.2 Morphological tagging decoder
The morphological tagging decoder component is
another LSTM decoder which is able to gener-
ate morphological tags without length restriction.
Each word wi has Ki morphological tags and each
morphological tag mil is represented by a one di-
mensional vector vil ∈ IRdv . A two layer LSTM
network which is unidirectional is initialized same
as in minimum edit prediction component. An
LSTM cell inputs the vector representation vi(l−1)
of previously predicted tag m′il and previous hid-
den states q1l−1, q

2
l−1 ∈ IRdq in each step. The out-

puts of the LSTM cell are current hidden states
q1l , q

2
l and an output vector zij ∈ IRdz . Soft-

max function is then applied to multiplication of
the output vector zij and trainable matrix Wm ∈
IRdz×|m| where m equals to the number of distinct
morphological tags in the dataset. The first input
to the decoder is the vector representation of a spe-
cial start symbol vstart ∈ IRdv . In this way the
probabilities of each morphological tags p(mil)
in given position i, l are calculated as shown in
eqs. (5), (12) and (13).

z1, q
1
1, q

2
1 = LSTM(vstart, ei,Wc × ci) (12)

zl, q
1
l , q

2
l = LSTM(vi(l−1), q

1
l−1, q

2
l−1) (13)

p(mil) = softmax(Wm × zl) (14)

2.5 Character prediction decoder

The character prediction decoder component
which sequentially predicts the characters occur in
lemmata is not employed in the proposed archi-
tecture. However, we build an alternative model
in which the character prediction decoder compo-
nent is used instead of a minimum edit prediction
decoder. In this way, we aim to evaluate the impact
of predicting minimum edit operations instead of
characters in lemmata. The character prediction
decoder used in the experiments has the same ar-
chitecture and parameter set with the morphologi-
cal tagging decoder.

2.6 Training objective

All the parameters in whole architecture includ-
ing all LSTM parameters and the trainable matri-
ces Wc, Wo, Wm are optimized jointly in training



30

Method Lemmatization
Accuracy (%)

Morphological Tagging
F1 Score (%)

Turku NLP (Kanerva et al., 2018) 92.18 86.7
UPPSALA Uni. (Moor, 2018) 58.5 88.32

SigMorphon 2019 Baseline (Malaviya et al., 2019) 93.95 68.72
Morpheus (Character Prediction) 88.03 88.94
Morpheus (Edit Operation Prediction) 94.15 90.52

Table 2: Average lemmatization and morphological tagging performances of the systems on UniMorph dataset

phase by minimizing the sum of two cross entropy
losses as follow:

Llemma = − 1

N

N∑
i

1

Li

Li∑
j

log p(oij) (15)

Lmorph = − 1

N

N∑
i

1

Ki

Ki∑
j

log p(mij) (16)

Ltotal = Llemma + Lmorph (17)

The loss for lemmatization is calculated by tak-
ing cross entropy over predicted minimum edit
operations p(oij) as in eq. (15) where N stands
for the number of words in the sentence and Li

stands for the number of characters in the word
wi. The loss for morphological tagging is cross
entropy over predicted tag probabilities p(mil) as
in eq. (16) where Ki stands for the number of mor-
phological tags assigned to the word wi. The total
loss to minimize is the sum of the lemmatization
loss and morphological tagging loss (see eq. (17)).

3 Experiments

In our experiments, we train and evaluate the pro-
posed architecture on UniMorph dataset collection
(Kirov et al., 2018) for each language. Same archi-
tecture with the same hyper-parameters is used for
all the languages. To investigate the impact of the
minimum edit prediction component on the per-
formance, we also train the network in which the
character prediction decoder component is used
instead of a minimum edit prediction component.
The results of the experiments are provided in sec-
tion 3.3 and table 2

3.1 Dataset

UniMorph dataset collection, which includes a
various number of sentences consist of surface
words with annotated lemmata and morphological

tags in 97 different languages are provided in Sig-
Morphon 2019 shared task 2. The dataset for each
language is split into train and validation sets, and
the size of the dataset differs in each language. In
our experiments, we train our architecture on train
sets and evaluate the performances on validation
sets. The experimental results presented in sec-
tion 3.3 are obtained on the validation sets. Note
that final results which are presented in SigMor-
phon paper (McCarthy et al., 2019) are calculated
over the test sets which were not available to the
systems before the final submission stage.

Figure 3: Relative lemmatization accuracy improve-
ment vs dataset size per language

3.2 Experimental Setup
The same settings are used in the training of the
architecture for each language. The input charac-
ter embedding length da is set to 128 while the
length of the word vectors de is set to 1024 and
the length of the context-aware word vectors dc
is set to 2048. The length of character vectors
in the minimum edit prediction component du and
the length of the morphological tag vectors dv are
set to 256 while the hidden unit sizes in decoder
LSTMs dg and dq are set to 1024. We use Adam
optimization algorithm (Kingma and Ba, 2014)
with learning rate 3e − 4 for minimizing the loss
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Lemmatization
Accuracy (%)

Morph. Tagging
F1 (%)

Language Dataset
Size

Character
Pred.

Edit
Pred.

Character
Pred.

Edit
Pred.

North-Sami-Giella 29K 87.53 91.90 88.89 92.83
French-GSD 360K 97.06 98.47 97.58 97.99
Japanese-Modern 14K 85.39 93.88 93.06 92.44
Swedish-PUD 18K 82.79 93.05 89.23 92.09
Arabic-PADT 256K 94.39 95.18 95.01 95.40
Basque-BDT 119K 95.42 96.49 93.06 94.47
Urdu-UDTB 123K 95.20 96.02 90.79 91.20
Irish-IDT 21K 85.07 89.23 80.60 71.52
Bambara-CRB 14K 88.24 88.85 93.47 93.56
Dutch-Alpino 200K 94.97 97.81 95.63 96.45
Czech-FicTree 175K 97.39 98.49 94.15 96.39
Danish-DDT 94K 93.16 97.26 94.17 95.62
Latin-ITTB 332K 98.65 98.75 96.84 97.34
French-Sequoia 64K 95.54 98.17 95.96 96.82
Italian-PoSTWITA 115K 92.71 96.61 94.43 95.62
Polish-SZ 93K 93.59 96.86 90.23 93.26
Czech-CLTT 32K 92.11 98.03 89.03 93.82
Cantonese-HK 7K 90.05 94.17 85.41 86.14
Galician-TreeGal 23K 89.68 95.19 89.78 90.72
Slovenian-SSJ 131K 95.25 96.94 93.47 95.79
French-ParTUT 25K 92.67 96.10 93.09 94.55
Lithuanian-HSE 5K 70.60 83.05 43.37 70.70
French-Spoken 35K 94.47 98.48 95.46 96.66
Russian-Taiga 22K 83.59 90.57 76.62 83.80
Latvian-LVTB 150K 94.29 96.22 93.51 95.87
Czech-PDT 1515K 84.86 98.41 87.65 95.27
Japanese-GSD 168K 95.21 98.91 95.35 95.61
Indonesian-GSD 111K 97.06 99.49 92.69 93.11
Gothic-PROIEL 62K 96.60 96.58 93.04 95.12
Latin-PROIEL 219K 96.31 96.37 93.75 95.05
Czech-PUD 19K 83.55 93.57 81.30 86.70
Dutch-LassySmall 96K 93.44 97.58 94.51 95.47
Romanian-RRT 198K 96.54 97.88 96.81 97.44
Korean-Kaist 346K 93.31 95.07 95.70 95.46
Amharic-ATT 11K 93.80 100.00 91.02 91.39
English-GUM 79K 95.58 97.85 93.92 95.48
Estonian-EDT 421K 93.10 96.27 95.64 96.70
Chinese-GSD 111K 95.22 99.15 89.25 90.78
Korean-GSD 80K 87.55 92.89 93.43 94.16
Marathi-UFAL 4K 74.59 76.94 68.26 69.26
Akkadian 2K 42.22 60.89 78.13 66.52
Faroese-OFT 13K 83.56 89.97 88.08 89.49
English-EWT 246K 96.78 98.11 95.61 95.95
Sanskrit-UFAL 3K 53.61 65.98 52.59 55.36
Turkish-IMST 60K 94.13 96.43 91.67 93.72
English-PUD 20K 89.40 95.22 88.88 89.89
Korean-PUD 18K 87.19 98.86 91.42 92.75
Finnish-PUD 16K 77.72 87.55 85.49 92.05
Russian-SynTag 1036K 95.31 97.76 94.99 95.13
Croatian-SET 179K 94.91 96.01 94.31 95.47
Tagalog-TRG 406 48.00 84.00 74.23 71.74
Slovenian-SST 31K 91.83 94.97 85.34 89.23
Finnish-FTB 172K 90.70 94.46 94.13 95.85
Polish-LFG 174K 93.85 96.09 92.93 95.35
Portuguese-Bosque 218K 96.43 97.86 96.07 96.59
Coptic-Scriptorium 20K 93.47 95.68 95.17 94.76
Chinese-CFL 7K 82.55 92.66 81.51 83.76
Spanish-AnCora 497K 98.32 98.92 98.29 98.46
Greek-GDT 57K 93.73 96.65 94.71 96.12
Serbian-SET 78K 94.82 97.06 94.36 96.06
Naija-NSC 14K 95.80 99.84 91.15 92.02
Vietnamese-VTB 42K 98.17 99.95 89.45 89.71
Yoruba-YTB 2K 83.60 97.20 80.49 70.67
Italian-PUD 22K 89.51 96.11 92.63 94.22
Finnish-TDT 198K 91.37 95.38 95.67 96.76
English-ParTUT 44K 94.87 97.85 92.32 93.46
Upper-Sorbian-U. 11K 77.79 90.74 69.47 77.46
Norwegian-Ny. 14K 93.89 97.42 90.45 92.20
Galician-CTG 121K 97.18 98.69 97.29 97.30
Old-Church-Slv. 66K 96.48 95.66 93.33 94.91
Russian-GSD 92K 92.90 91.51 91.98 93.91
Kurmanji-MG 10K 85.66 92.69 85.99 85.22
Norwegian-Bk. 299K 96.65 98.94 96.75 97.41
Italian-ISDT 273K 96.90 97.90 97.34 97.89
Komi-Zyrian-IKDP 1K 38.55 68.67 45.50 36.89
Hebrew-HTB 144K 96.49 97.35 95.35 95.70
Tamil-TTB 10K 86.77 96.10 83.07 88.50
Buryat-BDT 10K 83.33 89.61 78.24 82.30
Breton-KEB 12K 85.61 92.81 88.65 90.12
Latin-Perseus 29K 87.30 86.26 79.21 82.88
Romanian-Nonstd 189K 96.10 96.37 95.52 96.36
Italian-ParTUT 50K 94.65 97.44 94.83 96.30
Catalan-AnCora 481K 98.17 98.92 98.42 98.65
Arabic-PUD 22K 81.31 80.90 87.23 88.00
Komi-Zyrian-L. 2K 52.75 77.47 55.79 57.02
Japanese-PUD 25K 86.30 97.32 93.46 94.02
Slovak-SNK 119K 94.52 96.95 91.88 94.55
Ukrainian-IU 118K 93.63 96.80 91.24 93.68
Turkish-PUD 17K 78.20 89.19 86.71 91.28
Bulgarian-BTB 152K 95.98 97.58 97.16 97.83
Russian-PUD 19K 83.78 92.54 81.73 87.79
Belarusian-HSE 8K 78.06 89.87 69.39 71.95
Hindi-HDTB 322K 98.15 98.82 96.12 96.60
Czech-CAC 474K 98.01 98.86 96.52 97.54
Hungarian-Szeged 38K 87.89 95.26 89.63 91.65
Swedish-LinES 74K 93.52 96.82 93.25 94.88
Afrikaans-Af.B. 45K 93.75 98.74 95.08 95.96
English-LinES 77K 96.19 98.27 94.57 95.43

Table 3: Lemmatization and Morphological Tagging
performances of minimum edit prediction model and
character prediction model on development sets

function. Dropout rate 0.4 is applied to all connec-
tions during model training for regularization. All
the weights are initialized with Xavier initializa-
tion method (Glorot and Bengio, 2010). We use an
early stop mechanism which stops the training af-
ter four consecutive epochs without improvement
on validation set.

3.3 Results

Table 2 presents the lemmatization and morpho-
logical performances of the proposed method on
UniMorph dataset collection. The lemmatization
accuracy on a dataset is the proportion of the num-
ber of correctly found lemmata over the total lem-
mata count. The lemmatization accuracy given in
table 2 is the average of the accuracies obtained
over the validation sets of all languages. The
performance of morphological tagging is mea-
sured by the F1 score calculated over the pre-
dicted and actual individual morphological tags.
In addition to the performance of the proposed ar-
chitecture with minimum edit prediction decoder,
the performance of the architecture with charac-
ter prediction decoder is also given. The per-
formances of SigMorphon 2019 neural baseline,
Turku NLP system (Kanerva et al., 2018) which is
the best lemmatization performer in CONLL 2018
Shared Task (Zeman and Hajič, 2018) and UPP-
SALA Uni system which is the best morpholog-
ical tagging performer in CONLL 2018 are also
given. Although the dataset provided in CONLL
2018 share the same basis with the dataset pro-
vided in SigMorphon, important differences exist
between them. Hence the performances of Turku
NLP and UPPSALA Uni are not directly compa-
rable to our systems and SigMorphon baselines.
However, we present the performances of those
systems averaged on the same languages in Sig-
Morphon dataset to provide an idea of how much
improvement is achieved over a year.

According to the results, the proposed archi-
tecture, Morpheus performs slightly better than
the SigMorphon neural baseline in terms of the
average lemmatization accuracy. Similarly, for
the morphological tagging task, Morpheus with
a minimum edit prediction decoder significantly
outperforms the baseline and Morpheus with char-
acter prediction decoder The experiments show
that the performance is improved considerably
when the minimum edit prediction decoder is used
instead of the character prediction decoder. An im-
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pressive result is that the performance of morpho-
logical tagging is also enhanced by employing the
minimum edit prediction decoder.

Table 3 shows the lemmatization and morpho-
logical performances of both character prediction
and minimum edit prediction models for each lan-
guage. The performance of the minimum edit
prediction model is better than the character pre-
diction model in almost all languages. Figure
3 shows that there is a correlation between the
size of the training data and the improvement on
the performance when the minimum edit predic-
tion decoder is employed. For instance, the rel-
ative lemmatization improvement is extreme in
languages with relatively small dataset such as
Tagalog-TRG (400 tokens/0.75 relative improve-
ments), Komi-Zyrian (1.1K tokens/0.78 relative
improvement) and Akkadian (1.7 tokens/0.44 rel-
ative improvement). On the other hand, in lan-
guages with large size dataset such as Spanish-
AnCora (496K tokens), Catalan-AnCora (480K
tokens) and French-GSD (359K tokens), the im-
provement is relatively low (0.006, 0.007 and 0.01,
respectively). Although improvement magnitude
is highly correlated with the training dataset size,
there must be other factors specific to the proper-
ties of the language. For instance, the dataset size
of the language Marathi-UFAL is small (4.1K to-
kens). However, the improvement degree is also
small (0.03 relative improvement).

Language Surface
word

Edit pred.
based model

output

Char. pred.
based model

output

Thurlow Thurlow Throughlough
English Cosmic Cosmic Comsic

sorrows sorrow sorw
Vietnam Vietnam Vietman

YPK Ypk YYk
Turkish kokainle kokain koki

Islık ıslık sılık

Table 4: Some examples of the errors made by charac-
ter prediction model and corrected by the edit predic-
tion based model

To investigate in which cases the edit predic-
tion model performs better, we explore the outputs
of the models for English and Turkish languages.
A significant portion of the errors in the charac-
ter prediction model is observed in unseen words
and proper nouns. Some of the errors made by the
character prediction based model and corrected by
the edit prediction based model are shown in Table
4. A possible reason is that the lemmatization of

a singular nominative noun which is rarely seen in
the training data is easier to edit prediction model
since all of the edit operations are Same and the
model should only produce a sequence of Same
labels. Character prediction based model, on the
other hand, have to learn to reproduce the word
from scratch. Additionally, we observe a signifi-
cant amount of samples in which the edit predic-
tion model produced morphological tags and lem-
mata more appropriate to the context than the out-
puts of the character prediction model. As a re-
sult, further research is needed to understand in
which cases the edit prediction decoder helps to
better learning of morphological properties of a
language.

4 Conclusion

In this study, we propose a neural architecture,
namely Morpheus, which is based on sequen-
tial neural encoder-decoders. The input words
are encoded in context-aware vector representa-
tions using two-level LSTM network and the de-
coders initialized with context-aware word vec-
tors generates both morphological tags assigned
to the words and minimum edit operations be-
tween surface words and their lemmata. We per-
form experiments to evaluate the performance of
Morpheus on UniMorph dataset collection (Kirov
et al., 2018), which comprised nearly 100 lan-
guage datasets. The experiments show that the
lemmatization performance of the Morpheus is
comparable to the SigMorphon neural baseline
system (Malaviya et al., 2019), which has ob-
tained current state-of-the-art results on UniMorph
dataset collection. Regarding morphological tag-
ging performance, Morpheus outperforms Sig-
Morphon morphological tagger baseline signifi-
cantly ( 0.3 relative improvement). In lemmati-
zation, Morpheus has placed 3rd in the SigMor-
phon 2019 Shared Task 2, and it has reached the
9th place in morphological tagging. In our experi-
ments, we also show that predicting the minimum
edit operations between surface words and their
lemmata instead of directly predicting the charac-
ters improves the performances of the system sig-
nificantly especially when the dataset is small.
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