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Abstract
We analyse Recurrent Neural Networks
(RNNs) to understand the significance of
multiple LSTM layers. We argue that the
Weighted Finite-state Automata (WFA)
trained using a spectral learning algorithm
are helpful to analyse RNNs. Our results
suggest that multiple LSTM layers in RNNs
help learning distributed hidden states, but
have a smaller impact on the ability to learn
long-term dependencies. The analysis is based
on the empirical results, however relevant
theory (whenever possible) was discussed to
justify and support our conclusions.

1 Introduction

Sequence prediction is a problem that involves us-
ing historical sequence data (i.e. context) to pre-
dict the next symbol or symbols in the sequence.
Weighted Finite-state Automata (WFA) and Re-
current Neural Networks (RNNs) provide a gen-
eral framework for the representation of functions
that map strings (i.e. sequential data) to real num-
bers. Nondeterministic Weighted Finite-state Au-
tomata (WFA) map input words to real numbers
and are not guaranteed to be tractable (Avni and
Kupferman, 2015; Sharan et al., 2017). In gen-
eral, WFA use hidden states and learning is usually
done by the Expectation-Maximisation (EM) al-
gorithm, which is computationally expensive and
does not come with a guarantee of global optimal-
ity. Spectral learning algorithms for WFA (Balle
et al., 2014) provide an alternative to EM that
is both computationally efficient and statistically
consistent. On the other hand, RNNs are remark-
ably expressive models. Even a single-layer RNN
network has powerful sequence modelling capac-
ity. RNNs are also Turing complete and can rep-
resent any computable function (Siegelmann and
Sontag, 1991), but the theoretical analysis of even
a single-layer RNN is difficult.

Existing research shows that multilayer RNNs
are advantageous for efficient sequence modelling
(Zaremba et al., 2014; Jozefowicz et al., 2015).
However, it is hard to analyse such models theo-
retically. As a result, in spite of competitive em-
pirical results, it is not clear what kind of addi-
tional modelling power is gained by a deep archi-
tecture (i.e. more than one hidden layer in RNNs).
Stacking RNN layers (in space) is inspired by the
multilayer perceptron (MLP) and the hypothesis
Bengio et al. (2009) that multiple layers allow the
model to have greater complexity by incorporating
complex feature representations of each time step.
This allows each recurrent level to operate at a dif-
ferent time-scale. For the non-recurrent networks,
Bengio et al. (2009) hypothesise that a deep, hier-
archical model can be exponentially more efficient
at representing some functions than a shallow one.
Theoretical (Le Roux and Bengio, 2010; Delal-
leau and Bengio, 2011; Pascanu et al., 2013) and
empirical (Goodfellow et al., 2013; Hinton et al.,
2012) work on non-recurrent networks agrees with
the above hypothesis. Based on these results, Pas-
canu et al. (2014) assumed that the MLP-based
hypothesis proposed by Bengio et al. (2009) is
also true for the recurrent neural networks. The
earlier work attempted at capturing large context
and reducing the training time by using multilayer
RNNs. For example, El Hihi and Bengio (1996)
assumed that the layers increase the capacity of
learning the context by capturing the improved
long-term history, whereas Schmidhuber (2008)
argues that the stacked RNN requires less com-
putation per time-step and far fewer training se-
quences than a single-layer RNN.

Elman (1990) introduced the notion of ‘mem-
ory’ to capture non-fixed long-term contexts
through the recurrent layer. When stacking the
RNNs, the transition between the consecutive re-
current layers is still shallow (Pascanu et al.,
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2014). Thus, stacking the RNNs does not extend
the hypothesis of (Bengio et al., 2009) to the recur-
rent layer that is dedicated for long-term context
capture. The empirical results of Zaremba et al.
(2014); Jozefowicz et al. (2015) suggested that
multilayer RNNs improve sequence modelling.
We show empirical evidence that indicates that
a multilayer RNN does capture better context as
shown by El Hihi and Bengio (1996), but that is
achieved across stacked layers instead of the time
scale (i.e. instead of recurrent layer). Better learn-
ing depends on capturing the improved input rep-
resentation at each time step and capturing im-
proved long-term dependency from the previous
time-steps in a sequence. In this paper, we in-
vestigate RNN learning from the formal language
perspective using the WFA models, and we show
that adding more layers may not be sufficient if the
model has to deal with long-term dependencies.

WFA-based models are used for both theoreti-
cal studies and sequence prediction tasks includ-
ing language modelling (Buchsbaum et al., 1998).
Evaluating their performance on real and synthetic
data can help us to understand the model’s hidden
state relationship with the RNN layers. In the ex-
isting literature, stacking multiple RNN layers (in
space) is used to obtain improved accuracy on se-
quence prediction tasks, but this is done without
deeply-justified reasons of such choices. Our ex-
periments and analysis show that the hidden states
of a process can be modelled efficiently using mul-
tiple layers, but multiple layers may not be suffi-
cient to model long-term dependencies in sequen-
tial observations.

In this paper, we use two types of RNN models
(one is a single-layer and another is a two-layer
stacked RNN network) and a WFA. All methods
were evaluated on fifteen datasets to answer the
following question “what is the impact of multi-
ple RNN layers in sequence modelling?”. To an-
swer this question, we contrasted the impact of the
LSTM layers in RNNs with the rank (i.e. the num-
ber of hidden states) in the corresponding WFA
models.

2 Data

In this section we introduce the 15 datasets used
in the Sequence PredIction ChallengE (SPiCe) in
2016. The datasets consist of 8 synthetic (fully or
partially) and 7 real-world datasets. Among the
synthetic datasets, four are generated artificially

and four are partially synthetic based on real data.
Datasets are publicly available1 and descriptions
can be found in (Balle et al., 2017). Our number-
ing of datasets is consistent with SPiCe’16. The
synthetic datasets 1, 2, and 3 were artificially gen-
erated based on a Hidden Markov Model (HMM)
(Balle et al., 2017). HMM sequences were gen-
erated with n states and non-stationary transition
probabilities were obtained by partitioning the unit
interval [0,1) into n equal sub-intervals and letting
the states evolve as ht+1 = ht+Φ mod 1, for some
irrational number Φ. The emission probabilities
were sampled from a Dirichlet distribution. An-
other synthetic dataset, 12, consists of synthetic
data generated using the PAutomaC data gener-
ator (Verwer et al., 2014b). Partially synthetic
datasets 6 and 9 are based on software engineering
and come from the challenge RERS 2013 (Howar
et al., 2014). Partially synthetic datasets 14 and
15 contain synthetic data generated from two De-
terministic Finite State Automata learned using
the ALERGIA algorithm (Carrasco and Oncina,
1994) based on the NLP datasets 4 and 5, respec-
tively.

Real datasets 4 (English Verbs from Penn Tree-
bank), 5 (Character Language Modelling bench-
mark from Penn Treebank), and 8 (POS from An-
cora) all correspond to NLP problems from Penn
Treebank (Marcus et al., 1993a) and the Span-
ish Ancora corpus (Taulé et al., 2008). Dataset
11 (lemmalisation) was created from a lemma-
tised version of the Fickr-8k dataset (Hodosh et al.,
2013). Real dataset 13 (spelling correction) was
derived from a Twitter spelling correction corpus
(twi, 2010). Real datasets 7 and 10 are protein
families sequences taken from the Pfam database
(Finn et al., 2015).

3 Sequence Modelling and Evaluation

The Sequence PredictIction ChallengE (SPiCe)
(Balle et al., 2017) was an on-line competition to
predict the next element of a sequence. The com-
petition scored methods on their performance on
both real and synthetic data (see Sec. 2). Training
datasets consist of whole sequences and the aim is
to learn a model that allows the ranking of poten-
tial next symbols for a given test sequence (pre-
fix or context), that is, the most likely options for
a single next symbol. Once rankings for all pre-
fixes were submitted by the participants, the score

1http://spice.lif.univ-mrs.fr/data.php
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(NDCG5 explained below) of the submission was
computed. The score is a ranking metric based
on normalised discounted cumulative gain com-
puted from the ranking of 5 potential next sym-
bols starting from the most probable one. Suppose
the test set is made of prefixes y1, . . . , yM and the
distinct next symbols ranking submitted for yi is
(âi1, . . . , â

i
5) sorted from more likely to least likely.

The target probability distribution of possible next
symbols given the prefix yi, p(.|yi), was known to
the organisers. Thus, the exact measure for prefix
yi could be computed using the following equa-
tion:

NDCG5(âi1, . . . , â
i
5) =

∑5
k=1

p(âik|yi)
log2(k+1)∑5

k=1
pk

log2(k+1)

where p1 ≥ p2 ≥ . . . ≥ p5 are the top 5 values in
the distribution p(.|yi). More details on this eval-
uation can be found in (Balle et al., 2017).

4 WFA Models

WFA represent functions for mapping strings to
real numbers. WFA include as special instances
Deterministic Finite-state Automata (DFAs), hid-
den Markov models (HMMs), and predictive state
representations (PSRs).

Let Σ∗ denote the set of strings over a finite al-
phabet Σ and let λ be the empty word. A WFA
with k states is a tuple A = 〈a0, a∞, Aσ〉 where
a0, a∞ ∈ Rk are the initial and final weight vec-
tors respectively, and Aσ ∈ k× k is the transi-
tion matrix for each symbol σ ∈ Σ. A WFA
computes a function fA : Σ∗ → R defined for
each word x = x1x2 . . . xn ∈ Σ∗ by fA(x) =

ao
>Ax1Ax2 . . . Axna∞.
A WFAA with k states is minimal if its number

of states is minimal, i.e., any WFA B such that
fA = fB has at least k states. A function f :
Σ∗ → R is recognisable if it can be computed by
a WFA. In this case the rank of f is the number of
states of a minimal WFA computing f . Note that
this is the key reason why rank (i.e. the number of
hidden states) is an important parameter that we
exploit in this paper. If f is not recognisable, we
let rank(f ) =∞.

Approximating distributions over strings is a
hard learning problem. Learning WFA has expo-
nential computational complexity (Mohri, 2004).
The recent advancement in learning WFA is based
on spectral learning, which reduces the compu-

tation complexity of learning WFA (Balle et al.,
2014).

In this paper we use a Hankel matrix based
spectral learning algorithm for WFA. The basic
steps of the algorithm are as follows:

S1. Basis Selection: Choose a set of prefixes P
and suffixes S

S2. Build a Hankel matrix: The Hankel matrix
(Hf ∈ RΣ∗×Σ∗

) associated with a function
f : Σ∗ → R is a bi-infinite matrix . In prac-
tice, one deals with finite sub-blocks of the
Hankel matrix based on the chosen basis in
S1, thus B = (P, S) ⊂ Σ∗ × Σ∗. The cor-
responding sub-block of the Hankel matrix is
denoted by H ∈ R|P |×|S|. The entry H(p, s)
is the value of the target function on the se-
quence obtained by concatenating prefix p
with suffix s. Among all possible basis, we
are particularly interested in the ones with the
same rank as f . We say that a basis is com-
plete if rank(H) = rank(f) = rank(Hf ).

S3. Perform SVD on H = uσv>.

S4. Use the factorization F = uσ, B = v> and
H to recover the parameters of the minimal
WFA, following (Hsu et al., 2012, see Sec.
2.3).

The hyperparameters of the learning algorithm
(Balle et al., 2014) for retrieving the parameters of
the minimum WFA are the number of states n of
the target WFA and the basis (i.e. sets of P and
S). This n is also a rank of the n-dimensional re-
construction of the Hankel matrix when the best n
dimensions of its SVD are used.

We choose a basis that contains most fre-
quent elements (substrings) observed in the sam-
ple based on the work by Balle et al. (2012) as
this approach was found computationally efficient.
The rows and columns of the Hankel matrix corre-
spond to the substrings, and the cells of the Han-
kel matrix contain the frequencies of the corre-
sponding substrings. In this approach, the length
of these substrings along rows (nR) and along
column (nC) are also the hyperparameters of the
spectral learning algorithm for WFA (Balle et al.,
2014).

4.1 Tuning Hyperparameters
Similar to Larochelle et al. (2007), our tun-
ing method included a combination of multi-
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resolution search, coordinate ascent, and manual
search, with a significant utilisation of the last
method. On all datasets, our method first ini-
tialises nR and nC to 4 and n to 5. Note that
the actual number of rows (columns) in the Hankel
matrix is much larger than nR (nC). In the second
step, the algorithm starts the process of tuning the
number of states n because this was the most im-
portant hyperparameter in our preliminary experi-
ments. Random walk is used to select new values
of n with the step size being depended on the size
of the domain, i.e., the number of observations and
the number of sequences. Thus, when nR and nC
were kept constant, the value of nwas increased or
decreased randomly based on the score NDCG5

(Sec. 3), i.e., a form of coordinate ascent was per-
formed on n. After the highest score was achieved
by tuning n, n was frozen, and the algorithm used
the same randomised procedure to tune nR. Fi-
nally, the same procedure was executed to tune the
parameter nC.

On some problems, increasing n, nR and nC
to large values was not possible as the algorithm
became intractable.

5 Neural Models

Theoretically a single-layer RNN network should
be able to approximate any computable function.
However, it was observed recently that empirically
multilayer deep RNNs work better than shallower
(single layer) ones on some tasks, specifically on
natural language processing tasks. For instance,
Zaremba et al. (2014) used a stack of Long Short-
Term Memory (LSTM) layers for language mod-
elling and in (Sutskever et al., 2014) a 4-layer
deep architecture was crucial in achieving good
machine translation performance in an encoder-
decoder framework. Apart from considering the
number of layers as a hyperparameter, most recent
works do not explain the advantage of multilayer
RNNs. Moreover, the deep RNN language model
(Zaremba et al., 2014) is used by numerous other
models including Press and Wolf (2016); Gal and
Ghahramani (2016). This was also used as a base-
line in the exhaustive (over ten thousand different
RNN architectures) architecture search by Joze-
fowicz et al. (2015) in pursuit of a better architec-
ture, and they did not find architectures that were
significantly better than the baselines. Therefore,
a two-layer RNN is a strong baseline architecture
for certain sequence prediction tasks, especially

language modelling, where single-layer RNNs are
not so powerful.

In the SPiCe competition, there were three neu-
ral models explored by Shibata and Heinz (2017)
that achieved the winning accuracy. Among those
models, the basic model is a two-layer stacked
LSTM network. There is an all-connected non-
linear layer with a Rectified Linear Unit (ReLU)
activation function used on top of a stacked LSTM
(Fig. 1a). The two-layer LSTM stack was placed
on top of the embedding layer that is used to em-
bed each symbol xt of the sequence at position t.
The output layer consists of a softmax layer im-
plementing the softmax activation, which outputs
the network’s prediction of the next symbol of se-
quence yt = xt+1.

In this paper, we have simplified the basic ar-
chitecture in two ways. First, we removed the
fully-connected non-linear layer and introduced
dropout to all non-recurrent layers (Fig. 1b). Sec-
ond, we further simplified the model by using
just a single layer (Fig. 1c) with dropout at non-
recurrent layer. Dropout is an effective regular-
isation technique for deep neural networks (Hin-
ton et al., 2012). The motivation for removing the
all-connected layer is to reduce the number of pa-
rameters and the state-of-the-art sequence predic-
tion models (Zaremba et al., 2014) do not usually
have an all-connected non-linear layer on top of
the stacked LSTM. Stacked LSTMs are expres-
sive enough to capture most of regularities with-
out an additional all-connected non-linear layer.
The motivation for applying dropout to all non-
recurrent layers is to regularise the whole net-
works (Zaremba et al., 2014) instead of regular-
ising based on some particular layers (Shibata and
Heinz, 2017). We compare against a single-layer
LSTM in the results section.

Following Shibata and Heinz (2017) a ‘start’
symbol and an ‘end’ symbol were added to both
sides of each training sentence. Symbols are fed
into the model from the ‘start’ symbol.

5.1 Relevant Parameters and Parameter
Search

Neural models have more hyperparameters than
the other models (e.g. WFA). We used the hyper-
parameters from the baseline work (Shibata and
Heinz, 2017) with two major exceptions: we used
an LSTM network with one layer and two layers
(contrary to the baseline work, we removed fully
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Figure 1: Neural architectures for our experiments

connected layer as shown in Fig. 1b) and we ap-
plied the regularisation (i.e. dropout) differently
than the baseline study. We applied dropout to
regularise the whole network (except the recurrent
layer) instead of just the last two layers (in base-
line). The exact values of different parameters can
be found in Sec. 6.

6 Experiments

The hyperparameters (see Tab. 1) for the WFA
were tuned based on the approach described in
Sec. 4.1 to find the best results obtained in this pa-
per.

For the neural models, the weights were ini-
tialised with Gaussian samples, each of which has
zero mean and standard deviation

√
1

in size , where
in size is the dimension of input vectors. The
LSTM has 600 hidden nodes, the size of the em-
bedding layer was set to 100, and when a non-
linear layer is used between the LSTM and Soft-
max layers (for the baseline replication), the out-
put dimension was set to 300. These values were
set based on the baseline study (Shibata and Heinz,
2017), in which two hidden layer sizes (400 and
600) were used. In Shibata and Heinz (2017, Ta-
bles 1 and 2), hidden layer size did not have crit-

ical effect on the results. Considering SPiCe’16
datasets and the existing literature, 600 hidden
nodes make a large RNN network. We have used
two-layer and one-layer LSTM networks in our
experiments. The dropout rate was set to 0.5 for all
non-recurrent layers, which is known to be close
to optimal for a wide range of networks and tasks
(Srivastava et al., 2014).

Following the baseline study, for optimisation,
we used stochastic gradient descent (SGD) with
momentum of 0.9. The learning rate decreased
gradually from 0.1 to 0.001, where the number of
iterations is 45 and the mini-batch size is 128.

7 Results and Analysis

The main goal of our empirical investigation is to
show that correlating the impact of multiple layers
in RNN-based neural models with the number of
hidden states (quantified using a rank of the SVD)
in finite-state automata, we can increase the under-
standing of the deep neural networks. This way we
aim to explain the role of multiple RNN layers in
sequence modelling. In this discussion, we will
refer to Tab. 1 that reports the scores of the three
neural network models described in Sec. 5 and the
scores of the WFA models described in Sec. 4.
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Data WFA Neural Models (NN) RNN Improv.
# n nR nC WFA SPiCe NN RNN (2 Layers) RNN (1 Layer) Gain in score
1 4 5 5 0.8789 0.909 0.9180 0.8521 0.0391
2 6 5 5 0.8731 0.920 0.9210 0.9183 0.0479
3 5 10 3 0.8248 0.888 0.8938 0.8819 0.0690
4 500 5 5 0.5272 0.619 0.6131 0.6142 0.0918
5 450 5 5 0.5688 0.8100 0.8107 0.7988 0.2419
6 90 6 7 0.8096 0.863 0.8690 0.7815 0.0594
7 500 4 4 0.4474 0.736 0.7258 0.7176 0.2886
8 60 5 5 0.5426 0.645 0.6614 0.6521 0.1188
9 57 8 7 0.9324 0.962 0.9674 0.9546 0.0350

10 200 5 5 0.3623 0.574 0.5526 0.5604 0.2117
11 100 5 5 0.4147 0.520 0.5535 0.5412 0.1388
12 95 4 4 0.8113 0.799 0.8508 0.7116 0.0395
13 500 5 5 0.4990 0.592 0.6007 0.5357 0.1017
14 2 10 10 0.4649 0.350 0.3496 0.3616 -
15 3 6 6 0.2899 0.263 0.2655 0.2651 -

Table 1: The hyperparameters of WFA, the scores of WFA and neural models, and the score improvement by the
best neural model compared to WFA

Table 1 shows that the proposed one-layer neu-
ral network model has achieved competitive re-
sults compared with the two-layer stacked net-
work on many of the SPiCe datasets. The ad-
ditional layer in a two-layer model improved the
score most significantly on dataset 12, where the
score improved from 0.711 to 0.851 (0.14 units).
Another dataset where improvement was observed
was dataset 6 where the score improved by 0.088
units. On datasets 1 and 13, the improvements
were 0.065 and 0.065 units. In addition to those
bigger improvements, a two-layer stacked RNN
achieved slight improvement in score (≤ 0.02) on
datasets 2, 3, 5, 7, 8, 9, 10, and 11. Still, a one-
layer network did better than at least one of the
two-layer networks (i.e. SPiCe and the one pro-
posed in this paper) on datasets 4, 8, 10, and 11.
Overall, we can see that a one-layer RNN would
be a better choice for some of our datasets, al-
though using multiple layers leads to better predic-
tions on other datasets. This means that in order to
gain deeper insight into the behaviour of the meth-
ods, it is useful to investigate individual datasets
in detail and include WFA in our analysis. For this
reason, to shed some light on the impact of mul-
tiple layers in RNNs, we will analyse datasets 12
and 5 in the subsequent paragraphs. The reason
for this choice is that on dataset 12, the score im-
proved significantly using two layers, whereas on
dataset 5 a similar improvement was not observed.

Dataset 12 and High Rank The synthetic
dataset 12 was the biggest and arguably the most
challenging problem in SPiCe 2016. It was ini-
tially generated for another competition (PAu-
tomaC) using the PAutomaC data generator (Ver-
wer et al., 2014a). The best performing WFA
scored 0.8113 on this dataset with n = 95 and
nR = nC = 4. Although WFA is a Markov
model2 (i.e., a model that may require l-th order
representation, which makes predictions based on
l the most recent observations, to learn long-range
dependencies (Bengio and Frasconi, 1995b; Hin-
ton et al., 2001; Kakade et al., 2016)), on dataset
12, WFA was as good as the RNN models. Our
one-layer neural model scored 0.7116 and the two-
layer neural model improved the result to 0.8508.
So, we can clearly see that on this large dataset,
two layers improve the results. We argue that we
can use WFA results to explain the improvement
of our two-layer neural model. For that we will
focus on the rank of WFA (i.e. parameter n) and
the maximum length of substrings in its basis (i.e.
nR and nC). To score high on dataset 12, WFA
had to use 95 hidden states, which is a large num-
ber of hidden states for a traditional Baum-Welch
algorithm (Siddiqi et al., 2007). This means that

2Note that WFA is a generalisation of a Markov model
where the next state depends only on the current state (Pe-
nagarikano and Bordel, 2004); every Markov model can be
represented as a WFA.
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in order to solve this problem, a Markov model re-
quires a relatively large number of states. This fact
can explain why our two-layer neural model out-
performed a single-layer model because the sec-
ond LSTM layer increased the number of hidden
states in the neural model. Moreover, the ob-
tained WFA’s score is based on short substrings
(i.e. nR = nC = 4) in its basis. Therefore, it is
fair to expect that dataset 12 does not have long-
term dependencies since short substring statistics
are sufficient to capture the data-generating distri-
bution in this model. We believe that we can make
this claim because our WFA with short substrings
works very well on this data. All this means that
dataset 12 requires a relatively large number of
hidden states, but it does not have long-term de-
pendencies. Our two-layer neural model is suf-
ficient for such problems because two layers in-
crease the number of hidden states, whereas the
long-term dependencies are not an issue.

To support our discussion above, we should add
that in (Rabusseau et al., 2018) the hidden units of
the second-order RNN were shown to be related
to the rank or the hidden states of WFA. Note that
second-order and higher-order RNNs have their
recurrence depth increased by explicit, higher-
order multiplicative interactions between the hid-
den states at previous time steps and input at the
current time step. It was shown that any func-
tion that can be computed by a linear second-order
RNN (Giles et al., 1992) with n hidden units on
sequences of one-hot vectors (i.e. canonical basis
vectors) can be computed by a WFA with n states.
A higher-order RNN has additional connections
from multiple previous time steps whereas the
classic RNN has connection from one previous
time step only. Higher order RNNs allow a di-
rect mapping to a finite-state machine (Giles et al.,
1992; Omlin and Giles, 1996). However, a similar
connection is not available for classic RNNs and
WFA and more importantly for multilayer RNNs
and WFA. Based on these theoretical results and
our empirical investigation, we can conjecture that
the improved score on dataset 12 by using two
LSTM layers indicates that the multiple layers
helped to model the hidden states more efficiently.

Low Rank To support our arguments about the
rank (i.e. the number of hidden states) in our dis-
cussion about dataset 12, we can identify a com-
plementary relationship in other results. In partic-
ular, when we consider all datasets on which WFA

did well having a small rank (this is in contrast to
dataset 12 which required a high rank for WFA), a
two-layer network does not lead to significant im-
provement. This pattern can be seen on datasets 1,
2, and 3, and this complements our previous argu-
ments about dataset 12.

Dataset 5 and Long Context Dataset 5 is a real
dataset on which the best performing WFA model
scored 0.568 with rank n = 450 and substring
lengths nR = nC = 5. This dataset is large for
spectral learning and increasing nR and nC above
5 made the method intractable. Our one-layer neu-
ral model scored 0.7988 and a two-layer model
showed a small improvement scoring 0.8107. This
means that on this dataset adding more layers did
not change the score significantly. We will attempt
to explain the lack of a big improvement of a two-
layer neural model using our WFA results.

Dataset 5 corresponds to the NLP character lan-
guage modelling benchmark from Penn Treebank
(Marcus et al., 1993b). The other NLP datasets
are 4, 8, 11, and 13. Similar to dataset 5, in-
creasing the number of RNN layers did not sig-
nificantly improve the score on those datasets.
Most NLP data (including dataset 5) have long-
term dependencies because there are many train-
ing examples of word agreements (with different
long-range regularities) which span a large portion
of a sentence (Brown and Hinton, 2001). WFA
with discrete states have limited memory capacity
which gets consumed by having to deal with all
the intervening regularities in the sequence. We
can clearly see this in our results because in our
experiments on WFA, we have many hidden states
(n = 450). We can see that a large number of
hidden states was not sufficient to solve this prob-
lem using WFA when nR = nC = 5, i.e., when
substrings are short. In order to capture long-term
dependencies, our WFA would need to be trained
on longer substrings (higher nR and nC), but this
is infeasible to do on this large dataset because
the method becomes intractable. This problem re-
quires the learning algorithm to take care of the
long-term context.

We can provide a theoretical justification as to
why long substrings (i.e. prefixes and suffixes that
define the basis of a Hankel matrix) can lead to a
better model given a particular number of hidden
states, n. Note that the number of hidden states
n corresponds to the number of dimensions that
are kept after the SVD of the Henkel matrix. This
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means that n most informative latent dimensions
(i.e., those that carry the most variance) are used
as hidden states. If, given a particular value of
n, one model has better performance than another
model, it means that it’s best n dimensions capture
more variance than the best n latent dimensions of
the alternative model. This argument explains why
one basis of a Hankel matrix can lead to a bet-
ter model than another basis. Intuitively, it is also
natural to expect that long substrings can lead to a
better set of hidden states because they can capture
longer interactions between input symbols, which
should naturally lead to more informative hidden
states. If it was computationally feasible to eval-
uate dataset 5 with larger substring lengths, we
could investigate the spectral norm of the empir-
ical Hankel matrix with the increasing length of
substrings (i.e. nR, nC). This would shed some
light on the quality of the first hidden state in com-
pared models.

Theoretically, a one-layer RNN model can
capture infinite context (Siegelmann and Sontag,
1991), but due to training difficulties (e.g. the van-
ishing gradient problem), the context capture ca-
pacity of RNNs is limited. Despite this difficulty,
it was shown in the literature that RNNs can cap-
ture previous context of up to 200 tokens (Khan-
delwal et al., 2018). However, other researchers
(Pascanu et al., 2014) argue that stacking RNN
layers (like in our two-layer model) does not in-
crease the capacity of the model to capture longer
contexts. This means that our two-layer model
cannot deal with long contexts even when we add
more layers. Since WFA did not perform well on
dataset 5 having short context and a large number
of hidden states, we conjecture that this dataset re-
quires a long context and for this reason two-layers
in a neural model do not help. Our results are
consistent with other results where long-term con-
texts are captured by the recurrent layer (Bengio
and Frasconi, 1995a). According to the distributed
hypothesis (Bengio et al., 2009) stacking multi-
ple layers allows for learning distributed features
but not for capturing long-term contexts. Conse-
quently, we assume that the long-term contexts are
more important for dataset 5 to make efficient pre-
diction than the pure increase in the number of the
hidden states across the space.

Theoretical Considerations The relationship
between the number of types of hidden states (dis-
crete, or distributed), long-term dependency and

the sequence prediction has been explored by Hin-
ton et al. (2001); Bengio and Frasconi (1995b).
For example, the hidden state of a single HMM (a
specific version of WFA) can only convey log2K
bits of information about the recent history. In-
stead, if a generative model had a distributed hid-
den state representation (Williams and Hinton,
1991) consisting of M variables each with K al-
ternative states, it could convey M log2K bits of
information. This means that the information bot-
tleneck scales linearly with the number of vari-
ables and only logarithmically with the number of
alternative states of each variable (Hinton et al.,
2001). However, the link between the hidden state
modelling and the number of recurrent neural net-
work layers had not been explored before. From
this theoretical analysis, we can see that if we
have access to a large dataset then increasing the
number of layers helps in modelling the hidden
states more accurately (as seen in dataset 12), but
it does not have to help to capture long-term con-
texts (dataset 5). In the latter case, one has to use
models with high recurrence depth (Zilly et al.,
2017; Pascanu et al., 2013), but we leave their ex-
ploration for future work since in this paper we
wanted to focus on traditional LSTM layers.

Conclusion

Recurrent Neural Networks (RNNs) are a power-
ful tool for sequence modelling. However, RNNs
are non-linear models, which makes them diffi-
cult to analyse theoretically. In this paper, we em-
pirically analysed two RNN models (single-layer
and two-layer RNNs) to understand the impact of
the additional LSTM layers. We used Weighted
Finite-state Automata (WFA) trained using the
Hankel-based spectral learning algorithm. Based
on fifteen benchmark datasets from the SPiCe
2016 competition, our empirical analyses indicate
that multiple layers in RNNs help learning dis-
tributed hidden states through improved hidden
space modelling but have lesser impact on the abil-
ity to learn long-term dependencies.
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