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Abstract

The uncertainties of language and the com-
plexity of dialogue contexts make accurate di-
alogue state tracking one of the more chal-
lenging aspects of dialogue processing. To
improve state tracking quality, we argue that
relationships between different aspects of dia-
logue state must be taken into account as they
can often guide a more accurate interpretation
process. To this end, we present an energy-
based approach to dialogue state tracking as
a structured classification task. The novelty
of our approach lies in the use of an energy
network on top of a deep learning architec-
ture to explore more signal correlations be-
tween network variables including input fea-
tures and output labels. We demonstrate that
the energy-based approach improves the per-
formance of a deep learning dialogue state
tracker towards state-of-the-art results without
the need for many of the other steps required
by current state-of-the-art methods.

1 Introduction

Dialogue processing is a challenging task due to
the nature of human conversations. Currently most
Spoken Dialogue Systems (SDS) have a core com-
ponent called the Dialogue Manager that is re-
sponsible for: (a) handling dialogue context and
understanding user utterances by tracking dia-
logue states; and (b) generating useful contribu-
tions through the use of an appropriate dialogue
policy. The dialogue manager component can
be developed independently (Budzianowski et al.,
2017; Suetal., 2017; Zhao and Eskenazi, 2016) or
in an end-to-end dialogue fashion (Williams et al.,
2017; Li et al., 2017; Serban et al., 2016). Be-
tween the two dialogue manager components, the
dialogue state tracker is arguably the more chal-
lenging to perfect, as its performance depends on
the quality of the speech recognition component,
the complexity of natural language used by users,
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and even the situational context (Ross and Bate-
man, 2009).

Generally task-oriented dialogue systems with
predefined ontologies represent dialogue states as
a set of slot-value pairs, and define dialogue state
tracking as a multi-task classification problem.
The common deep learning approach to dialogue
state tracking therefore is to develop different sub-
systems for the tracking of each slot — though early
layers in the network will often be shared to vary-
ing degrees. While this approach has provided rea-
sonable results, we argue that this method does not
reflect the natural way that humans process infor-
mation; specifically that the inter-relationships be-
tween slots are not properly taken into account.

In order to account for such relationships in the
dialogue context, it is appropriate to consider the
problem not as a multi-task classification prob-
lem, as is currently common, but as a structured
prediction problem. This insight is not in itself
novel, as there have been several attempts in the
research community to investigate the variable de-
pendencies in dialogue state tracking such as in the
multi-task learning model (Trinh et al., 2018), the
language modelling tracker (Platek et al., 2016),
work building on Conditional Random Fields
(Kim and Banchs, 2014), work on Attention-based
Sequence-to-Sequence models (Hori et al., 2016)
and the work by Williams (2010). Although these
architectures are good attempts to engage variable
dependencies at different levels of abstraction into
the dialogue state tracking process, they have not
yet achieved state-of-the-art results and do not pro-
vide a clear analysis of the relationships between
variables.

Performing prediction of dialogue states where
we acknowledge the relationship between slot val-
ues casts the problem into a structured predic-
tion task; this is similar to how both image seg-
mentation and part-of-speech tagging are struc-
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tured prediction problems in that that output labels
are not assumed to be independent. One efficient
approach to structured prediction that has been
applied widely in recent years are energy-based
methods (LeCun et al., 2006). A key intuition
of energy-based structured learning approaches is
that it can be easier to learn a function to critique
a potential solution Y than to learn to predict Y
directly from an input signal X. Given this intu-
ition, energy-based approaches essentially attempt
to learn a function that estimates the goodness of
fit between some input feature variable X and an
output hypothesis Y. Given such a trained func-
tion, a gradient descent-based inference process
then searches for an appropriate Y at run-time that
demonstrates the best fit to a new input vector X.
To investigate the appropriateness of this
method, in this paper we apply a variant of the
Structured Prediction Energy Network (SPEN)
(Belanger and McCallum, 2016) to the Dialogue
State Tracking Challenge (DSTC) 2 dataset (Hen-
derson et al., 2014a). To our knowledge, this is the
first attempt to apply this formulation of modelling
to the DST task. We benchmark our work by com-
paring it against a number of other dialogue state
trackers including the state-of-the-art hybrid dia-
logue state tracker (Vodolan et al., 2015, 2017).

2 Analysis of Variable Dependencies

The goal of applying a structured learning ap-
proach to dialgoue state tracking is predicated on
the assumption that there are indeed dependencies
between slots in the dialogue state. In this section
we recap some of the features of the dataset that
we have applied and investigate whether such de-
pendencies exist for this dataset.

2.1 DSTC2 Dataset

The Dialogue State Tracking Challenge 2 (Hen-
derson et al., 2014a) is a popular dataset for
spoken dialogue state tracking in the Cambridge
restaurant information domain. The main task
of this challenge, called Joint Goals, requires the
models to classify slot-value pairs for four In-
formable slots; namely food, price range, area,
and name. At every turn of the dialogue, each slot
must be assigned a value from its set of possible
values detailed in the task ontology. However, the
analysis shows that the slot name rarely appears in
the dataset (see Appendix A.1). Therefore follow-
ing the approach of a number of other researchers,
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we focus on the remaining three slots only.

The DSTC2 dataset contains 1612 dialogues in
a training set, 506 in a development (validation)
set, and 1117 in a test set.

2.2 Data Analysis

We conducted a data analysis on the DSTC2
data using the chi-square test to examine the de-
pendencies between target variables. The chi-
square test;is an important statistical test to de-
tect associations between variables; however, this
test can only give the answer to the question of
whether there exist dependencies between vari-
ables. Therefore, it is also important to mea-
sure the strength of detected dependencies. For
this purpose, we perform a chi-square test on the
three informable slots in a pairwise fashion and
use the chi-square test’s ¢ coefficient to mea-
sure the strength of their dependencies (see Ap-
pendix A.2). The chi-square test result confirms
the existence of pairwise dependencies among
DSTC2 data informable slots with the statistical
significance p < 0.05. The dependencies are re-
ported in Table 1 with the ¢ coefficient.

food price area
food -
price 0.608 -
area 0.707 0.393 -

Table 1: Data analysis of variable dependencies on
DSTC2 data. The result is reported with ¢ coefficient
values.

The statistical test shows that there are associa-
tions of different levels among informable slots in
the DSTC2 data. We observe that two pairs food
— price range and food — area have strong depen-
dencies, while the relationship price range — area
is weaker. We argue that this observation indicates
the validity of the motivation for our work in that
there are dependencies between target labels and
hence the dialogue state tracking task can be cast
as a structured prediction problem.

3 Energy-Based Learning

Energy-Based Learning is a branch of machine
learning that is notable for its usefulness in
structured prediction tasks. Energy-based struc-
tured prediction methods have been applied in
tasks ranging from Part-of-Speech (POS) tagging
(Voutilainen, 1995; Ma and Hovy, 2016) through



to instance segmentation tasks in computer vision
(Corso et al., 2004; Li and Zhao, 2009; Ngiam
et al.,, 2011). In all of these tasks the output is
not a highly structured object, but is rather a set of
labels that are not assumed to be independent of
each other.

The main intuition behind energy-based meth-
ods is that it is too challenging to learn a structured
output Y for a given input vector X, and that in-
stead we should learn a function that essentially
assesses the goodness of fit between a given struc-
tured output Y and the input vector X. In practice
we often assume that the raw data is pre-processed
in a domain appropriate way to give us a more use-
ful representation of the data to evaluate against
a given target. Thus the energy network actually
calculates the goodness of fit between some rep-
resentation of X, referenced from here on out as
F(X), and a candidate output Y. While in princi-
ple a wide range of methods could be used to gen-
erate a feature representation F'(X), in this work
we assume the feature representation is generated
by some form of deep network which we refer to
as the feature network. For an image processing
task such a network might be based on series of
convolutions, while in a language processing task
such a network might be based on a recurrent ar-
chitecture. Given the above, we define that energy
function itself simply as E(F(X),Y’) which re-
turns some scalar value.

During training, an appropriate objective func-
tion L(E, E*), where E* = E((F)X,Y™) is the
ground truth energy calculated based on input fea-
ture representation F'(X) and target labels Y™, is
used to guide training such that the energy func-
tion is minimised for valid combinations of F'(X)
and Y observed in the training data. During run-
time we do not have gold standard values for Y,
and instead we only have processed inputs F'(X).
Thus at runtime we begin with an initial hypoth-
esis for Y — usually that Y = [0}V, and we then
perform an inference process to update Y so as to
find the best fit according to our learned differen-
tiable energy function. This overall approach is
illustrated by Figure 1.

The specific design of the energy function is
important in achieving an appropriate estimator
for goodness of fit between input vectors and
candidate structured outputs. Belanger and Mc-
Callum (2016) propose an energy function based
around the combination of a local and global en-
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E(F(X). Y) E*(F(X), Y*)
F(X)
X ¥ y*
Figure 1: An example of Energy-Based Model, that

consists of a feature network F'(X), an energy func-
tion E(F(X),Y), and an objective function L(E, E*),
where X is input variable, F'(X) is a feature represen-
tation generated by a feature network, Y is predicted
output variable, and Y* is a gold standard label output
variable.

ergy where global energy gives a scalar that repre-
sents the cross correlations for the target vector Y
only, and the local energy considers the relation-
ship between the input vector X and individual el-
ements of the total output structure variable, i.e.,
y € Y. Both the local and global energy func-
tions are approximated as layers in a neural net-
work such that complex energy functions may be
learned from the training data.

As indicated, the energy function beside being
used to produce scalar energy values is also used
to generate predicted output variables. This pro-
cess is called the Inference process. Commonly a
gradient-based technique is used to generate the
output variable in a continuous space (Belanger
and McCallum, 2016; Belanger et al., 2017). The
inference process can be formulated as follow:

Yir1 <y — 1 Vy(E(X,Y)) (1)

where 1, is the learning rate at time step ¢, and
V4 (E(X,Y)) is the gradients of energy value
with respect to the output variable.

The process to train the energy network param-
eters is called the Learning process, where an ob-
jective function is used to calculate how good the
prediction is, and its gradients are used to back-
propagate throughout the network. It is important
to define a good objective function for the network
(LeCun and Huang, 2005). This process is stan-
dard for deep learning models. The parameters are
updated with the formula:

0« 0 — \Vo(L(E, E¥)) )



where 0 is the network parameters, \ is the learn-
ing rate, and Vy(L(E, E*)) is the gradients of
the loss between predicted and ground truth en-
ergies with respect to trainable parameters of the
network.

4 Energy-Based Dialogue State Tracker

Based on the general principles of energy based
modelling, we propose a deep learning energy-
based architecture for dialogue state tracking.
Given the approach outlined in the previous sec-
tion, the model consists of three main components:

o Feature network is a function implemented
as a deep learning network to transform dia-
logue input into an appropriate representation
which can be fed to the energy function.

Energy function is a function implemented
as a feed-forward network that is trained to
assign scalar energy values to any given con-
figuration of input and output variables.

Loss function is a function that provides an
measurement of the quality of the network
predictions.

In the following we provide details of these
components as we specifically designed them for
the DSTC2 dataset.

4.1 Feature Network

DSTC2 dialogue data consists of a number of calls
(conversations) which in turn are built out of a se-
quence of turn pairs. Each turn pair consists of
the user utterance itself, and a system response —
referred to as the machine act.

User utterances are sequences of words (to-
kens); thus we use a bidirectional LSTM architec-
ture (Hochreiter and Schmidhuber, 1997) to gen-
erate an initial representation of the whole word
sequence in a turn (see Figure 2). This utterance
LSTM is fed using a word embedding layer that is
trained directly on our data; empirically we found
this to provide us with better results than using a
public pre-trained word embedding component.

Machine acts are provided in a semantic rep-
resentation format, therefore we first parse these
into vector representations following the approach
outlined in the Word-based Dialogue state tracker
(Henderson et al., 2014b). These machine act
vectors are high-dimensional one-hot encodings;
therefore we find it useful to feed these through an
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<Utterance> | want  Chinese  food
Forward
LSTM
+ u
Backward L
LSTM

Figure 2: The bidirectional LSTM architecture to en-
code utterances. @ denotes the concatenation opera-
tion.

encoder to produce a reduced distributed represen-
tation (see Figure 3).

<Machine acts>

" 300
" 900

2100

Figure 3: The encoder with two fully connected layers
to reduce the dimensionality of machine act vectors.

We concatenate the encoded machine act vector
with the output vector of the bi-directional utter-
ance encoder to form a dialogue turn representa-
tion vector.

In order to handle dialogue input and dialogue
history, it is necessary to use a second LSTM layer
unrolling throughout individual turns to build up a
complete representation of the dialogue (see Fig-
ure 4). Therefore, we feed the input vector pro-
duced for each turn into the second full-dialogue
LSTM, and receive a fixed-size output vector —
this is thus a representation of the whole dialogue
up to the current turn. Hyper-parameters for the
two LSTM layers plus the embeddings layers used
to produce distributed representations of both user
utterances and machine acts are presented later in
Table 2.

While it is possible for us to feed the output of
the second LSTM layer directly as input to an en-
ergy layer and perform training, this approach is
sub-optimal. As noted by Belanger and McCallum



Turn 0 Turn 1 Turn 2
<Machine acts>
Encoder ——> Mg my mp
Bi-LSTM —> Ug up up

T
wterce> | 1 1

LSTM > LSTM > LSTM
ho hy hz

Figure 4: The deep LSTM architecture to transform di-
alogue input into fixed-size vector representations.

(2016), the feature network should ideally be pre-
trained to improve the quality of features. There-
fore we pre-train our feature network by plugging
it into a multi-task style learning architecture for
dialogue state tracking in the style of that proposed
by Trinh et al. (2018). Specifically, to complete
pre-training the outputs of the second LSTM are
fed to a set of three softmax outputs that affect
three independent multinomial targets. Optimisa-
tion with backpropagation is then used to train the
network in the normal way. When used as input
to the energy network, the final layer consisting
of a set of three softmax operations are discarded
and instead the LSTM outputs are taken to be the
output of the feature network, i.e., F'(X).

The above approach has the advantage that the
feature network’s output vectors F'(X), i.e., the
outputs of the turn based LSTM, are already well
aligned to producing candidate target representa-
tions Y — although they are not actual candidate
targets.

4.2 Energy Function

The energy function is implemented on top of the
feature network to assign the scalar energy values
to combinations of dialogue input and output vari-
ables. It should be noted though that the energy
function in the literature is usually defined in terms
of X and Y, but, for the sake of clarity, we will de-
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scribe it in terms of Y and F'(X), our pre-trained
feature representation.

We build our model based around that pro-
posed for the Structured Prediction Energy Net-
work (SPEN) model (Belanger and McCallum,
2016). In this approach the energy function is the
summation of individual Local energy and Global
energy terms:

£ = Elocal(F(X)7 Y) + Eglobal(Y) (3)

Local energy is computed between input and
output (label) variables.

L
Eoeat(F(X),Y) =Y yiW, ' F(X) 4
=1

where W; is a vector for each label, and y; € Y is
the i*" label in the label set.

Global energy meanwhile captures the relation-
ship between labels in the set of output variables
independently of the input features. It is also
called Label energy and is given below:

Egiopat(Y) = Wy tanh(WgiY) — (5)
where all weights W, Wy, and W are parame-
ters that are learned during the training process.

4.3 Loss Function

There are several options for designing the loss
function for use in energy-based modelling. In
our architecture, we use a loss function based on
that proposed for the end-to-end SPEN model (Be-
langer et al., 2017). This is given as follows:

1 & 1

L==Y — Ly

(6)
where T' is the number of iterations in the in-
ference process, t is an iterative variable running
through the inference loop, and L(y:,y*) is the
loss function between the predicted output and the
target labels.

The motivation for this loss function is that it
measures the quality of every generated prediction
L(y, y*) in the inference loop, and encourages the
Energy function to produce good quality predic-

tion by including the coefficient for each iteration
1

T—t+1°
Although the end prediction yr is our desired

output, it is not advised to only calculate loss value
of this output. If doing so, the model can possibly




generate the output only at the last inference it-
eration rather than moving smoothly towards the
output in the loop.

Since we define the dialogue state tracking task
as a multilabel classification task, we use the cross
entropy loss for the formula L(y;, y*).

5 Experiments

In this section we provide details of the dataset,
hyper-parameter selection, and validation results.
Test results are presented in the next section.

We train our models with the training set and
use the development set to select the best trained
parameters. Following this, we run our models
with the test set and report those results.

For the food type, price range, and area slots,
we merge all three labels into a single multi-label
classification task for the sake of the energy-based
calculations. In other words we sacrifice the do-
main constraint that one and only variable can be
active individually for each of our slots and instead
look for complete global configurations. This is
necessary to allow a more elegant integration with
the energy-based mechanisms we introduced in
the previous sections. In practice our model still
(mostly) learns that we need one and only one slot
for each of the food, price range, and area related
subspace of our target variable.

The model performance is evaluated and re-
ported with the accuracy metric, which is one of
the feature metrics for the DSTC2.

5.1 Model hyper-parameters

As indicated earlier, we developed a multi-task
deep learning state tracker to pre-train the fea-
ture network which is subsequently supplied to the
energy-based network. This network in practice
also serves as a valid benchmark against which
we can compare the results of our energy-based
model.

This multi-task learning network consists of our
feature network (section 4.1) leading into three
classifiers for the three informable slots. These
three classifiers are implemented with softmax
output activation function as tracking each slot by
itself is a multinomial classification task. We train
all parameters of this system end-to-end with a
cross entropy loss function and use the Adam op-
timizer.

The energy-based system is trained with the
best set of pre-trained parameters from the multi-
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task learning-based system having reviewed its
performance on the DSTC2 development set. As
we combine the labels of informable slots, the
task then becomes a multilabel classification task.
Therefore we use a sigmoid activation function for
the output of the energy-based system to produce
predictions rather than using three softmax func-
tions as used in the multi-task network above.

The detail of the selected hyper parameters are
presented in the Table 2. All hyper parameters
are chosen through a strict selection based on the
experiments on DSTC?2 training and development
sets. We developed our energy-based model in
TensorFlow (TF) 1.13 (Abadi et al., 2015). As
is the case with the multi-task system, we apply
the cross entropy loss function and the Adam opti-
mizer (Kingma and Ba, 2015) to train the energy-
based network.

Hyper parameter Value
Feature network

Machine acts encoded size 300
Encoder output activation tanh
Word embedding size 300
LSTM number of units 128
LSTM drop out 0.2
LSTM output activation tanh
Inference process

Number of iterations 50
Initial learning rates 0.001
Non-linearity function tanh
Learning process

Loss function Cross entropy
Optimizer Adam
Learning rate 0.001

Maximal global gradient norm 5.0

Table 2: Basic hyper parameters used in experiments
constructing the energy-based dialogue state tracker.

5.2 Validation results

During the development phase we carry the evalu-
ation of our multi-task learning-based and energy-
based models against the DSTC?2 development set
in order to find the best set of parameters. We
report on both a mean accuracy produced with
Tensorflow directly from our data, and the Joint
Goals accuracy produced by the toolset provided
for the DSTC2 dataset (Henderson et al., 2013).
We present the validation results in Table 3.

In the validation results we observe that ap-



Model TF Acc. DSTC2 Acc.
Multi-task 0.719 0.692
Energy-based 0.759 0.715
DSTC?2 Baseline 0.623

Table 3: Model performances on the Joint Goals task
of DSTC2 development set.

plying the energy network on top of deep learn-
ing feature network improves the accuracy on the
main tracking task by a margin up to 4%. We also
see that there is a big gap between raw accuracy
during the training process and external DSTC2
joint goal accuracy results when running evalua-
tion on the output track file. This can be explained
by a number of factors, including our exclusion
of one of the informable slots from the DST task,
that brings the accuracy on the DSTC2 develop-
ment set down by nearly 1%, and the fact that
the raw accuracy metric is carried on mini-batches
while the DSTC2 metric evaluates the output of
the whole dataset. Despite the differences, it is
clear that the overall indicative result indicates a
strong improvement with the application of the en-
ergy network.

6 Results & Discussions

We selected the best fitting set of hyper-parameters
and the highest accuracy checkpoint from valida-
tion for use on the test set. We report our results
against the DSTC2 baseline and other state-of-the-
art trackers (see Table 4). We choose reference di-
alogue state trackers that are related to our work in
different aspects such as their investigation of vari-
able dependencies or because the network archi-
tecture is similar to or inspired that which we use.
The evaluation metric used on test results is the
accuracy provided by the DSTC2 reference evalu-
ation system since this is the same metric used by
the published solutions.

Similar to the development set, the energy-
based model outperforms the multi-task deep
learning tracker by a large margin. The ob-
served improvement can only be achieved due
to the energy function and inference process of
the energy-based learning approach. Our multi-
task learning-based tracker is developed with a
straight-forward recurrent neural networks (RNN)
architecture. The multi-task model is trained to
track all three DSTC2 informable slots at the same
time, but it does not really tackle the relationships
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Model Accuracy
Hybrid Tracker 0.796
Word-based Tracker 0.768
EncDec Framework 0.730
MTL Model 0.728
CRF Tracker 0.601
Our work

Energy-based Tracker 0.749
Multi-task Tracker 0.720
DSTC2 Baseline 0.719

Table 4: The performances of Dialogue State Trackers
on the Joint Goals task of DSTC2 test set.

between them. On the other hand, the energy-
based network includes the possible dependencies
of these slots by using an energy function over all
slot labels and pre-trained features.

As mentioned above there exist Dialogue State
Trackers that also tackle the relationships between
variables such as EncDec Framework (Platek
et al.,, 2016), MTL-based model (Trinh et al.,
2018), and Conditional Random Field (CRF)
tracker (Kim and Banchs, 2014). When comparing
our energy-based model with those, we observe
that our work achieves higher accuracy than those
for the DSTC2 test set. Two out of three track-
ers, namely the MTL-based model and EncDec
Framework, try to track Dialogue States within
the incremental dialogue context, that limited their
performances in general. Our work does not in-
clude the incrementality phenomenon. Kim and
Banchs (2014) manually define input features in
their work, that do not perform well. In our work
we set up the model to learn these features auto-
matically, and see improved results.

Among the state-of-the-art DSTC2 trackers, the
Hybrid model (Vodolan et al., 2015, 2017) is the
most similar in architecture to our work. Both ap-
proaches use a deep learning model as a feature
network. The difference between their and our
trackers lies in the algorithms applied on top of the
feature network. For the hybrid tracker the authors
apply a set of manual rule-based differentiable cal-
culations to predict the dialogue states, while in
our work we implement an energy network, that is
also deep learning-based. The Word-based tracker
(Henderson et al., 2014b) is a fully RNN-based
model, that is notable for its high performance and
the feature extraction technique. Vodolan et al.
(2017) as well as our work adopts this technique



to extract features from dialogue input.

6.1 Variable Associations Analysis

As observed above, the energy-based system per-
forms better than the multi-task model in overall
score of accuracy. However, the accuracy metric
does not provide any extra information in terms
of variable associations that the energy-based ap-
proach takes advantage of. Therefore, we per-
formed further analysis on the results that our
trackers produced for DSTC2 test set to compare
our predictions to those of the DSTC2 baseline
system. The analysis is conducted in a similar
fashion to that presented in section 2.2, and is pre-
sented in Table 5.

food-price food-area price-area
Testset  0.609 0.658 0.428
Our work
Energy  0.577 0.659 0.428
MTL 0.523 0.687 0.447
Baseline 0.497 0.657 0.389

Table 5: Result analysis of variable dependencies on
the DSTC?2 test set. The analysis is reported using the
¢ coefficient values for each informable slot pair. In the
table, the first block is variable dependencies in labels
of the test set, while the second block is variable de-
pendencies detected by our energy-based (Energy) and
multi-task (MTL) trackers, and the last block is the re-
sult of the best DSTC2 baseline system.

The analysis result demonstrates that our
energy-based system is capable of tackling the
presence of variable dependencies in DSTC2 test
set. The energy-based method reflects the re-
lationships of two informable slot pairs, food —
area and price range — area, and produces a very
close relationship for the other pair, food — price
range. On the other hand, the multi-task learning
approach manages to capture some dependencies
that is shown in the result with bigger margins for
all variable pairs.

Overall both the deep learning-based methods
outperform the best DSTC2 rule-based baseline
system in comparing variable dependencies in the
tracking process for at least two out of three in-
formable slot pairs of the task.

7 Conclusion

In this paper we presented an energy-based ap-
proach to Dialogue State Tracking task that im-
proves the overall performance of a basic deep

learning-based model. Energy-based Learning is
notably good at structured prediction that we argue
applies to the DST task. The results of our work
strengthen the hypothesis that dependencies be-
tween variables within the dialogue context have
an impact on dialogue state tracking performance.
To our knowledge this is the first attempt to ap-
ply energy-based learning in a dialogue processing
task. Though our results do not in themselves im-
prove on the state of the art, the difference relative
to a multi-task deep learning model is significant
enough to indicate that the method could lead to
improvements on the state of the art if combined
with the state of the art. Beyond that combina-
tion with hybrid state-of-the-art models, there is
other room for improvement. Our current plans in-
cludes the investigation of multivariate dependen-
cies in dialogue processing with a larger domain
and cross domains. We also believe that it is good
to conduct an extensive analysis on variable de-
pendencies in data and performances of different
architectures.
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A Appendices

A.1 Dataset Analysis

We conduct a small analysis on the DSTC2 dataset
to reason why we would like to choose only three
out of four informable slots to track. In the anal-
ysis we count how often the slots appear in labels
with a value, i.e. not none, and how often those
slots change their values during the conversations.

Slot appearance (%)

Food Price Area Name

Value is not None

dstc2_train  75.06 61.70 72.16 0.37
dstc2_.dev 7270 6248 70.11 0.86
dstc2_test 87.01 63.82 73.25 0.51
Value is changed

dstc2_train 17.12 10.10 11.50 0.07
dstc2_.dev  15.56 9.23 10.24 0.20
dstc2_test 16.13 942  10.50 0.09

Table 6: The analysis of Informable slot appearances
in DSTC2 dataset. The numbers are reported in the per-
cent format (%) over the number of turns in the dataset.

Among DSTC?2 informable slots, the slot Name
rarely appears. That means the datset does not
provide enough samples for training Deep Learn-
ing models to classify this slot. In the result,
this slot does not affect the Joint Goals tracking
performance, as in the DSTC2 test set predicting
Name = none gives 99.5% accuracy.

A.2 Chi-square Test

Chi-square test is a significant test for association
between two variables. The task and algorithm are
presented as follow.
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Task Given a contingency table (table of counts)
of two variables A and B. Let P(4;) and P(B;)
are probability of appearance in the population of
the categories A; and B;. Test the relationship be-
tween these two variables (dependent or indepen-
dent).

Step 1 Define hypotheses of the task.

Hy: The two variables are independent

P(AiN B;j) = P(A)P(B;) (1)
H;: The two variables are dependent
P(AiN B;) # P(A)P(B;)  (8)

Step 2 Calculate expected frequency of
{A;, B;} based on the input

Eij = P(4;) « P(Bj) * N 9)
where NV is the population.
Step 3 Calculate the chi-square error
L E-)2
=3y (B (10)
P g ij

where V is degree of freedom, O;; and Ej; are
observed and expected frequencies subsequently.

Step 4 We reject Hy if the computed test statis-
tics X3 is high and the significance coefficient
p < 0.05.

There exist several measurements of associa-
tion strength between variables directly related to
the chi-square test statistics. There measures are
scaled between 0 and 1 indicating that 1 is the
perfect relationship and 0 is no relationship be-
tween variables. We choose ¢ coefficient to report
the level of dependencies between slots in DSTC2

data as in section 2.2.
X2
N

where X2 is the chi-square statistic value, and N
is the number of samples in dataset.

) (1)
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