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Abstract

In this paper, we systematically assess the
ability of standard recurrent networks to per-
form dynamic counting and to encode hierar-
chical representations. All the neural models
in our experiments are designed to be small-
sized networks both to prevent them from
memorizing the training sets and to visual-
ize and interpret their behaviour at test time.
Our results demonstrate that the Long Short-
Term Memory (LSTM) networks can learn to
recognize the well-balanced parenthesis lan-
guage (Dyck-1) and the shuffles of multiple
Dyck-1 languages, each defined over different
parenthesis-pairs, by emulating simple real-
time k-counter machines. To the best of our
knowledge, this work is the first study to intro-
duce the shuffle languages to analyze the com-
putational power of neural networks. We also
show that a single-layer LSTM with only one
hidden unit is practically sufficient for recog-
nizing the Dyck-1 language. However, none
of our recurrent networks was able to yield
a good performance on the Dyck-2 language
learning task, which requires a model to have
a stack-like mechanism for recognition.

1 Introduction

Recurrent Neural Networks (RNNs) are known to
capture long-distance and complex dependencies
within sequential data. In recent years, RNN-
based architectures have emerged as a power-
ful and effective architecture choice for language
modeling (Mikolov et al., 2010). When equipped
with infinite precision and rational state weights,
RNN models are known to be theoretically Turing-
complete (Siegelmann and Sontag, 1995). How-
ever, there still remain some fundamental ques-
tions regarding the practical computational ex-
pressivity of RNNs with finite precision.

Weiss et al. (2018) have recently demonstrated
that Long Short-Term Memory (LSTM) models

(Hochreiter and Schmidhuber, 1997), a popular
variant of RNNs, can, theoretically, emulate a sim-
ple real-time k-counter machine, which can be de-
scribed as a finite state controller with k separate
counters, each containing integer values and capa-
ble of manipulating their content by adding ±1 or
0 at each time step (Fischer et al., 1968). The au-
thors further tested their theoretical result by train-
ing the LSTM networks to learn anbn and anbncn.
Their examination of the cell state dynamics of the
models exhibited the existence of simple count-
ing mechanisms in the cell states. Nonetheless,
these two formal languages can be captured by
a particularly simple form of automaton, a deter-
ministic one-turn two-counter automaton (Gins-
burg and Spanier, 1966). Hence, there is still an
open question of whether the LSTMs can empiri-
cally learn to emulate more general finite-state au-
tomata equipped with multiple counters capable of
performing an arbitrary number of turns.

In the present paper, we answer this question
in the affirmative. We assess the empirical per-
formance of three types of recurrent networks—
Elman-RNNs (or RNNs, in short), LSTMs, and
Gated Recurrent Units (GRUs)—to perform dy-
namic counting by training them to learn the
Dyck-1 language. Our results demonstrate that
the LSTMs with only a single hidden unit perform
with perfect accuracy on the Dyck-1 learning task,
and successfully generalize far beyond the training
set. Furthermore, we show that the LSTMs can
learn the shuffles of multiple Dyck-1 languages,
defined over disjoint parenthesis-pairs, which re-
quire the emulation of multiple-counter arbitrary-
turn machines. Our results corroborate the theo-
retical findings of Weiss et al. (2018), while ex-
tending their empirical observations. On the other
hand, when trained to learn the Dyck-2 language,
which is a strictly context-free language, all our
recurrent models failed to learn the language.
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2 Preliminaries

We start by defining several subclasses of de-
terministic pushdown automata (DPA). Following
Valiant and Paterson (1975), we define a deter-
ministic one-counter automaton (DCA1) to be a
DPA with a stack alphabet consisting of only one
symbol. Traditionally, this construction allows ε-
moves (that is, executing actions on the stack with-
out the observance of any inputs), but we restrict
our attention to simple DCA1s without ε-moves in
the rest of this paper. Similarly, we call a DPA that
contains k separate stacks, with each stack using
only one stack symbol, a deterministic k-counter
automaton (DCAk).1

One can impose a further restriction on the di-
rection of stack movement of a DPA. This no-
tion leads to the definition of a deterministic n-
turn pushdown automaton (or n-turn DPA, in
short) and is well-studied by Ginsburg and Spanier
(1966) and Valiant (1974): A DPA is said to be
an n-turn DPA if the total number of direction
changes in the stack movement of the DPA is at
most n for each stack. Note that a one-turn DCA1

can recognize anbn (Valiant, 1973), whereas a
one-turn DCA2 can recognize anbncn. We say that
a DCAk with no limit on the number of turns can
perform dynamic counting.

3 Related Work

Formal languages have long been used to demon-
strate the computational power of neural net-
works. Early studies (Steijvers, 1996; Tonkes
and Wiles, 1997; Rodriguez and Wiles, 1998;
Bodén et al., 1999; Bodén and Wiles, 2000;
Rodriguez, 2001) employed Elman-style RNNs
(Elman, 1990) to recognize simple context-free
and context-sensitive languages, such as anbn,
anbncn, and anbncbmam. Most of these architec-
tures, however, suffered from the vanishing gradi-
ent problem (Hochreiter, 1998) and could not gen-
eralize far beyond their training sets.

Using LSTMs (Hochreiter and Schmidhuber,
1997), Gers and Schmidhuber (2001) showed that
their models could learn two strictly context-free
languages and one strictly context-sensitive lan-
guage by effectively using their gating mecha-
nisms. In contrast, Das et al. (1992) proposed

1Weiss et al. (2018) call such a construction a k-counter
machine. Previous papers provide a detailed investigation of
the complexity of counting machines (Minsky, 1967; Fischer
et al., 1968; Valiant and Paterson, 1975; Valiant, 1975).

an RNN model with an external stack memory,
named Recurrent Neural Network Pushdown Au-
tomaton (NNPDA), to learn basic context-free
grammars.

More recently, Joulin and Mikolov (2015) in-
troduced simple RNN models equipped with dif-
ferentiable stack modules, called Stack-RNN, to
infer algorithmic patterns, and showed that their
model could successfully learn various formal lan-
guages, in particular anbn, anbncn, anbncndn,
anb2n. Inspired by the early model design of
NNPDAs, Grefenstette et al. (2015) also proposed
memory-augmented recurrent networks (Neural
Stacks, Queues, and DeQues), which are RNNs
equipped with unbounded differentiable memory
modules, to perform sequence-to-sequence trans-
duction tasks that require specific data structures.

Deleu and Dureau (2016) investigated the abil-
ity of Neural Turing Machines (NTMs; Graves
et al. (2014)) to capture long-distance dependen-
cies in the Dyck-1 language. Their empirical
findings demonstrated that an NTM can recog-
nize this language by emulating a DPA. Simi-
larly, Sennhauser and Berwick (2018), Bernardy
(2018), and Hao et al. (2018) conducted experi-
ments on the Dyck languages to explore whether
recurrent networks can learn nested structures.
These studies assessed the performance of their re-
current models to predict the next possible paren-
thesis, assuming that it is a closing parenthesis.2

In fact, Bernardy (2018) used a purpose-designed
architecture, called RUSS, which contains recur-
rent units with stack-like states, to perform the
closing-parenthesis-completion task. Though the
RUSS model had no trouble generalizing to longer
and deeper sequences, as the author mentions, the
specificity of the architecture disqualifies it as a
practical model choice for natural language mod-
eling tasks. Additionally, Skachkova et al. (2018)
trained recurrent networks to predict the last ap-
propriate closing parenthesis, given a Dyck-2 se-
quence without its last symbol. They showed that
their GRU and LSTM models performed with al-
most full accuracy on this parenthesis-completion
task, but their task does not illustrate that these
RNN models can recognize the Dyck language.

Most recently, Weiss et al. (2018) and Suz-
gun et al. (2019) showed that the LSTM networks
can develop natural counting mechanisms to rec-

2Their approach is slightly different than ours in the sense
that we always try to predict the set of all the possible opening
and closing parentheses at each time step.
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ognize simple context-free and context-sensitive
languages, particularly anbn, anbncn, anbncndn.
Their examination of the cell states of the LSTMs
revealed that the models learned to emulate sim-
ple one- and two-turn counters to recognize these
formal languages, but the authors did not conduct
any experiments on tasks that require counters to
perform arbitrary number of turns.

4 Models

All the models in this paper are recurrent neural
architectures and known to capture long-distance
relationships in sequential data. We would like to
compare and contrast their ability to perform dy-
namic counting to recognize simple counting lan-
guages. We further investigate whether they can
learn the Dyck-2 language by emulating a DPA.

A simple RNN architecture (Elman, 1990) is a
recurrent model that takes an input xt and a pre-
vious hidden state representation ht−1 to produce
the next hidden state representation ht, that is:

ht = f(Wihxt + bih + Whhht−1 + bhh)

yt = σ(Wyht)

where xt ∈ RD is the input, ht ∈ RH the hidden
state, yt ∈ RD the output at time t, Wy ∈ RD×H

the linear output layer, f an activation function3

and σ an elementwise logistic sigmoid function.
In theory, it is known that RNNs with infinite

precision and rational state weights are computa-
tionally universal models (Siegelmann and Son-
tag, 1995). However, in practice, the exact com-
putational power of RNNs with finite precision is
still unknown. Empirically, RNNs suffer from the
vanishing or exploding gradient problem, as the
length of the input sequences grow (Hochreiter,
1998). To address this issue, different neural archi-
tectures have been proposed over the years. Here,
we focus on two popular RNN variants with simi-
lar gating mechanism, namely LSTMs and GRUs.

The LSTM model was introduced by Hochreiter
and Schmidhuber (1997) to capture long-distance
dependencies more accurately than simple RNNs.
It contains additional gating components to facili-
tate the flow of gradients during back-propagation.

The GRU model was proposed by Cho et al.
(2014) as an alternative to LSTM. GRUs are simi-
lar to LSTMs in their design, but do not contain an
additional memory unit.

3In our experiments, we used the tanh function.

5 Experimental Setup
To evaluate the capability of RNN-based architec-
tures to perform dynamic counting and to encode
hierarchical representations, we conducted experi-
ments on four different synthetic sequence predic-
tion tasks. Each task was designed to highlight
some particular feature of recurrent networks. All
the tasks were formulated as supervised learning
problems with discrete k-hot targets and mean-
squared-error loss under the sequence prediction
framework, defined next. We repeated each exper-
iment ten times but used the same random seed
across each run for each of the tasks to ensure
comparability of RNN, GRU, and LSTM models.

5.1 The Sequence Prediction Task
Following Gers and Schmidhuber (2001), we
trained the models as follows: Given a sequence in
the language, we presented one character at each
time step to the network and trained the network
to predict the set of next possible characters in the
language, based on the current input character and
the prior hidden state. We used a one-hot represen-
tation to encode the inputs and a k-hot representa-
tion to encode the outputs. In all the experiments,
the objective was to minimize the mean-squared
error of the sequence predictions. We used an out-
put threshold criterion of 0.5 for the sigmoid layer
to indicate which characters were predicted by the
model. Finally, we turned this sequence predic-
tion task into a sequence classification task by ac-
cepting a sequence if the model predicted all of its
output values correctly and rejecting it otherwise.

5.2 Training Details
Given the nature of the four languages that we
will describe shortly, if recurrent models can learn
them, then they should be able to do so with rea-
sonably few hidden units and without the employ-
ment of any embedding layer or the dropout opera-
tion.4 To that end, all the recurrent models used in
our experiments were single-layer networks con-
taining less than 10 hidden units. The number of
hidden units that the networks contained for the
Dyck-1, Dyck-2, Shuffle-2, and Shuffle-6 experi-
ments were 3, 4, 4, and 8, respectively. (In Sec-
tion 7, we describe further experiments with as
few as a single hidden unit.) In all our experi-
ments, we used the Adam optimizer (Kingma and
Ba, 2014) with hyperparameter α = 0.001.

4Some previous studies used embeddings (Sennhauser
and Berwick, 2018; Bernardy, 2018) and the dropout oper-
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Sample ( ( ) ) ( ) ( ) ( [ ( ) ] ) [ ( [ ] ) ] [ ]

Input ( ( ) ) ( ) ( ) ( [ ( ) ] ) [ ( [ ] ) ] [ ]
Output 1 1 1 0 1 0 1 0 1 2 1 2 1 0 2 1 2 1 2 0 2 0

Table 1: Example input-output pairs for the Dyck-1 (left) and Dyck-2 (right) languages.

Sample ( [ ( ) ) ] [ ( [ ] ] ) [ { ( ) } ] 〈 d e 〉

Input ( [ ( ) ) ] [ ( [ ] ] ) [ { ( ) } ] 〈 d e 〉
Output 1 3 3 3 2 0 2 3 3 3 1 0 2 6 7 6 2 0 8 24 8 0

Table 2: Example input-output pairs for the Shuffle-2 (left) and Shuffle-6 (right) languages.

6 Experiments

The first language, Dyck-1 (or D1), consists of
well-balanced sequences of opening and closing
parentheses. Recall that a neural network need not
be equipped with a stack-like mechanism to recog-
nize the Dyck-1 language under the sequence pre-
diction paradigm; a single counter DCA1 is suffi-
cient. However, dynamic counting is required to
capture the language.

The next two languages are the shuffles of two
and six Dyck-1 languages, each defined over dis-
joint parentheses; we refer to these two languages
as Shuffle-2 and Shuffle-6, respectively. These two
tasks are formulated to investigate whether recur-
rent networks can emulate deterministic k-counter
automata by performing dynamic counting, sepa-
rately counting the number of opening and closing
parentheses for each of the distinct parenthesis-
pairs and predicting the closing parentheses for the
pairs for which the counters are non-zero, in addi-
tion to the opening parentheses. In contrast, the
final language, Dyck-2, is a context-free language
which cannot be captured by a simple counting
mechanism; a model capable of recognizing the
Dyck-2 language must contain a stack-like com-
ponent (Sennhauser and Berwick, 2018).

Tables 1 and 2 provide example input-output
pairs for the four languages under the sequence-
prediction task. For purposes of presentation only,
we use a simple binary encoding of the output sets
to concisely represent the output. In all of the
languages we investigate in this paper, the open
parentheses are always allowable as next symbol;
we assign the set of open parentheses the number
0. Each closing parenthesis is assigned a different
power of 2: ) is assigned to 1, ] to 2, } to 4, 〉 to 8, e
to 16, and c to 32. (These latter closing parenthe-

ation (Bernardy, 2018) in their experiments.

ses are needed for the Shuffle-6 language below.)
The set of predicted symbols is then the sum of
the associated numbers. For instance, an output 3
represents the prediction of any of the open paren-
theses as well as ) and ].

We note that even though an input sequence
might appear in two different languages, it might
have different target representations. This obser-
vation is important especially when making com-
parisons between the Dyck-2 and the Shuffle-2
languages. For instance, the output sequence for
( [ ] ) in the Dyck-2 language is 1 2 1 0, whereas
the output sequence for ( [ ] ) in the Shuffle-2 lan-
guage is 1 3 1 0.

6.1 The Dyck-1 Language
The Dyck-1 language, or the well-balanced paren-
thesis language, arises naturally in enumerative
combinatorics, statistics, and formal language the-
ory. A sequence in the Dyck-1 language needs to
contain an equal number of opening and closing
parentheses, with the constraint that at each time
step the total number of opening parentheses must
be greater than or equal to the total number of clos-
ing parentheses so far. In other words, for a given
sequence s = s1 · · · s2n of length 2n in the Dyck-1
language over the alphabet Σ = {(, )}, if we have
a function f that assigns value +1 to ‘(’ and value
−1 to ‘)’, then we know that it is always true that∑j

i=1 f(si) ≥ 0 with strict equality when j = 2n,
for all j ∈ [1, . . . , 2n]. Therefore, a model with a
single unbounded counter can recognize this lan-
guage.

A probabilistic context-free grammar for the
Dyck-1 language can be written as follows:

S →


(S) with probability p
SS with probability q
ε with probability 1− (p+ q)

where 0 < p, q < 1 and (p+ q) < 1.
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Training Set Short Test Set Long Test Set
Task Model Min Max Med Min Max Med Min Max Med

Dyck-1 RNN 0.45 76.17 46.96 0.28 73.62 41.89 0.06 24.44 7.19
Dyck-1 GRU 99.37 100 100 99.34 100 100 67.68 95.58 84.38
Dyck-1 LSTM 100 100 100 100 100 100 99.98 100 100

Shuffle-2 RNN 33.68 87.77 58.16 29.42 86.48 55.37 0.54 25.58 2.75
Shuffle-2 GRU 99.73 100 99.97 99.62 99.98 99.93 83.70 95.18 93.12
Shuffle-2 LSTM 100 100 100 100 100 100 96.84 99.98 99.35

Shuffle-6 RNN 0.26 57.39 44.54 0.16 54.80 41.38 0 0.64 0.15
Shuffle-6 GRU 96.32 99.98 99.78 96.08 99.98 99.81 51.96 97.30 85.14
Shuffle-6 LSTM 99.68 100 100 99.74 100 100 82.92 99.72 98.14

Dyck-2 RNN 4.37 31.67 14.74 2.96 27.46 12.21 0 0.46 0.01
Dyck-2 GRU 7.78 53.34 28.71 5.38 49.06 25.08 0 1.56 0.05
Dyck-2 LSTM 19.76 52.13 35.82 16.58 48.24 31.29 0 1.46 0.20

Table 3: The performances of the RNN, GRU, and LSTM models on four language modeling tasks. Shuffle-2
denotes the shuffle of two Dyck-1 languages defined over different alphabets, and similarly Shuffle-6 denotes the
shuffle of six Dyck-1 languages defined over different alphabets. Min/Max/Median results were obtained from
10 different runs of each model with the same random seed across each run. We note that the LSTM models not
only outperformed the RNN and GRU models but also often achieved full accuracy on the short test set in all
the “counting” tasks. Nevertheless, even the LSTMs were not able to yield a good performance on the Dyck-2
language modeling task, which requires a stack-like mechanism.

Setting p = 1
2 and q = 1

4 , we generated
10, 000 distinct Dyck sequences, whose lengths
were bounded to [2, 50], for the training set. We
used two test sets: The “short” test set con-
tained 5, 000 distinct Dyck words defined in the
same length interval as the training set but distinct
from it. The “long” test set contained 5, 000 dis-
tinct Dyck words defined in the interval [52, 100].
Hence, there was no overlap between any of the
training and test sets.
Results: Table 3 lists the performances of the
RNN, GRU, and LSTM models on the Dyck-1 lan-
guage. First, we highlight that all the LSTM mod-
els obtained full accuracy on the training set and
short test set, whose sequences were bounded to
[2, 50], in all the ten trials. They were also able to
easily generalize to longer and deeper sequences
in the long test set: They obtained perfect accu-
racy in nine out of ten trials and 99.98% accuracy
(only 1 incorrect prediction) in the remaining trial.
These results exhibit that the LSTMs can indeed
perform unbounded dynamic counting.

The GRUs yielded an almost similar qualita-
tive performance on the training and first test sets;
however, they could not generalize well to longer
and deeper sequences. On the other hand, the
RNN models performed significantly worse than
the first two recurrent models, in terms of their

median accuracy rate. We note that similar empir-
ical observations about the performance-level dif-
ferences between the RNNs, GRUs, and LSTMs
for other simple formal languages were also re-
ported by Weiss et al. (2018) and Bernardy (2018).
6.2 The Shuffle-k Language
Next, we consider two shuffle languages, which
are both generated by the Dyck-1 language. Be-
fore describing each task in detail, let us first de-
fine the notion of shuffling formally. The shuffling
operation || : Σ∗ × Σ∗ → P(Σ∗) can be induc-
tively defined as follows:5

• u||ε = ε||u = {u}
• αu||βv = α(u||βv) ∪ β(αu||v)

for any α, β ∈ Σ and u, v ∈ Σ∗. For instance, the
shuffling of ab and cd would be:

ab||cd = {abcd, acbd, acdb, cabd, cadb, cdab}

There is a natural extension of the shuffling oper-
ation || to languages. The shuffle of two languages
L1 and L2, denoted L1||L2, is defined as the set of
all the possible interleavings of the elements of L1
and L2, respectively, that is:

L1||L2 =
⋃

u∈L1, v∈L2

u||v

5We abuse notation by allowing a string to stand for its
own singleton set.
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Given a language L, we define its self-shuffling
L||2 to be L||σ(L), where σ is an isomorphism on
the vocabulary of L to a disjoint vocabulary. More
generally, we define the k-self-shuffling

L||k =

{
{ε} if k = 0
L||σ(L||k−1) otherwise .

The Shuffle-2 Language: The first language is
D1||2, the shuffle ofD1 andD1, where the firstD1

is over the alphabet {(, )} and the second over the
alphabet {[, ]}. For instance, the sequence ( [ ) ] is
in D1||2 but not in D2, whereas ( ] [ ) is in neither
D1||2 nor D2. Note that D2 is a subset of D1||2,
but not the other way around.6

To generate the training and test corpora, we
used a probabilistic context-free grammar for the
Dyck-2 language, which we will describe shortly,
but considered correct target values for the se-
quences interpreted as per the Shuffle-2 language.
The training set contained 10, 000 distinct se-
quences of lengths in [2, 50]. As before, the short
test set had 5, 000 distinct samples defined over the
same length interval but disjoint from the training
set, and the long test set had 5, 000 distinct sam-
ples, whose lengths were bounded to [52, 100].

The Shuffle-6 Language: The second shuffle
language is D1||6, the shuffle of six Dyck-1 lan-
guages, each defined over different parenthesis-
pairs. Concretely, we used the following pairs:
( ), [ ], { }, 〈 〉, d e, b c. In theory, an automa-
ton with six separate unbounded-turn counters
(DCA6) can recognize this language. Hence,
we wanted to explore whether our recurrent net-
works can learn to emulate a dynamic-counting 6-
counter machine.

Figure 1: Length and maximum depth distributions of
training/test sets for an example Shuffle-6 experiment.

The training and two test corpora were gener-
ated in the same style as the previous sequence
prediction task; however, we included 30, 000
samples in the training set for this language, due

6On the other hand, we highlight once again that the target
sequences in D1||2 are often different from those in D2.

to the complexity of the language. Figure 1 shows
the length and maximum depth distributions of the
training and test sets for one of the Shuffle-6 ex-
periments.

Results: As shown shown in Table 3, the LSTM
models achieved a median accuracy of 100% on
the training and short test sets in both of the shuf-
fle language variants. Furthermore, they were able
to generalize well to longer and deeper sequences
in both shuffle languages, achieving an almost per-
fect median accuracy score on the long test set.
In contrast, the GRU models performed slightly
worse than the LSTM models on the training and
short test sets, but the GRUs did not yield the same
performance as the LSTMs on the long test set,
obtaining median scores of 93.12% and 85.14%
in the Shuffle-2 and Shuffle-6 languages, respec-
tively. Additionally, the simple RNN models al-
ways performed much worse than the GRU and
LSTM models and could not even learn the train-
ing sets in either of the shuffle languages. These
empirical findings show that the LSTM models
can successfully emulate a DCAk, a deterministic
(real-time) automaton with k-counters, each capa-
ble of performing an arbitrary number of turns.

6.3 The Dyck-2 Language
The generalized Dyck language, Dn, represents
the core of the notion of context-freeness by virtue
of the Characterization Theorem of Chomsky and
Schützenberger (1963), which provides a natural
way to characterize the CFL class:

Theorem 6.1. Any language in CFL can be repre-
sented as a homomorphic image of the intersection
of a Dyck languageDn and a regular languageR.

Furthermore, Dn can be reduced to D2 at the
expense of increasing the depth and length of the
original sequences in the former language.

Proposition 6.2. Dn is reducible to D2.

Proof. 7 Let Dn be the Dyck language with n
distinct pairs of parentheses. Let us further sup-
pose that p = {p1, p2, p3, . . . , pn} are the opening
parentheses and that p̄ = {p1, p2, p3, . . . , pn} are
their corresponding closing parentheses. We set
m = dlog2 ne and encode each opening and clos-
ing parenthesis in Dn with m bits using either (
and [ or ) and ]. Furthermore, we map empty string
to empty string.

7A similar reduction is also provided by Magniez et al.
(2014).
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Given an open parenthesis pi, we first determine
the m-digit binary representation of the number
i − 1 and then use ( to encode 0’s and [ to en-
code 1’s in this representation. Given a closing
parenthesis pi, we determine the m-digit binary
representation of the number i − 1, write the bi-
nary number in the reverse order, and then use )
to encode 0’s and ] to encode 1’s. That is,

Γ : p ∪ p̄ ∪ {ε} → Sm ∪ {ε}
pi 7→ Enc([ ◦ Bin(i− 1)

pi 7→ Enc)] ◦ Rev ◦ Bin(i− 1)

ε 7→ ε

where S = {(, [, ), ]}, the parentheses in D2. We
note that s = s1s2s3 · · · sk is in Dn if and only if
Γ(s) = Γ(s1)Γ(s2)Γ(s3) · · ·Γ(sk) is in D2, com-
pleting the reduction.

The previous proposition simply shows that we
can map an expression in Dn to an expression in
D2 at the expense of creating a deeper structure in
the latter language by a factor of m = dlog2 ne.
For instance, if an expression s in Dn has a maxi-
mum depth of k, then the expression generated by
the mapping above would have a maximum depth
of k ×m in D2.

Motivated by context-free-language universal-
ity (Sennhauser and Berwick, 2018), we therefore
experimented with the Dyck-2 language defined
over two types of parenthesis-pairs, namely {(, )}
and {[, ]}, as well. The recognition of the Dyck-2
language requires a model to possess a stack-like
component; real-time primitive counting does not
enable us to capture the Dyck-2 language. Hence,
if an RNN-based architecture learns to recognize
this language, we can conclude that RNNs with fi-
nite precision can actually learn complex deeply
nested representations.

A probabilistic context-free grammar for the
Dyck-2 language can be written as follows:

S →


(S) with probability p

2

[S] with probability p
2

SS with probability q
ε with probability 1− (p+ q)

where 0 < p, q < 1 and (p+ q) < 1.
Setting p = 1

2 and q = 1
4 , we generated 10, 000

distinct sequences, whose lengths were bounded
to [2, 50], for the training set. Again, we generated
5, 000 other distinct Dyck-2 sequences of lengths

defined in the interval [2, 50] for the first test set
and 5, 000 distinct sequences of lengths defined in
the interval [52, 100] for the second test set. As in
the previous case, there was no overlap between
the training and test sets.
Results: As shown in Table 3, we found that
none of our RNNs was able to emulate a DPA to
recognize the Dyck-2 language, a context-free lan-
guage that requires a model to contain a stack-like
mechanism for recognition. Overall, the LSTM
models had the best performances among all the
networks, but they still failed to employ a stack-
based strategy to learn the Dyck-2 language. Even
the best LSTM model could achieve only 48.24%
and 1.46% accuracy scores on the short and long
test sets, respectively.

7 Discussion and Analysis

7.1 Visualization of Hidden+Cell States
Our empirical results on the Dyck-1 and Shuffle
languages suggest that our LSTM models were
performing dynamic counting to recognize these
languages. In order to validate our hypothesis, we
visualized the hidden and cell states of some of
our LSTM models that achieved full accuracy on
the test sets.

Figure 2 illustrates that our LSTM is able to rec-
ognize the samples inD1||6 by emulating a DCA6.
In fact, the discrete even transitions in the cell state
dynamics of the model reveal that six out of eight
hidden units in the model are acting like separate
counters. In some cases, we further discovered
that certain units learned to count the length of the
input sequences. Such length counting behaviours
are also observed in machine translation (Shi et al.,
2016; Bau et al., 2019; Dalvi et al., 2019) when the
LSTMs are trained on a fixed-length training cor-
pus.8

On the other hand, Figure 3 provides visualiza-
tions of the hidden and cell state dynamics of one
of our single-layer LSTM models with four hid-
den units when the model was presented two se-
quences in the Dyck-2 language. Both sequences
have some noticeable patterns and were chosen to
explore whether the model behaves differently in
repeated (or similar) subsequences. It seems that
the LSTM model is trying to employ a complex
counting strategy to learn the Dyck-2 language but
failing to accomplish this task.

8The visualizations for the Dyck-1 and Shuffle-2 lan-
guages were qualitatively similar.
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Figure 2: Visualization of the cell state dynamics of one of the LSTM models trained to learn D1||6, the Shuffle-6
language. The solid lines show the values of the cell states of the six out of eight units in the model, whereas the
dashed lines depict the current depth of each distinct parenthesis-pair inD1||6. We highlight the striking parallelism
between the solid lines and the dashed-lines. Our visualizations confirm that the LSTM models employ a simple
counting mechanism to recognize the Shuffle languages.

7.2 LSTM with a Single Hidden Unit

In theory, a DCA1 should be able to easily rec-
ognize Dyck-1, the well-balanced parenthesis lan-
guage. Can an LSTM with one hidden unit learn
Dyck-1? Our empirical results (Figure 4) con-
firmed that LSTMs can indeed learn this language
by effectively using the single hidden unit to count
up the total number of left and right parentheses in
the sequence. Similarly, we found that an LSTM
with only two hidden units can recognize D1||2.

7.3 Predicting the Last Closing Parenthesis

Following Skachkova et al. (2018), we also trained
an LSTM model with four hidden units to learn to
predict the last closing parenthesis in the Dyck-2
language. The model learned the task in a cou-
ple of epochs and achieved perfect accuracy on the
training and test sets. However, our simple analy-
sis of the cell state dynamics of the LSTM in Fig-
ure 5 suggests that the model is doing some com-
plex form of counting to perform the desired task,
rather than learning the Dyck-2 language.

8 Conclusion

We investigated the ability of standard recurrent
networks to perform dynamic counting and to en-
code hierarchical representations, by considering
three simple counting languages and the Dyck-2
language. Our empirical results highlight the over-
all high-caliber performance of the LSTM mod-
els over the simple RNNs and GRUs, and further
inflect our understanding of the limitations and
strengths of these models.

9 Acknowledgement

The first author gratefully acknowledges the sup-
port of the Harvard College Research Program
(HCRP). The third author was supported by the
Harvard Mind, Brain, and Behavior Initiative.
The computations in this paper were run on the
Odyssey cluster supported by the FAS Division of
Science, Research Computing Group at Harvard
University.



52

Figure 3: Visualization of the hidden and cell state dynamics of one of the LSTMs trained to learn the Dyck-2
language. The time steps at which the model made incorrect predictions are marked with an apostrophe in the
horizontal axis. The plots on the left provide a demonstration of the periodic behaviour of the hidden and cell
states of the model for a long sequence. Similarly, the plots on the right provide the complex counting behaviour
of the model as it observes a nested sequence. We witnessed similar behaviours in our other models as well.

Figure 4: A single-layer LSTM with one hidden unit
learns the Dyck-1 language by counting up upon the
observance of ( and down upon the observance of ).

References

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In International Conference on
Learning Representations.

Jean-Philippe Bernardy. 2018. Can recurrent neural

Figure 5: The cell state dynamics of one of the LSTM
models trained to predict the last closing parenthesis.
Our LSTMs often achieved full accuracy on this task.

networks learn nested recursion? LiLT (Linguistic
Issues in Language Technology), 16(1).

Mikael Bodén and Janet Wiles. 2000. Context-free and
context-sensitive dynamics in recurrent neural net-
works. Connection Science, 12(3-4):197–210.

Mikael Bodén, Janet Wiles, Bradley Tonkes, and Alan
Blair. 1999. Learning to predict a context-free lan-



53

guage: Analysis of dynamics in recurrent hidden
units.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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