
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 19–24
Florence, Italy. August 2, 2019 c©2019 Association for Computational Linguistics

19

Abstract

In this paper we describe our system for
morphological analysis and lemmatization
in context, using a transformer-based
sequence to sequence model and a biaffine
attention based BiLSTM model. First, a
lemma is produced for a given word, and
then both the lemma and the given word
are used for morphological analysis. We
also make use of character level word
encodings and trainable encodings to
improve accuracy. Overall, our system
ranked fifth in lemmatization and sixth in
morphological accuracy among twelve
systems, and demonstrated considerable
improvements over the baseline in
morphological analysis.

1 Introduction

In this paper we present our neural network
architecture that we have used for the
SIGMORPHON 2019 shared task 2 (McCarthy et
al., 2019). We use two models by pipelining them
in the sequence of operations. Our approach is
based on the idea that lemmatization is an m-to-n
mapping task where given a word of m characters
we need to produce its lemma consisting of n
characters. Unlike lemmatization, morphological
analysis calls for a different approach where
given a sentence consisting of m words, we need
to choose one label from a fixed set of labels for
each word. Hence, morphological
analysis/tagging is a classification task for an
input sequence.

2 Task and Dataset

There are two tasks in SIGMORPHON 2019
and we chose task 2. The idea of the task is
simple: the input is a sentence made of words and
the output is a lemma and morphosyntactic
description (MSD) for each word. Table 1 shows
sample data for task 2: the first column is the
input, the second is the lemma, and the last is the
MSD for each word. There may be a difference in
the result if a lemma is used as an additional input
for MSD tagging. Our experiments showed
improved performance when a lemma was
incorporated.

The dataset consists of initial 98 datasets of
more than 60 distinct languages, and additional
nine surprise languages/datasets that were added
later. Some of the datasets consist of languages
that are not widespread in terms of their usage and
amount of available training data. For example,
Akkadian has only 80 sentences in training data,
and other low-resource languages similarly have
small numbers of sentences: Amharic has 859,
Bambara 820, Buryat 741, Cantonese 520, etc. On
the other hand, Russian SynTagRus and Czech
PDT respectively have 49,511 and 70,330
sentences in their training data. In addition to

CBNU System for SIGMORPHON 2019 Shared Task 2:
a Pipeline Model

Uygun Shadikhodjaev and Jae Sung Lee

Department of Computer Science
Chungbuk National University

Cheongju City, Chungbuk Province, South Korea
ushadikhodjaev@gmail.com, jasonlee@cbnu.ac.kr

 Word Lemma MSD
1 these these PL;DET
2 guys guy N;PL
3 were be PST;IND;V;FIN
4 fantastic fantastic ADJ
5 ! ! _

Table 1: Sample data of SIGMORPHON 2019
Shared Task 2

mailto:ushadikhodjaev@gmail.com
mailto:jasonlee@cbnu.ac.kr

20

having less training data, some of the low-
resource languages also do not have pre-trained
word vectors. In such cases, we use other related
languages’ word vectors as a substitute, as will be
discussed later.

3 Model

The baseline model (Malaviya et al., 2019)
provided by the task organizers approaches task 2
by first finding a MSD tag for a given word and
incorporating that information in lemmatization.
Given a sequence of words w, a sequence of
morphological tags m, and a sequence of lemmas
l, they define their model as:

𝑝𝑝(𝑙𝑙,𝑚𝑚 | 𝑤𝑤) = 𝑝𝑝 (𝑙𝑙|𝑚𝑚,𝑤𝑤)𝑝𝑝(𝑚𝑚|𝑤𝑤) (1)

This illustrates the importance of MSD tags in

the lemmatization process. However,
lemmatization can be done effectively even
without consideration of morphological tags.
Therefore, our approach flips the order of
operations: we first find the lemma for a given
word and input the original sentence with the
generated lemma to the MSD tagger. Equation 2
summarizes this idea:

𝑝𝑝(𝑚𝑚, 𝑙𝑙 | 𝑤𝑤) = 𝑝𝑝 (𝑚𝑚|𝑙𝑙,𝑤𝑤)𝑝𝑝(𝑙𝑙|𝑤𝑤) (2)

Overall, given the nature of the required tasks,

an m-to-n sequence to sequence model for
lemmatization and a label classifier model for
morphological analysis are used. The two models
are trained separately and pipelined as shown in
Figure 1. As an example, when given an initial
sentence “these guys are fantastic!”, we
lemmatize each input word as “these guy be
fantastic!” We then input the derived lemmas and
the original input to the MSD tagger. At the end,
we obtain MSD tag for each input word.

3.1 Lemmatizer

Our lemmatizer is a sequence to sequence
model and is based on an encoder-decoder
architecture using Google’s transformer (Vaswani
et al., 2017). Lemmatization is a similar task to
translation, where an input sequence is mapped to
an output sequence of a different length.
Therefore, our approach is justified by the
model’s robust performance in neural machine

translation, particularly for WMT 2014 English-
to-German and WMT 2014 EN-FR datasets. An
informal leaderboard at http://nlpprogress.com
demonstrates that the best performing teams use a
transformer architecture for their encoder-decoder
architecture (cf. Edunov et al., 2018, Wu et al.,
2019).

A more formal leaderboard for the GLUE
benchmark (Wang et al. 2018) consists of tasks
that mainly use the encoder part of the encoder-
decoder architecture. Therefore, the tasks of the
GLUE benchmark are not directly comparable
with lemmatization, but even in this case, at least
the top 10 performers use BERT (Devlin et al.,
2018), which uses a transformer encoder
architecture (cf. Liu et al., 2019, Keskar et al.,
2019).

The specific code for lemmatization is taken
from the tensor2tensor library 1 version 1.13.4
with some modification added for our task. We
chose the built-in hyperparameter configuration of
transformer_tiny. The input and the output is a
sequence of characters and no pre-trained
embedding is used. One word is input at a time,
and thus no consideration is taken of context
words. For instance, in the mentioned example,
the encoder input is “t h e s e” as a sequence of
characters and the decoder output is “t h e s e”.
Likewise, “g u y s” and “g u y”, “w e r e” and “b
e”, etc. are input and output one by one. Overall,
the number of attention layers or heads is 4 as
opposed to 8 in the original paper and hence it

1 https://github.com/tensorflow/tensor2tensor

Figure 1: Pipeline Model

http://nlpprogress.com/
https://github.com/tensorflow/tensor2tensor

21

requires less computational power without
substantial loss in the accuracy. The model
performs quite well and with this basic setup was
ranked fifth among 12 participating systems.

3.2 MSD tagger

The task of morphological analysis uses the
output of lemmatization after pipelining it.
Furthermore, MSD tagging is very similar to
another well researched NLP task: head-
dependent relation labelling in dependency
parsing. Like head-dependent relation labelling,
an MSD tag of a word is dependent on the word
itself and its position within the sentence. As an
example, let’s consider two sentences: “I live in
an apartment” and “I like live music”. Even
though “live” occurs in both sentences, the label
we attach is dependent on the context. In other
words, context words and the word itself
determine its MSD tag. Therefore, we use the
modified dependency parser reported by Dozat et
al. (2017), which is based on Kiperwasser et al.
(2016). The original model won in the CoNLL
2017 shared task (Nivre et al. 2017a, Nivre et al.
2017b) and its subsequent modifications won in
the CoNLL 2018 shared task (Zeman et al., 2018,
Che et al., 2018). Unlike dependency parsing, for
the morphological analysis it is not necessary to
find the head of a word. Therefore, we amend the
dependency parser by Dozat et al. (2017) and use
only the model’s head-dependent relation labeling
functionality for the MSD tagging.

The model’s input is an elementwise addition
of four embeddings for an input word. We then
pass the vector representation for each input word
through BiLSTM layers with subsequent
multilayer perceptron (MLP) and biaffine
attention layers. The MSD tagging assigns a tag to
each word while the dependency parsing assigns a
tag to a relation between a pair of words. In the
latter case, even though we need to tag a relation
between a pair of words, each word needs a label.
Furthermore, information from two words only is
not enough and the parser has to attend actually to
the whole context to assign the correct label.
Therefore, we need attention over all input words
in the dependency parsing and we leave this
feature for the MSD tagger too.

The optimization is done by the Adam
optimizer (Knigma and Ba 2014). We trained the
model until there were no improvements after
5000 steps. The number of BiLSTM layers was

three and the dimension of each LSTM cell as
well as the word vector was 100 (300 when
fastText 2 is used). We mainly used pre-trained
embeddings of words from the CoNLL 2017
shared task (Nivre et al. 2017a, Nivre et al.
2017b) trained on word2vec (Mikolov et al.,
2013). For Akkadian, Amharic, and Japanese we
used fastText (Bojanowski et al., 2017).
Interestingly, using the pre-trained word vector of
Dutch from the CoNLL 2017 shared task
demonstrates better performance than the
Afrikaans pre-trained word vector of fastText for
Afrikaans-AfriBooms treebank. Similar results
were observed for some other datasets and
therefore we used fastText only for the mentioned
languages. At the same time, using the word
vector for a related language is also in the spirit of
cross-lingual learning transfer from a resource-
rich to a resource-lean language (Ruder et al.,
2017).

For each word, there are four embeddings,
which are summed elementwise: pre-trained,
trainable, character level, and lemma. Trainable
embeddings are vectors that are initialized
randomly and then trained as the training
proceeds. Likewise, lemma vectors are also
initialized randomly. The process of character
level embedding generation is more involved and
is based on the character level word
representation by Cao and Rei (2016). Character
level embeddings are a sequence of characters
that pass through unidirectional LSTM cells
(Hochreiter and Schmidhuber, 1997) and are then

2 https://fasttext.cc/

Figure 2: Character level embedding

https://fasttext.cc/

22

summed after the conventional attention layer
(Bahdanau et al., 2015). Figure 2 summarizes this
process.

4 Results

After experiments with different
hyperparameter settings, we were able to choose

optimal settings, as was described earlier. Table 2
summarizes the results of lemmatization and
MSD tagging by the sequence to sequence
transformer model and the biaffine attention based
BiLSTM model.

Our choice of lemmatization followed by an
MSD tagging was an important step for increasing
MSD tag accuracy. Although, a full-scale ablation

Treebanks
lemma
acc.

lemma
Leven.

morph
acc.

morph
F1

Afri. AfriBooms 98.49 0.03 98.45 98.66
Akk.PISANDUB 67.82 0.89 82.18 81.77
Amharic-ATT 99.91 0.00 88.19 92.41
A. Greek-Perseus 94.48 0.14 81.75 91.58
A. Greek-PROIEL 96.75 0.08 83.82 93.86
Arabic-PADT 94.16 0.16 93.22 96.32
Arabic-PUD 85.29 0.42 79.16 91.27
Armenian-ArmTDP 94.34 0.11 76.80 84.91
Bambara-CRB 83.90 0.30 92.79 94.74
Basque-BDT 95.75 0.10 87.63 92.80
Belarusian-HSE 89.81 0.19 58.67 65.26
Breton-KEB 92.54 0.19 87.36 90.13
Bulgarian-BTB 96.56 0.09 96.02 98.00
Buryat-BDT 89.23 0.26 80.48 82.93
Cantonese-HK 100 0.00 90.00 87.40
Catalan-AnCora 97.20 0.05 96.19 97.71
Chinese-CFL 99.76 0.00 91.49 90.37
Chinese-GSD 99.98 0.00 94.60 94.42
Coptic-Scriptorium 89.95 0.21 94.81 95.93
Croatian-SET 95.14 0.09 88.64 94.64
Czech-CAC 98.22 0.05 91.76 96.86
Czech-CLTT 98.41 0.03 90.01 94.98
Czech-FicTree 97.89 0.04 91.49 95.6
Czech-PDT 98.08 0.03 89.88 95.84
Czech-PUD 93.06 0.12 76.17 89.38
Danish-DDT 94.86 0.08 95.52 96.96
Dutch-Alpino 97.37 0.05 96.45 97.18
Dutch-LassySmall 96.45 0.07 96.38 97.00
English-EWT 97.31 0.08 95.82 97.01
English-GUM 97.09 0.05 95.46 96.54
English-LinES 97.87 0.04 96.34 97.16
English-ParTUT 97.30 0.05 94.75 95.56
English-PUD 94.90 0.07 93.43 94.95
Estonian-EDT 95.76 0.09 93.08 96.45
Faroese-OFT 88.28 0.22 81.08 88.28
Finnish-FTB 95.87 0.09 92.55 95.59
Finnish-PUD 89.09 0.23 88.52 93.32
Finnish-TDT 95.68 0.10 93.62 96.22
French-GSD 97.56 0.04 96.76 97.98
French-ParTUT 95.81 0.07 93.10 96.54
French-Sequoia 97.32 0.05 96.27 98.13
French-Spoken 97.17 0.06 97.25 97.31
Galician-CTG 97.00 0.04 97.94 97.73
Galician-TreeGal 94.05 0.08 92.74 95.58
German-GSD 97.11 0.06 86.05 93.73
Gothic-PROIEL 96.62 0.09 82.33 91.77
Greek-GDT 95.98 0.08 93.24 97.26
Hebrew-HTB 96.83 0.06 95.84 97.22
Hindi-HDTB 96.40 0.04 91.05 96.65
Hungarian-Szeged 95.19 0.09 88.11 94.63
Indonesian-GSD 99.50 0.01 90.17 93.15
Irish-IDT 91.24 0.20 82.40 88.35
Italian-ISDT 96.82 0.07 96.81 98.05
Italian-ParTUT 96.34 0.09 96.08 97.59
Italian-PoSTWITA 95.26 0.11 95.12 96.33

Treebanks
lemma
acc.

lemma
Leven.

morph
acc.

morph
F1

Italian-PUD 94.14 0.13 93.32 96.40
Japanese-GSD 98.13 0.02 97.74 97.46
Japanese-Modern 96.94 0.04 96.74 96.74
Japanese-PUD 97.46 0.03 97.88 97.65
Komi_Zyrian-IKDP 80.47 0.30 53.12 42.98
Komi_Zyrian-Lattice 84.07 0.38 57.14 65.07
Korean-GSD 93.19 0.12 95.87 95.25
Korean-Kaist 95.57 0.07 96.71 96.30
Korean-PUD 97.96 0.04 91.02 93.99
Kurmanji-MG 91.40 0.17 79.48 87.13
Latin-ITTB 97.44 0.06 93.32 96.62
Latin-Perseus 91.16 0.19 78.68 88.54
Latin-PROIEL 96.51 0.08 87.99 95.16
Latvian-LVTB 95.77 0.07 91.60 95.10
Lithuanian-HSE 86.42 0.30 56.03 57.49
Marathi-UFAL 74.25 0.65 47.43 59.40
Naija-NSC 99.93 0.00 94.94 93.17
North_Sami-Giella 91.96 0.16 87.04 91.90
Norwegian-Bokmaal 97.83 0.03 95.81 97.40
Norwegian-Nynorsk 97.74 0.04 94.87 96.60
N.NynorskLIA 97.51 0.04 93.03 94.29
OCS-PROIEL 96.51 0.08 83.44 91.82
Persian-Seraji 96.27 0.17 97.06 97.70
Polish-LFG 95.66 0.08 92.19 96.23
Polish-SZ 94.99 0.09 89.17 94.58
Portuguese-Bosque 95.13 0.08 93.39 96.48
Portuguese-GSD 87.82 0.25 96.91 97.14
Rom.-Nonstandard 93.40 0.14 91.91 95.60
Romanian-RRT 95.53 0.09 96.85 97.99
Russian-GSD 95.89 0.07 88.91 94.20
Russian-PUD 90.72 0.16 79.88 90.15
Russian-SynTagRus 96.97 0.06 93.28 96.46
Russian-Taiga 89.86 0.22 76.53 84.11
Sanskrit-UFAL 61.81 0.92 33.17 46.19
Serbian-SET 96.42 0.07 91.76 95.34
Slovak-SNK 96.24 0.07 89.24 94.68
Slovenian-SSJ 96.38 0.06 91.56 95.27
Slovenian-SST 93.79 0.13 83.44 90.24
Spanish-AnCora 97.69 0.04 96.64 97.98
Spanish-GSD 98.31 0.03 93.97 96.78
Swedish-LinES 95.37 0.08 92.57 96.24
Swedish-PUD 91.65 0.12 92.66 95.43
Swedish-Talbanken 96.56 0.05 96.66 98.16
Tagalog-TRG 83.78 0.54 72.97 79.70
Tamil-TTB 91.52 0.23 79.13 88.48
Turkish-IMST 96.34 0.07 87.37 91.37
Turkish-PUD 85.13 0.37 81.89 89.47
Ukrainian-IU 95.42 0.09 88.70 94.23
Upper_Sorbian-UFAL 90.66 0.14 66.95 76.85
Urdu-UDTB 94.25 0.08 79.06 92.21
Vietnamese-VTB 99.93 0.00 91.79 90.69
Yoruba-YTB 98.84 0.01 91.47 92.05
Mean 94.07 0.12 88.09 91.84
Median 95.87 0.08 91.76 95.16
Mean – baseline by
the task organizers 94.17 0.13 72.18 86.25
Median – baseline
by the task
organizers 95.92 0.08 76.40 89.45

Table 2: Test set scores

23

study was not performed due to time constraints,
an experiment for MSD tagging without lemma
on English-PUD and Korean-Kaist treebanks
were performed. On both datasets, a decrease in
accuracy was observed. For English-PUD’s
morph accuracy and F1 scores decreased by 1.18
and 0.43 percentage points, while Korean-Kaist’s
respective scores decreased by 7.50 and 8.41
percentage points. We conjecture that the larger
decrease in Korean is due to its higher
morphological complexity than English; a lemma
itself is more important to find MSD tags for
morphological rich languages.

In general, as more training data were
available, higher scores were obtained in absolute
terms. As an example, for Russian, among four
available datasets (Russian-GSD, Russian-PUD,
Russian-SynTagRus, and Russian-Taiga) Russian-
SynTagRus was the largest, and its accuracy was
best by all four metrics used.

Some languages have more MSD tags than
others and therefore present another dimension for
the task complexity. For instance, Czech-PDT
treebank has 2895 unique MSD tags while
English-EWT has only 179, i.e. 16 times less.
This, therefore, partly affects the accuracy of the
MSD tagger, where Czech-PDT treebank’s
morphological accuracy is 89.88% while English-
EWT’s is 95.82%.

While there is a lot of variance in the number
of MSD tags among languages, most of the
languages have around twenty to sixty characters
in their alphabet. Hence, the number of characters
in the alphabet does not seem to affect
lemmatization. At the same time, Chinese uses
distinct characters for each word and does not
have word inflections. Despite having 3536
unique characters, Chinese-GSD treebank’s
lemma accuracy is 99.98%. It also has only 40
MSD tags due to the absence of inflections.

Overall, lemmatization appears to be a slightly
easier task than MSD tagging, and in our case,
incorporating lemma information in MSD tagging
yielded more accurate results for the latter.

5 Conclusion

Our pipeline model has shown favorable results
in SIGMORPHON Shared Task 2 and scored fifth
and sixth place, respectively, for lemmatization
and MSD tagging. For future work, it would be
interesting to assess how incorporating the output

of MSD tagging into lemmatization would affect
lemma accuracy.

Acknowledgments
This research was supported by the Basic

Science Research Program through the National
Research Foundation of Korea (NRF) funded by
the Ministry of Education (grant number:
2017R1D1A3B03035676).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd
International Conference on Learning
Representations, ICLR 2015, San Diego, CA,
USA.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the
Association for Computational Linguistics, 5:135–
146

Kris Cao and Marek Rei. A joint model for word
embedding and word morphology. 2016. In
Proceedings of the 1st Workshop on
Representation Learning for NLP, pages 18–26,
Berlin, Germany. Association for Computational
Linguistics.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. Towards better UD parsing: Deep
contextualized word embeddings, ensemble, and
treebank concatenation. 2018. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 55–64, Brussels, Belgium. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805.

Timothy Dozat, Peng Qi, and Christopher D.
Manning. Stanford’s graph-based neural de-
pendency parser at the CoNLL 2017 shared task.
2017. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 20–30, Vancouver,
Canada. Association for Computational
Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language

24

Processing, pages 489–500, Brussels, Belgium.
Association for Computational Linguistics.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural
Comput.,9(8):1735–1780.

Nivre Joakim, Agić Željko, Ahrenberg Lars, et al.,
2017a, Universal Dependencies 2.0,
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University,
http://hdl.handle.net/11234/1-1983.

Nivre Joakim, Agić Željko, Ahrenberg Lars, et al.,
2017b, Universal Dependencies 2.0 – CoNLL 2017
Shared Task Development and Test Data,
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University,
http://hdl.handle.net/11234/1-2184.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing using
bidirectional LSTM feature representations.
Transactions of the Association for Computational
Linguistics, 4:313–327.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and
Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding.
CoRR, abs/1901.11504.

Chaitanya Malaviya, Shijie Wu, and Ryan Cotterell.
2019. A simple joint model for improved
contextual neural lemmatization. arXiv preprint
arXiv:1904.02306v2.

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin,
Garrett Nicolai, Christo Kirov, Miikka Silfverberg,
Sebastian Mielke, Jeffrey Heinz, Ryan Cotterell,
and Mans Hulden. 2019. The SIGMORPHON
2019 shared task: Crosslinguality and context in
morphology. In Proceedings of the 16th
SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and
Morphology, Florence, Italy. Association for
Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word
representations in vector space. CoRR,
abs/1301.3781.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd
International Conference on Learning
Representations, ICLR 2015, San Diego, CA,
USA.

Sebastian Ruder, Ivan Vulic, and Anders Sogaard.
2017. A survey of cross-lingual word embedding
models. cite arxiv:1706.04902.

Nitish Shirish Keskar, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Unifying
question answering and text classification via span
extraction. CoRR, abs/1904.09286.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information
Processing Systems 30, pages 5998–6008. Curran
Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. GLUE: A
multi-task benchmark and analysis platform for
natural language understanding. 2018. In
Proceedings of the 2018 EMNLP Workshop
Blackbox NLP: Analyzing and Interpreting Neural
Networks for NLP, pages 353–355, Brussels,
Belgium. Association for Computational
Linguistics.

Felix Wu, Angela Fan, Alexei Baevski, Yann
Dauphin, and Michael Auli. 2019. Pay less
attention with lightweight and dynamic
convolutions. In International Conference on
Learning Representations.

Daniel Zeman, Jan Hajic, Martin Popel, Martin
Potthast, Milan Straka, Filip Ginter, Joakim Nivre,
and Slav Petrov. 2018. CoNLL 2018 shared task:
Multilingual parsing from raw text to universal
dependencies. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 1–21, Brussels,
Belgium, Association for Computational
Linguistics.

http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-2184

	1 Introduction
	2 Task and Dataset
	3 Model
	3.1 Lemmatizer
	3.2 MSD tagger

	4 Results
	5 Conclusion
	Acknowledgments
	References

