
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 1–5
Florence, Italy. August 2, 2019 c©2019 Association for Computational Linguistics

1

AX Semantics’ Submission to the SIGMORPHON 2019 Shared Task

Andreas Madsack and Robert Weißgraeber
AX Semantics, Stuttgart, Germany

{firstname.lastname}@ax-semantics.com

Abstract

This paper describes the AX Semantics’ sub-
mission to the SIGMORPHON 2019 shared
task on morphological reinflection. We im-
plemented two systems, both tackling the task
for all languages in one codebase, without any
underlying language specific features. The
first one is an encoder-decoder model using
AllenNLP; the second system uses the same
model modified by a custom trainer that trains
only with the target language resources after a
specific threshold. We especially focused on
building an implementation using AllenNLP
with out-of-the-box methods to facilitate easy
operation and reuse.

1 Introduction

This paper describes our implementation and re-
sults for Task 1 of the 2019 Shared Task (Mc-
Carthy et al., 2019). The task is to gener-
ate inflected word forms given the lemma and a
morphological feature specification (Kirov et al.,
2018). See Figure 1 for an example in German,
where a verb lemma is inflected according to the
specified number, mood, tense and person.

sehen (V;IND;PST;3;PL) → sahen

Figure 1: Task 1 Example, German: putting the verb
”sehen” into 3rd person past tense indicative plural.

In contrast to last year, where the training data
was only in the respective target language, this
year the given data consists of up to 10000 ex-
emplars of one high resource language combined
with up to 100 exemplars of a low resource lan-
guage. The target language is the low resource
language. The task is to use the high resource data
to improve the inflection of the low resource lan-
guage. Including the surprise language pairs the
task consists of 99 language pairs.

2 Motivation

After participating last year (Madsack et al., 2018)
we started to rebuild everything we needed for
our production system using AllenNLP (Gardner
et al., 2017). Our main goal here is reproducibility
and full logging of everything as default. In our
experience AllenNLP brings best practices that,
while sometimes opinionated, are way better than
building everything from scratch, and which we
wanted to apply to this problem.

Our two systems represent our learning curve
in the attempt to solve the given shared task. The
first system is a solution entirely based on given
AllenNLP components. The second system has a
custom trainer that, only at the start, trains with all
given training data for a pair and then continues
only with the (low-resource) target language.

The source code of our submission
can be found at: https://301.ax/
github-sigmorphon2019

3 System 1 - softmax baseline in
AllenNLP

Our first system is the soft-attention baseline re-
built in AllenNLP. It basically serves as a starting
point for our second system.

The model is an encoder-decoder (Cho et al.,
2014) and is using the readily implemented ver-
sion in AllenNLP (named SimpleSeq2Seq). We
modified the model code to add accuracy and edit-
distance metrics. The attention used is dot-product
attention (Luong et al., 2015). All other hyper
parameters are inspired by Wu et al. (2018) and
shown in Table 1.

We trained two kinds of System 1. One with
only low data as baseline and another with high
and low data concatenated. All systems used
here are character based and the input sequence
is first the lemma followed by a next marker (we

https://301.ax/github-sigmorphon2019
https://301.ax/github-sigmorphon2019


2

used a tabulator) followed by the morphologi-
cal features as a string. One example input of
the encoder looks like the following: zmrzlina
N;DAT;SG. Besides, AllenNLP wraps inputs and
target outputs with start and end markers.

parameter value
System 1 System 2

embedding dimension 200 100
beam size 10 10
hidden size 400 200
number of hidden en-
coder layers

2 1

encoder dropout 0.4 0.3
optimizer adam adam

Table 1: hyper parameters for System 1 and System 2

4 System 2 - transfer learning

The second system uses the same encoder-
decoder-model as System 1. The major modifica-
tion is a trainer that first learns on all training data
(high and low resource data) and after a threshold
is reached continues learning only with the target
language. This threshold marks the transfer learn-
ing point: The cross-lingual model is reused as a
basis for training with the monolingual data.

The first 10 epochs are always trained with all
training data. The switch to only training with low
resource data happens after 5 epochs without train-
ing improvement. As metric for this improvement
a lower loss on validation data is used. Most hy-
per parameters (Table 1) for System 2 were halved
after some experimental evaluation. We did not do
an exhaustive search of these parameters, so minor
improvements with the help of hyperparameter op-
timization (e.g. using cross-validated grid search)
are possible here.

Figure 3 shows a loss curve where training with
only the target language Khakas (and without the
high-resource language Bashkir) started at epoch
17. For comparison the loss curve of System 1
for the same language pair is shown in Figure 2.
In this example System 2 gains a smaller loss than
System 1 on the validation data - System 2 reaches
with about 0.2 half as much loss as System 1 with
about 0.4.

5 Results

The results for System 1 and System 2 shown in
Table 2 and Table 3 together with the soft-attention

Figure 2: Loss for train (orange) and validation (blue)
for System 1 language pair “bashkir–khakas”

Figure 3: Loss for train (orange) and validation (blue)
for System 2 language pair “bashkir–khakas”

baseline from the organizers (Wu and Cotterell,
2019) are the unmodified results from the submis-
sion to the task. We found minor tooling mis-
takes on the surprise languages after the submis-
sion deadline which we didn’t correct in the table.

In the trained models we can observe big differ-
ences in the accuracy for different language pairs.
To better understand the results we trained a new
version of System 1 with only the low data given
and ignored the high-resource language data com-
pletely. As expected this version of System 1 per-
formed worst in comparison to the other systems
due to the lack of a sufficient amount of training
data.

In general, the very low results on some pairs
seem to be based on very different character sets
and/or feature sets between the concerning lan-
guage pairs. For example a language pair with a
lot of different characters and different features is
“bengali–greek”. The amount of Greek data alone
is not enough to train an encoder-decoder-model
(see System 1 low results) and the data for Bengali
doesn’t help either way (see System 1, System 2
and baseline results).

Thus, the results indicate that a difference in
features and/or character sets has a big impact on
the usefulness of the high resource training data.
For the character set a phonological mapping to a
phonetic alphabet could improve on that issue.



3

language pair characters features System 1 System 1 System 2 Baseline
in low not in high (low) (tune) (0-soft)

adyghe–kabardian 0 0 2 85 91 93
albanian–breton 2 7 0 10 11 21
arabic–classical-syriac 22 11 0 33 27 52
arabic–maltese 29 2 0 0 2 16
arabic–turkmen 30 3 6 8 12 32
armenian–kabardian 32 4 2 5 39 68
asturian–occitan 6 0 0 6 14 47
bashkir–azeri 32 10 0 19 11 34
bashkir–crimean-tatar 33 7 0 30 0 51
bashkir–kazakh 3 1 14 64 72 76
bashkir–khakas 3 3 2 62 74 74
bashkir–tatar 35 6 0 35 8 37
bashkir–turkmen 30 0 0 52 42 50
basque–kashubian 14 10 6 2 8 20
belarusian–old-irish 25 18 0 4 4 4
bengali–greek 82 16 0 0 0 3.6
bulgarian–old-church-slavonic 31 5 0 24 17 40
czech–kashubian 8 0 6 10 52 40
czech–latin 9 6 0 4.4 6.7 3.9
danish–middle-high-german 5 6 14 34 70 68
danish–middle-low-german 12 13 10 24 14 36
danish–north-frisian 3 10 0 7 20 23
danish–west-frisian 4 6 0 37 26 48
danish–yiddish 35 16 0 0 42 44
dutch–middle-high-german 2 5 10 50 60 54
dutch–middle-low-german 9 10 4 18 38 38
dutch–north-frisian 3 7 0 12 14 21
dutch–west-frisian 3 2 3 16 38 43
dutch–yiddish 35 13 0 - - 43
english–murrinhpatha 0 7 0 12 22 12
english–north-frisian 4 12 0 2 19 23
english–west-frisian 5 8 0 19 33 41
estonian–ingrian 1 2 0 14 6 30
estonian–karelian 3 4 0 0 46 46
estonian–livonian 16 12 0 2 19 25
estonian–votic 3 1 3 14 17 25
finnish–ingrian 1 1 0 36 34 26
finnish–karelian 2 2 0 0 52 32
finnish–livonian 17 11 1 18 2 25
finnish–votic 4 2 2 27 32 22
french–occitan 3 1 0 24 37 33
german–middle-high-german 3 0 12 38 72 66
german–middle-low-german 10 7 8 2 20 46
german–yiddish 35 14 0 0 20 46
greek–bengali 45 12 1 0 7 31
hebrew–classical-syriac 22 10 0 48 32 61
hebrew–maltese 30 4 0 7 6 16
hindi–bengali 45 12 0 3 6 35
hungarian–ingrian 2 4 0 24 18 10
hungarian–karelian 3 8 2 0 36 30
hungarian–livonian 19 18 0 2 11 19
hungarian–votic 5 4 1 17 15 16
irish–breton 3 5 0 3 3 19
irish–cornish 3 8 0 2 8 8
irish–old-irish 1 12 0 2 4 0
irish–scottish-gaelic 5 2 0 42 26 60
italian–friulian 7 1 0 27 27 33
italian–ladin 2 3 1 13 23 47
italian–maltese 5 5 0 11 16 9
italian–neapolitan 2 2 6 60 48 41
kannada–telugu 23 1 20 44 68 60
kurmanji–sorani 9 12 0 2 0.8 8.1
latin–czech 17 8 0 0 9.1 13.5

Table 2: Left: Feature/character differences between language pairs. (in low, not in high language)
Right: Results (accuracy) for test data compared to baseline (Part 1)



4

language pair characters features System 1 System 1 System 2 Baseline
in low not in high (low) (tune) (0-soft)

latvian–lithuanian 29 6 0 0.7 7.7 10.9
latvian–scottish-gaelic 11 0 0 30 48 48
persian–azeri 32 13 0 0 1 23
persian–pashto 15 9 0 0 1 14
polish–kashubian 6 0 6 48 68 66
polish–old-church-slavonic 57 1 0 10 0 30
portuguese–russian 36 15 0 0 0 11.9
romanian–latin 13 9 0 0 0.1 4.5
russian–old-church-slavonic 31 2 0 22 24 32
russian–portuguese 35 8 0 0.3 0.5 32.3
sanskrit–bengali 46 19 0 11 1 21
sanskrit–pashto 38 12 0 2 3 7
slovak–kashubian 9 1 2 22 40 52
slovene–old-saxon 7 6 0 4 6.7 7.8
sorani–irish 26 18 0 0.3 3.3 2.6
spanish–friulian 8 1 0 28 37 38
spanish–occitan 5 1 0 26 39 50
swahili–quechua 5 34 0 0 0.2 3
turkish–azeri 3 1 0 60 64 66
turkish–crimean-tatar 2 3 0 69 74 65
turkish–kazakh 31 1 18 54 68 74
turkish–khakas 25 3 2 68 54 78
turkish–tatar 4 2 0 79 68 69
turkish–turkmen 4 0 0 56 86 80
urdu–bengali 45 9 0 3 5 30
urdu–old-english 38 6 0.2 0.3 0.1 8
uzbek–azeri 12 6 0 5 4 27
uzbek–crimean-tatar 13 8 0 0 0 13
uzbek–kazakh 31 1 22 12 46 56
uzbek–khakas 25 3 0 10 28 76
uzbek–tatar 16 7 0 1 2 21
uzbek–turkmen 11 0 0 8 16 36
welsh–breton 6 8 0 17 20 34
welsh–cornish 4 11 2 0 12 26
welsh–old-irish 8 18 2 2 4 8
welsh–scottish-gaelic 12 11 0 20 16 28
zulu–swahili 0 19 0 0 19 36

Table 3: Left: Feature/character differences between language pairs. (in low, not in high language)
Right: Results (accuracy) for test data compared to baseline (Part 2)

6 Conclusion

Our continual goal is to improve our morphology
system component in our Natural Language Gen-
eration SaaS (Weißgraeber and Madsack, 2017).

In our production setup the System 1 described
above competes against a handcrafted morphology
and a reasonable lexicon (which were not used for
the Shared Task). This handcrafted morphology
together with the lexicon is always better on very
regular part of speech (POS) types (i.e. German
adjectives). Therefore not for every language POS
combination a system shown here is used in our
production NLG inflection system. For every lan-
guage and POS type we evaluate which solution
fits best.

AllenNLP successfully helped us to reproduce
the same results even with newer versions of li-
braries (i.e. PyTorch, CUDA, Python), which is

an important quality for our NLG system.

References
Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640


5

Xia, Manaal Faruqui, Sebastian J. Mielke, Arya Mc-
Carthy, Sandra Kübler, David Yarowsky, Jason Eis-
ner, and Mans Hulden. 2018. UniMorph 2.0: Uni-
versal Morphology. In Proceedings of the 11th
Language Resources and Evaluation Conference,
Miyazaki, Japan. European Language Resource As-
sociation.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Andreas Madsack, Alessia Cavallo, Johanna
Heininger, and Robert Weißgraeber. 2018.
AX semantics’ submission to the CoNLL–
SIGMORPHON 2018 shared task. In Proceedings
of the CoNLL–SIGMORPHON 2018 Shared Task:
Universal Morphological Reinflection, pages
43–47, Brussels. Association for Computational
Linguistics.

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin, Gar-
rett Nicolai, Christo Kirov, Miikka Silfverberg, Se-
bastian Mielke, Jeffrey Heinz, Ryan Cotterell, and
Mans Hulden. 2019. The SIGMORPHON 2019
shared task: Crosslinguality and context in morphol-
ogy. In Proceedings of the 16th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, Florence, Italy. Asso-
ciation for Computational Linguistics.

Robert Weißgraeber and Andreas Madsack. 2017. A
working, non-trivial, topically indifferent nlg system
for 17 languages. In Proceedings of the 10th Inter-
national Conference on Natural Language Genera-
tion, pages 156–157. Association for Computational
Linguistics.

Shijie Wu and Ryan Cotterell. 2019. Exact hard
monotonic attention for character-level transduction.
arXiv preprint arXiv:1905.06319.

Shijie Wu, Pamela Shapiro, and Ryan Cotterell. 2018.
Hard non-monotonic attention for character-level
transduction. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 4425–4438, Brussels, Belgium.
Association for Computational Linguistics.

https://www.aclweb.org/anthology/L18-1293
https://www.aclweb.org/anthology/L18-1293
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://www.aclweb.org/anthology/K18-3004
https://www.aclweb.org/anthology/K18-3004
http://aclweb.org/anthology/W17-3524
http://aclweb.org/anthology/W17-3524
http://aclweb.org/anthology/W17-3524
https://www.aclweb.org/anthology/D18-1473
https://www.aclweb.org/anthology/D18-1473

