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Preface

Welcome to the 4th Social Media Mining for Health Applications Workshop and Shared Task - #SMM4H
2019.

The total number of users of social media continues to grow worldwide, resulting in the generation
of vast amounts of data. Popular social networking sites such as Facebook, Twitter and Instagram
dominate this sphere. According to estimates, 500 million tweets and 4.3 billion Facebook messages
are posted every day 1. The latest Pew Research Report 2, nearly half of adults worldwide and two-
thirds of all American adults (65%) use social networking. The report states that of the total users, 26%
have discussed health information, and, of those, 30% changed behavior based on this information and
42% discussed current medical conditions. Advances in automated data processing, machine learning
and NLP present the possibility of utilizing this massive data source for biomedical and public health
applications, if researchers address the methodological challenges unique to this media.

In its fourth iteration, the #SMM4H workshop takes place in Florence, Italy, on August 2, 2019, and is
co-located with the annual meeting of the Association of Computational Linguistic (ACL). Following
on the success of our Workshops and accompanying shared tasks on the topic that were hosted at the
Pacific Symposium in Biocomputing (PSB) in 2016, at the AMIA Annual Conference in 2017, and at the
EMNLP conference in 2018, this workshop aims to provide a forum for the ACL community members
to present and discuss NLP advances specific to social media use in the particularly challenging area
of health applications, with a special focus given to automatic methods for the collection, extraction,
representation, analysis, and validation of social media data for health informatics.

We received very high quality submissions for the workshop and selected only 8 articles for long
presentations (Workshop Acceptance Rate: 54%) and 17 for short talks or posters presentations. As
for the previous years, we ran in parallel to the workshop a shared task with a particular interest on
social media mining for pharmacovigilance. For this fourth execution of the #SMM4H shared tasks,
we challenged the community with two different problems involving annotated user posts from Twitter
(tweets). The first problem focuses on performing pharmacovigilance from social media data during
a series of three subtasks inviting the participants to extract and normalize tweets mentioning adverse
effects of drugs. The second problem explores the generalizability of predictive models through a task of
automatic classification of tweets with personal health experience mentions in multiple contexts. With a
total of 34 teams registered and 19 teams having submitted a run, we confirm a growing interest of the
community for health mining in social media data.

This year, we standardized the submission process during the shared task using the web platform
Codalab3. We believed this helped improved the reproducibility of the experiments. Acting as a central
hub, the data are easily distributed to the research community at large and, as the Codalab website
remains active even after the competition, new teams can upload their submissions and be automatically
evaluated to compare their results with the official results of the challenge.

Next year, we will go further to improve reproducibility by allowing participants to upload their code
and models directly in Codalab for evaluation, a change which will guarantee a fair competition and the
dissemination of the technical characteristics of the systems. Another important change this year that
will impact future iterations of the workshop is an open call to the community for shared task proposals,
ensuring that our workshop continues to address the main problems and challenges in this growing field

1Team Gwava. “How Much Data is Created on the Internet each Day?” 2016, Available online at https://www.gwava.
com/blog/internet-data-created-daily. [Accessed: 03-Jan-2017].

2Pew Research Center. “Social Media Fact Sheet”. 2017. Available online at http://www.pewinternet.org/
fact-sheet/social-media/. [Accessed: 03-Mar-2017].

3CodaLab is free and open-source, available at https://competitions.codalab.org/.
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of health mining for social media.

The organizing committee would like to thank the program committee, consisting of 13 researchers, for
their thoughtful input on the submissions, as well as the organizers of the ACL for their support and
management. Finally, a huge thanks to all authors who submitted a paper to the workshop or participated
in the shared tasks; this workshop would not have been possible without them and their hard work.

Graciela, Davy, Abeed, Arjun, Ashlynn, Michael
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Abstract 

Claims database and electronic health 

records database do not usually capture 

kinship or family relationship information, 

which is imperative for genetic research. 

We identify online obituaries as a new 

data source and propose a special named 

entity recognition and relation extraction 

solution to extract names and kinships 

from online obituaries. Built on 1,809 

annotated obituaries and a novel tagging 

scheme, our joint neural model achieved 

macro-averaged precision, recall and F 

measure of 72.69%, 78.54% and 74.93%, 

and micro-averaged precision, recall and F 

measure of 95.74%, 98.25% and 96.98% 

using 57 kinships with 10 or more 

examples in a 10-fold cross-validation 

experiment. The model performance 

improved dramatically when trained with 

34 kinships with 50 or more examples. 

Leveraging additional information such as 

age, death date, birth date and residence 

mentioned by obituaries, we foresee a 

promising future of supplementing EHR 

databases with comprehensive and 

accurate kinship information for genetic 

research. 

 

1 Introduction 

Kinship or family relationship is important for 

genetic research, particularly for understanding 

trait and disease heritability, predicting individual 

disease susceptibility, and developing 

personalized medicine (Chatterjee et al., 2016). 

Human genetics started by analyzing pedigrees 

and twins to understand the roles of heredity and 

environment in the manifestation of physiological 

traits and diseases. With the rising of genomics, 

Electronic Health Records (EHRs) and their 

integration through biobank, kinship information, 

if available, can largely augment latest high-

throughput computational technologies such as 

deep phenotyping from medical records 

(Robinson, 2012) and phenome-wide association 

study (PheWAS, Denny et al., 2010), and 

accelerate population-based genetic research 

(Mayer et al., 2014; Polderman et al., 2015). 

Unfortunately, neither EHR systems nor claims 

databases capture kinship information 

systematically.  

A few studies have investigated disease 

heritability based on inferred kinship information. 

For example, Wang et al. selected 128,989 

families of 481,657 individuals from a large 

claims database covering 1/3 of the US 

population, by selecting policyholders and their 

dependents (e.g., spouse and children) who were 

on file for at least 6 years, to estimate 149 

diseases’ heritability and familial environmental 

patterns (Wang et al., 2017). Similarly, 

Polubriaginof and colleagues performed a multi-

center study based on 3,550,598 patients’ medical 

records from three EHR systems in New York 

City and used emergency contact information to 

build more than 595,000 pedigrees, in order to 

compute the heritability of 500 disease 

phenotypes (Polubriaginof et al., 2018). 
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However, these studies relied on indirect 

sources to infer kinship information, which are 

incomplete and error-prone. First, both the 

dependents defined by medical insurance and the 

emergency contacts submitted to EHR systems by 

patients do not guarantee biological relationships. 

They do not distinguish adopted relationships or 

step relationships created through re-marriage 

from biological relationships. Second, dependents 

or emergency contact only represents a small 

portion of a person’s whole family relationships. 

The 2010 Affordable Care Act allows young 

adults up to 26 to remain on their parents' health 

insurance plans. Before that, dependent children 

often “aged out” of their parents' health plan at 

age 19, or 22 if they were full-time students. Thus 

adult children older than those ages cannot be 

identified from claims data. In addition, if married 

couple work and receive medical insurance 

through their employers (even with the same 

employer), they are not usually linked on record. 

Likewise, most clinics and hospitals list 

emergency contact as optional (instead of 

mandatory) information. Most patients provide 

one or two emergency contacts, but not their 

entire family when filling the form – The 

Polubriaginof study (Polubriaginof et al., 2018) 

collected on average 1.86 emergency contacts per 

patient. 

To address these issues, we propose a new data 

source (online obituaries) and a special Natural 

Language Processing (NLP) solution for 

systematically constructing biological 

relationships for large families of multi-

generations. Obituaries contain rich and high-

quality kinship information and are publicly 

available from the sites of newspapers and 

funeral services companies. Although obituaries 

are similar to social media, they are much less 

studied in biomedicine. One study analyzed 

obituaries to investigate cancer mortality trends 

(Tourassi et al., 2016). Another group combined 

LinkedIn profiles and obituaries to investigate the 

association between frequent relocation and lung 

cancer risk (Yoon et al., 2015). In this project, our 

ultimate goal is to link multiple obituaries by 

cross-validating name, age, residence and 

birth/death date information, to build large family 

trees. For this paper, we aim to investigate if 

state-of-the-art NLP methods can automatically 

extract names and kinships from online obituaries 

with high accuracy. 

Establishing human names and their relations 

is a Named Entity Recognition (NER) and 

Relation Extract (RE) task. The NLP community 

has been working on both for many years. 

Usually, NER and RE are considered as two 

separate and sequential tasks (NER precedes RE). 

Most information extraction systems in 

biomedicine, including those mining biomedical 

literature to extract adverse drug events, and 

molecular interactions between drug, gene and 

proteins, are built on a battery of pipeline 

modules integrating NER and RE tasks (Miwa et 

al., 2012; Kang et al., 2014; Yildirim et al., 2014; 

Sun et al., 2017; Li et al., 2013; Li et al., 2017). 

However, pipeline models have inherent 

limitations: (i) The error from NER will 

propagate to RE. (ii) Pipeline models cannot fully 

utilize the internal connections between NER and 

RE to improve model performance when the 

separated models finished the two tasks 

independently. For instance, in a task of 

extracting adverse drug event, the named entity 

appeared before the relation keyword of “induce” 

(non-passive voice) would be a drug and the 

named entity after “induce” would be an adverse 

event. NER, which should be finished firstly, 

definitely would be harder to benefit from this 

relation information than RE. (iii) Pipeline 

models are computationally redundant and error-

prone because they match up every two named 

entities to decide their relations, which is not 

necessary. 

In this work, we propose a joint neural model 

to simultaneously extract names and kinships 

from obituaries, which combines a two-layer bi-

directional Long Short-Term Memory (bi-LSTM) 

(Hochreiter and Schmidhuber, 1997) and a unique 

tagging scheme. It, in theory, surpasses pipeline 

models by overcoming the limitations (i) (Li et 

al., 2016; Zheng et al., 2017a) and (iii), and by 

making room for leveraging the contextual 

information and domain knowledge to address 

limitation (ii). The rest of the paper is organized 

into four sections. In the Data and Methods 

section, we describe how we annotated the 

obituary corpus, together with the special tagging 

scheme, the bi-directional LSTM model and 

evaluation metrics. Then in the Results section, 

we demonstrate corpus statistics and model 

performance metrics. After that, we share some 

discussions regarding the strengths and limitations 

of our method, before final conclusions and future 

work. 
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2 Data and Methods 

2.1 Corpus preparation 

We downloaded obituaries from the websites of 

three funeral services and one local newspaper in 

Rochester Minnesota, including: (1) 

http://www.bradshawfuneral.com, (2) 

http://www.czaplewskifuneralhomes.com, (3) 

https://mackenfuneralhome.com, and (4) 

https://www.postbulletin.com. The downloaded 

obituaries were published from 10/2008 to 

09/2018. After removing those shorter than 290 

characters, which is unlikely to contain any 

mentions of family relationships, messy ones with 

irregular HTML format or language, and 

duplicates, we selected 1,809 obituaries for 

annotation, due to limited resources and labor-

intensive annotation described in next subsection. 

2.2 Corpus annotation 

The success of a machine learning application 

does not solely depend on the model itself. Most 

of the time it is more determined by the quality of 

data, particularly the gold standard dataset for 

training and testing the model. The challenge for 

annotating a natural language corpus is that the 

ground truth is not always obvious, due to the 

ambiguity and complexity of human language. A 

detailed annotation guideline and duplicated 

annotation by multiple people is often necessary 

to guarantee annotation consistency and corpus 

quality. Based on two examples of biomedical 

corpus annotations (Gurulingappa et al., 2012, 

Roberts et al., 2009), we designed an iterative 

annotation workflow and revised our guideline 

three times. All annotations were done at the 

document level so that the annotators can leverage 

the context in difficult cases. An open-source 

software called MAE version 2.2.6 (Kyeongmin, 

2016) was used as the annotation tool throughout 

the entire process.  

The corresponding author and three native 

speakers of English drafted the 1st version of 

annotation guideline. Then 3 computer science 

major students were trained for annotation in 2 

rounds. In each round, we randomly selected 300 

obituaries and asked each student to annotate 200 

obituaries. This way each obituary was annotated 

twice by two different annotators. At the end of 

each round of training, we evaluated the 

annotation consistency using inter-annotator 

agreement (IAA) metrics and improved the 

annotation guideline. Considering that extracting 

kinship was actually a NER+RE task, we adopted 

precision, recall and F1 score rather than Kappa 

coefficient to report IAA, as suggested by 

Gurulingappa et al., 2012 and Chinchor, 1992.  

After completing the training, 3 qualified 

annotators finished annotating the rest obituaries 

with the assistance of a rule-based quality control 

program written by us. Table 1 demonstrates that 

the precision, recall and F1 score were steadily 

improving through training round 1, training 

round 2 and final annotation.  The discrepancy in 

the final annotation was resolved through group 

discussions. We warranted that 1,809 obituaries 

have high-quality annotations before building the 

models.  

2.3 The tagging scheme 

Conventional NER and RE are usually formulated 

as triplet tagging (entity_1, relation, entity_2). But 

our addressed task is not a general NER+RE task. 

It is simplified by three factors: (1) There is only 

one type of named entity to detect (human 

names); (2) all relations have the same first entity 

(the deceased); and (3) the first entity is 

mentioned in the metadata or the first sentence of 

the obituary, and hence does not need to be 

 

Figure 1:  A novel tagging scheme for extracting 

names and kinships from obituaries  

 Precision 

(%) 

Recall 

(%) 

F1 score 

（%） 

Training round 1 67.93 69.54 62.21 

- Last name distribution 70.93 73.63 65.58 

- Name with parenthesis 72.35 73.16 66.06 

- Name-Residence Pair 69.32 71.11 63.67 

- All features  76.84 78.98 71.01 

Training round 2 74.61 76.31 68.92 

- Last name distribution 77.71 80.51 72.40 

- Name with parenthesis 79.03 79.94 72.77 

- Name-Residence Pair 76.03 77.94 70.43 

- All features  83.66 85.91 77.87 

Final annotation  88.46 88.58 82.80 

- Last name distribution 89.86 89.96 84.19 

- Name with parenthesis 89.26 89.43 83.62 

- Name-Residence Pair 88.58 88.68 82.91 

- All features  90.94 91.05 85.27 

Table 1: IAA scores in different rounds of annotation 

with different annotation features (- means “without”) 
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detected most of the times. Therefore in this 

study, we proposed a novel tagging scheme 

inspired by Zheng et al (Zheng et. al, 2017b), 

which extracts names and kinships in relative to 

the deceased person in one step, as shown in 

Figure 1. We used the popular “BIESO” (begin, 

inside, end, single, and other) scheme to mark the 

position of words in entities, where “O” refers to 

cases that a word does not belong to an entity. 

This way we can identify a named entity by 

simply applying the rule of S or B + n*I + E, 

where n ≥ 0. But we added the kinship type into 

the “BIESO” tags, in order to synchronize the 

NER and RE annotation. So each tag consists of 

two parts: the first part indicates the kinship type 

and the second part illustrates the position of a 

word in an entity. In an illustrative example 

shown in Figure 1, “Joyce M. Tottingham” is 

assigned three tags, including “sister_B” for the 

word “Joyce”, “sister_I” for the word “M.”, and 

“sister_E” for the word “Tottingham”. For the 

single-word entity “Kim”, the assigned tag was 

“daughter_S”. All the remaining words were 

assigned a tag “O”. Because we set the decreased 

as the default first entity for any kinship, triplets 

were simplified to duplets, like [sister, Joyce M. 

Tottingham] and [daughter, Kim] for the sentence 

in Figure 1. “Tom” was the name of the deceased 

person (inferred from the context or metadata) 

and we did not annotate it as a named entity. But 

we annotated other entity types including age, 

residence, birth date and death date. We plan to 

use these additional entity types in future work 

when we build the family trees and link them to 

EHR database.  

2.4 The end-to-end joint neural model 

The end-to-end neural model has lately 

demonstrated effectiveness in various NLP tasks, 

including NER, RE, part-of-speech tagging and 

semantic role labeling (Hashimoto et al., 2017, 

Strubell, 2018). In this study, we adopted an end-

to-end neural model (See Figure 2), which 

contained an embedding layer, two bi-LSTM 

layers, and a softmax output layer. A rule-based 

result improver layer was also added to the end 

for consolidating the tags generated by the 

softmax output layer. We also used a dynamically 

weighted loss function to alleviate data imbalance 

issue.  

The input sentences were tokenized and each 

token was converted to a word vector learned 

from the GloVe method (Pennington et al., 2014), 

when fed into the embedding layer. Padding, 

which was a common programming trick, was 

performed in a way that all sentences were 

aligned to the longest sentence in a batch using 

padding tags for parallel computation. They 

would not impact the model performance as the 

output of those padding tags were masked out in 

the backward layer of the Bi-LSTM model. The 

Bi-LSTM architecture consisted of a forward 

layer and a backward layer, which was supposed 

to capture sequential context information bi-

directionally. Both layers consisted of blocks 

made up of a forget gate, an input gate and an 

output gate. The forget gate decided how much 

information from the previous block would be 

dropped at the current block, considering the 

current input and the previous hidden 

representation. The input gate took the output of 

the forget gate and the previous cell state to 

update the current cell state. The output gate was 

designed to create a hidden representation for 

each token based on all the information from the 

forget gate and input gate. Finally, the outputs of 

both forward layer and backward layer were 

concatenated by Bi-LSTM as final representation. 

The softmax function served as the classifier for 

computing final normalized probabilities for each 

tag. After that, each token was classified into one 

of (m*5+1) tags, where m was the total number of 

kinship types. We tried m=57 and 34, according to 

the number of annotated examples in our 

experiment (See Table 4). In the end, a rule-based 

result improver was added to make sense of the 

sequence of the classified tags. For example, if the 

softmax output layer tagged two neighboring 

words as "sister_B” and “sister_I" without 

“sister_E” nearby, the improver would correct the 

second tag to "sister_E".  

 

Figure 2: The neural network architecture for jointly 

extracting names and kinship types 
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Dynamic weighted Loss function: We trained 

our joint model with weighted log-likelihood 

function, and used RMSprop (Tieleman and 

Hinton, 2012) for optimization. The objective 

function was defined as follows: 

𝐿 = −∑∑(log(𝑝𝑡
(𝑠) = �̂�𝑡

(𝑠)|𝑥𝑠) ∙ (1 − 𝑃(𝑂))

𝐿𝑠

𝑡=1

𝐵

𝑠=1

+ 𝑓𝜔 ∙ log⁡(𝑝𝑡
(𝑠) = �̂�𝑡

(𝑠)|𝑥𝑠)

∙ 𝑃(𝑂) +
𝜆

2
‖𝜃‖2

2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

Corpus Count Deceased Person Count Special Language Patterns Count 

Sentences 30,035 Name 1,711 Last name distribution 5,186 

Names 29,938 Mention of Age 1,517 Name with parentheses 8,118 

Kinship 27,227 Mention of Death Date 1,712  Nickname 84 

Mention of Residence 8,476 Mention of Birth Date 1,522   Previous last name 1,607 

Name-Residence Pair 9,189 Mention of Residence 1,331   Spouse’s name 6,427 

Table 2: Summary Statistics of the Corpus 

 

 
Language Pattern Example Explanation 

Last name distribution 
Preceded in death by her grandparents, Ellen 

and Everett Uebel. 
Uebel is also the last name for 

Ellen. 

Name with 

parenthesis 

Nickname 
Kay is also survived by her daughter Maureen 

(Mo) Bahr of Rochester 
Mo is the nickname of 

Maureen Bahr. 

Previous 

last name 

Paul was born April 18, 1942 in Rochester to 

Boyd and Fern (Miller) Kinyon. 
Miller is the maiden name for 

Fern Kinyon. 

Spouse’s 

name 

Survived by daughter, Sydney (Sam) Davis; 

granddaughter, Autumn Ellen. 
Sydney Davis’s husband is 

Sam Davis. 

Table 3: Examples of unique language patterns in obituaries 

Hierarchy Kinship type 

Generation 

0 

ex-husband (18), ex-wife (32), married to (1,457), spouse (18), husband (586), wife (690), 

sibling (718), cousin (91), brother (2,106), sister (2,156), half-brother (13), half-sister (7), 

sister-in-law (344), sibling-in-law (28), cousin-in-law (1), brother-in-law (251) 

Generation 

1 

child (2,658), daughter (1,445), son (1,713), niece (242), nephew (297), step-child (175), step-

daughter (60),  step-son (65), child-in-law (25), daughter-in-law (114), son-in-law (103), niece-

in-law (20),  nephew-in-law (25) 

Generation 

2 

grandson (310), grandchild (4,413), granddaughter (231), grandnephew (24), grandniece (24),  

grandson-in-law (13), grandchild-in-law (11), granddaughter-in-law (12),  step-grandchild (98), 

step-grandson (7), step-granddaughter (6) 

Generation 

3 

great grand-child (1,293), great granddaughter (46), great grandson (65),  

great grand-nephew (2),  great grand-niece (6), great grandchild-in-law (4), 

Generation 

4 
great-great grand-child (27),  great-great granddaughter (1),  great-great grandson (1) 

Generation 

-1 

born to (2,332), son of (132), daughter of (172), parent (720), mother (155), father (139),  

step-mother (16), step-father (24), step-parent (2), aunt (49), uncle (54), parent-in-law (43),  

mother-in-law (30),  father-in-law (26), aunt-in-law (6), uncle-in-law (3) 

Generation 

-2 

grandparent (210), grandmother (44), grandfather (29), grand uncle (1),   

grandmother-in-law (1) 

− Other* (987) 

Table 4: 71 kinship types in annotated obituaries. Top 5 common relationships are highlighted in red. 
* Other relationships refer to kinships not included in previous 6 categories, such as fiancé, guardian, and friend. 
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where B was the batch size, 𝐿𝑠was the length of 

input sentence 𝑥𝑠 . �̂�𝑡
(𝑠)

and 𝑝𝑡
(𝑠)  were the true tag 

and the normalized probability of the predicted 

tag for word t. λ was the hyper-parameter for L2 

regularization. 𝑃(𝑂) was the indicator function to 

determine if the current tag was “O" (other), 

which was formulated as: 

⁡ 𝑃(𝑂) = {
0, 𝑖𝑓⁡𝑡𝑎𝑔 = "𝑂"
1, 𝑖𝑓⁡𝑡𝑎𝑔 ≠ "𝑂"

⁡⁡⁡⁡⁡⁡⁡(2)  

𝑓𝜔  was dynamic weighted loss function, which 

assigned the tag ω different weights in different 

sentences, aiming to alleviate influence caused by 

too much “O" tag. It was defined as: 

𝑓𝜔 =

∑ 𝑁𝐷𝑖

𝑗
𝑗∈𝑇

𝑁𝐷𝑖
ω −𝑁

𝑌𝑚𝑖𝑛

𝑁𝑌𝑚𝑎𝑥−𝑁
𝑌𝑚𝑖𝑛

⁡⁡⁡⁡⁡(3)
  

where T was the union of all possible tags, 

𝐷𝑖⁡ referred to a sentence i in a batch of the 

training set, 𝑁𝐷𝑖
ω was the total count of all tags in 

𝐷𝑖,⁡𝑁𝐷𝑖
𝑗

 was the number of a specific tag ω in 𝐷𝑖, 

and  𝑁𝑌𝑚𝑎𝑥 ⁡ and 𝑁𝑌𝑚𝑖𝑛  were the maximal and 

minimal hyper-parameters for normalization 

respectively. 

2.5 Evaluation metrics 

A recognized named entity mention was 

considered true positive (TP) if both its boundary 

and type matched with the annotation. A relation 

extraction was considered as TP if both the NER 

and RE tasks were correctly captured. A 

recognized entity or relation was considered as 

false positive (FP) if it did not exactly match with 

the manual annotation in terms of the boundaries 

and relation types. The number of false negatives 

(FN) instances was computed by counting the 

number of named entities or relations in the 

manual annotation that had been missed by the 

model. 

We performed 10-fold cross validation in our 

experiment, where 10% of the annotated data 

were randomly selected for validation, and the 

remaining for training the model. We evaluated 

the model performance using macro- and micro-

averaged Precision, Recall and F-measure. A 

macro-averaged metric treats all classes equally 

by computing the metric independently for each 

class and then taking the average. In contrast, a 

micro-averaged metric aggregates the TP, TN, FP, 

and FN counts of all classes to compute an 

average metric.  

Our corpus and codes could be downloaded at 

https://github.com/qw52025804/Obituary.git. 

3 Results 

3.1 Corpus annotation 

Table 2 lists the detailed summary statistics of our 

corpus. There were 1,711 mentions of deceased 

names in 1,809 obituaries. Some obituaries 

mentioned the names of the deceased people in 

the title (metadata) rather than the main body of 

obituaries. In those cases, we directly linked the 

deceased names in the title of obituaries with their 

main body of free text. On average, each obituary 

Kinship 

filter 
Method 

Average 

method 
Precision (%) Recall (%) F-measure (%) 

n≥10 

Pipeline 
macro   68.60 (4.81) 69.52 (4.98) 68.43 (4.90) 

micro 87.10 (0.57) 89.46 (0.82) 87.80 (0.78) 

Joint 
macro 72.69 (3.96) 78.54 (3.85) 74.93 (3.95) 

micro 95.74 (0.98) 98.25 (0.43) 96.98 (0.60) 

n≥50 

Pipeline 
macro  81.11 (3.70) 79.51 (2.62) 79.18 (3.22) 

micro 85.42 (0.98) 92.80 (0.43) 88.18 (0.60) 

Joint 
macro 85.27 (3.90) 94.35 (2.09) 88.97 (3.18) 

micro 96.06 (0.64) 98.12 (0.37) 97.08 (0.46) 

Table 5: Comparing the performance of pipeline model versus joint model. The values in brackets 

represent the standard deviation during 10-fold cross validation. 
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contains 16.6 sentences, or 1,809 obituaries 

contain 30,035 sentences in total. We extracted 

and annotated 29,938 names, 27,227 family 

relations and 8,476 residences for the deceased 

and their families. We were able to pair up a name 

and a residence for 9,189 times. For the deceased 

people, we also annotated their age, death date, 

birth date, and residence when available.  

We noticed two interesting language patterns in 

obituaries, namely last name distribution and 

name with parentheses (See Table 3). These 

patterns might be due to the word limitation in the 

old time when the family paid for publishing an 

obituary on printed newspapers. In total, we 

annotated 71 kinships (See Table 4). Among 

them, 57 kinships have ≥10 examples, 34 kinships 

have ≥50 examples, and 28 relationships have ≥ 

100 examples. The most populated five 

relationships were grandchild (4,413), child 

(2,658), born to (equivalent to parent, 2,332), 

sister (2,156) and brother (2,106).  

It is worth noting that we kept “married to” and 

“spouse”, “born to” and “parent” as separate 

kinship types in our experiment. This is because 

the syntax, co-occurred words and their order near 

“married to”/“born to” are subtly different from 

“spouse”/“parent”. Keeping them as separate 

kinship types might help to improve the model 

performance. We will group them in the next step 

when we build the family trees, as they are 

semantically equivalent. 

3.2 Model performance 

Table 5 illustrates the final performance of the 

baseline method (pipeline model) versus our 

proposed joint neural model for extracting names 

and kinships from obituaries. The baseline model 

consists of two one-layer bi-LSTMs. The first bi-

LSTM is for NER with simple BIESO tagging 

scheme, and its outputs were used as the inputs of 

the second bi-LSTM for RE. The general 

architecture is the same as that of the joint model, 

but the tagging scheme is different for NER, and 

NER and RE worked in a pipelined way. It is  

shown that the joint model outperformed the 

pipeline model by 4.09%, 9.02% and 6.5% for 

Precision, Recall and F measure at macro level 

using 57 kinships with 10 or more examples. The 

joint model outperformed the pipeline model by 

even bigger margins for Precision, Recall and F 

measure (4.16%, 14.84% and 9.79% respectively) 

at macro level when considering 34 kinships with 

50 or more examples. The micro-level evaluation 

metrics demonstrated even better results of similar 

trends, due to the nature of an imbalanced multi-

class classification problem. Table 6 showed some 

correctly classified examples and wrongly 

classified examples, which demonstrated the 

challenges in this project. 

4    Discussions 

The proposed joint neural model seemed capable 

of extracting the human names and relations with 

Examples of Correct Classification 

Sentence Extracted Relation 

On May 8, 1982 he married Madonna Oleson & became a proud dad of Ryan 

and Kelly. 

Madonna Oleson ：wife 

Ryan : child 

Kelly : child 

He is survived by his brother Richard R. Arend (Carol) of Rochester, his 

beloved children and their mother,  Kristy. 

Richard R. Arend 

(Carol): brother  

Kristy : wife 

One brother, Gordon “Scotty” Hyland of LaMirada, CA. and many nieces and 

nephews. 

Gordon “Scotty” 

Hyland : brother  

Examples of Wrong Classification 

Sentence Extracted Relation 

Craig is also survived by the boy’s mother, Jolene Stock, sister Dianna 

Povilus; ... 
Jolene Stock : mother 

Survivors include Mary, his wife of 44 years and three children. Kristen (Matt) 

Asleson of Fountain, MN, and ... 

Kristen (Matt) Asleson : 

grand child 

Wooing Cecelia Stevens by serenading the words from the musical Carousel, 

“If I loved you, words wouldn’t come in an easy way” - he proposed and on 

July 6, 1955, they began sixty-one years of marriage. 

Cecelia Stevens :  

missing 

Table 6: Correctly classified examples and wrongly classified examples 
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high performance. For common kinship types 

with large number of examples in the training 

dataset, such as grandchild, child, parent (born to), 

sister and brother, the model’s performance were 

close to perfect: Precision> 96.06%, 

Recall>98.12% and F measure> 97.08%. It could 

also recognize multiple variations of family 

relationships such as “marry” and “dad of”, 

thanks to the high quality annotated corpus we 

created.  

      As shown in Table 6, the model was able to 

tell that “Kristy” was the wife of the deceased 

person (the second example of correct 

classification), but could not figure out “Jolene 

Stock” was the wife of the deceased “Craig” (the 

first example of wrong classification). It seems 

that the model was confused by the relationships 

between the deceased, “the boy’s mother” and 

Jolene Stock. For the second example of wrong 

classification, the incorrect punctuation might 

have led to the error. The period before “Kristen 

(Matt) Asleson” should be a comma instead. The 

last example in Table 6 was an extremely difficult 

and rare case. Common kinship keyword 

indicating wife was missing. Without properly 

understanding the semantic meaning of ‘propose’ 

and ‘marriage’ in the sentence, our model failed to 

pick up “Cecelia Stevens” as a name.  

       One limitation of this study was that we built 

the Bi-LSTM model on sentences, and therefore 

lost the context information beyond a sentence.  

More sophisticated LSTM model would be 

helpful to parse the entire document of obituaries. 

Another challenge was that we could not afford to 

annotate more obituaries, which led to 14 kinship 

types had less than 10 examples (e.g., 

grandmother-in-law, grand uncle, great-great 

grandson and great-great granddaughter). Our 

model, or any supervised models, would not 

perform well on such small size of training data.  

5    Conclusions and Future Work 

       In this work, we built an annotated corpus 

of >30,000 sentences (from 1,809 obituaries 

written in English) and proposed a two-layer Bi-

LSTM model to simultaneously extract human 

names and kinships. Our joint neural model 

achieved macro-averaged Precision, Recall and F 

measure of 72.69%, 78.54% and 74.93%, and 

micro-averaged Precision, Recall and F measure 

of 95.74%, 98.25% and 96.98% using 57 kinships 

with 10 or more examples during 10-fold cross 

validation experiment. The model performance 

improved dramatically when trained with 34 

kinships with 50 or more examples. We shared 

our corpus and codes on GitHub for the 

convenience of researchers. 

  Given such promising results, we will 

continue to improve our joint model to recognize 

other types of entity and relation, including the 

age, residence, birth date and death date. We will 

further parse names with parenthesis; resolve last 

name distributions; and leverage existing 

knowledge to infer the gender of names. Only 

when we complete theses tasks with high quality, 

could we build large family trees and link people 

to our EHR database. We are cautiously optimistic 

because almost all residents in Rochester MN 

have been patients at Mayo Clinic at some time of 

their life and population mobility rate in 

Rochester MN is far less than major metropolitan 

areas in the U.S. With the massive obituary data 

freely available on the Internet, our ultimate goal 

is to accelerate large-scale disease heritability 

research and clinical genetics research.  
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Abstract

In the medical domain, user-generated social
media text is increasingly used as a valuable
complementary knowledge source to scien-
tific medical literature. The extraction of this
knowledge is complicated by colloquial lan-
guage use and misspellings. Yet, lexical nor-
malization of such data has not been addressed
properly. This paper presents an unsuper-
vised, data-driven spelling correction module
for medical social media. Our method outper-
forms state-of-the-art spelling correction and
can detect mistakes with an F0.5 of 0.888.
Additionally, we present a novel corpus for
spelling mistake detection and correction on a
medical patient forum.

1 Introduction

In recent years, user-generated data from social
media that contains information about health, such
as patient forum posts or health-related tweets, has
been used extensively for medical text mining and
information retrieval (IR) (Gonzalez-Hernandez
et al., 2017). This user-generated data encapsu-
lates a vast amount of knowledge, which has been
used for a range of health-related applications,
such as the tracking of public health trends (Sarker
et al., 2016) and the detection of adverse drug re-
sponses (Sarker et al., 2015). However, the ex-
traction of this knowledge is complicated by non-
standard and colloquial language use, typographi-
cal errors, phonetic substitutions, and misspellings
(Clark and Araki, 2011; Sarker, 2017; Park et al.,
2015). Thus, social media text is generally noisy
and this is only aggravated by the complex medi-
cal domain (Gonzalez-Hernandez et al., 2017).

Despite these challenges, text normalization for
medical social media has not been explored thor-
oughly. Medical lexical normalization methods
(i.e. abbreviation expansion (Mowery et al., 2016)
and spelling correction (Lai et al., 2015; Patrick
et al., 2010)) have mostly been developed for clini-

cal records or notes, as these also contain an abun-
dance of domain-specific abbreviations and mis-
spellings. However, social media text presents dis-
tinct challenges, such as colloquial language use,
(Gonzalez-Hernandez et al., 2017; Sarker, 2017)
that cannot be tackled with these methods.

The most comprehensive benchmark for
general-domain social media text normalization
is the ACL W-NUT 2015 shared task1 (Bald-
win et al., 2015). The current state-of-the-art
system for this task is a modular pipeline with
a hybrid approach to spelling, developed by
Sarker (2017). Their pipeline also includes a cus-
tomizable back-end module for domain-specific
normalization. However, this back-end module
relies, on the one hand, on a standard dictionary
supplemented manually with domain-specific
terms to detect mistakes and, on the other hand,
on a language model of generic Twitter data to
correct these mistakes. For domains that have
many out-of-vocabulary (OOV) terms compared
to the available dictionaries and language models,
such as medical social media, this is problematic.

Manual creation of specialized dictionaries is
an unfeasible alternative: medical social media
can be devoted to a wide range of different medi-
cal conditions and developing dictionaries for each
condition (including laymen terms) would be very
labor-intensive. Additionally, there are many dif-
ferent ways of expressing the same information
and the language use in the forum evolves over
time. Consequently, hand-made lexicons may get
outdated (Gonzalez-Hernandez et al., 2017). In
this paper, we present an alternative: a corpus-
driven spelling correction approach. We address
two research questions:

1. To what extent can corpus-driven spelling
correction reduce the out-of-vocabulary rate
in medical social media text?

1https://noisy-text.github.io/
norm-shared-task.html
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2. To what extent can our corpus-driven spelling
correction improve accuracy of health-related
classification tasks with social media text?

Our contributions are (1) an unsupervised data-
driven spelling correction method that works well
on specialized domains with many OOV terms
without the need for a specialized dictionary and
(2) the first corpus for evaluating mistake detec-
tion and correction in a medical patient forum.2

Our method is designed to be conservative and
to focus on precision to mitigate one of the major
challenges of correcting errors in domain-specific
data: the loss of information due to the ‘cor-
rection’ of already correct domain-specific terms.
We hypothesize that a dictionary-based method is
able to retrieve more mistakes than a data-driven
method, because all terms not included in the dic-
tionary are classified as mistakes, which will prob-
ably include all non-word errors. However, we
also expect that a dictionary-based method will
misclassify more correct terms as mistakes, be-
cause any domain-specific terms not present in the
dictionary will be classified incorrectly.

2 Related work

Challenges in correcting spelling errors in med-
ical social media A major challenge for correct-
ing spelling errors in small and highly specialized
domains is a lack of domain-specific resources.
This complicates the automatic creation of rel-
evant dictionaries and language models. More-
over, if the dictionaries or language models are
not domain-specific enough, there is a high prob-
ability that specialized terms will be incorrectly
marked as mistakes. Consequently, essential in-
formation may be lost as these terms are often key
to knowledge extraction tasks (e.g. a drug name)
and to specialized classification tasks (e.g. does
the post contain a side effect of drug X?).

This challenge is further complicated by the dy-
namic nature of language on medical social me-
dia: in both the medical domain and social media
novel terms (e.g. a novel drug names) and neolo-
gisms (e.g. group-specific slang) are constantly in-
troduced. Unfortunately, professional clinical lex-
icons are also unsuited for capturing the domain-
specific terminology on forums, because layper-
sons and health care professionals express health-
related concepts differently (Zeng and Tse, 2006).

2The corpus is available on github https://github.
com/AnneDirkson

Another complication is the frequent misspellings
of key medical terms, as medical terms are typi-
cally difficult to spell (Zhou et al., 2015). This re-
sults in an abundance of common mistakes in key
terms, and thus, a large amount of lost information
if these terms are not handled correctly.

Lexical normalization of generic social me-
dia In earlier research, text normalization for
social media was mostly unsupervised or semi-
supervised e.g. (Han et al., 2012) due to a lack of
annotated data. These methods often pre-selected
and ranked correction candidates based on pho-
netic or lexical string similarity (Han et al., 2012,
2013). Han et al. (2013) additionally used a tri-
gram language model trained a large Twitter cor-
pus to improve correction. Although these meth-
ods did not rely on training data to correct mis-
takes, they did rely on dictionaries to determine
whether a word needed to be corrected (Han et al.,
2012, 2013). The opposite is true for modern
supervised methods, which rely on training data
but not on dictionaries. For instance, the best
performing method at the ACL W-NUT shared
task of 2015 used canonical forms in the training
data to develop their own normalization dictionary
(Jin, 2015). The second and third best perform-
ing methods were also supervised and used deep
learning to detect and correct mistakes (Leeman-
Munk et al., 2015; Min and Mott, 2015) (for
more detail on W-NUT systems see Baldwin et al.
(2015)). Since specialized resources (appropriate
dictionaries or training data) are not available for
medical forum data, a method that relies on neither
is necessary. We address this gap.

Additionally, recent approaches often make use
of language models, which require a large corpus
of comparable text from the same genre and do-
main (Sarker, 2017). This is however a major ob-
stacle for employing such an approach in niche do-
mains. Since forums are often highly specialized,
the resources that could capture the same language
use are limited. Nevertheless, if comparable cor-
pora are available, language models can contribute
to effectively reducing spelling errors in social me-
dia (Sarker, 2017) due to their ability to capture the
context of words and to handle the dynamic nature
of language.

3 Data

Medical forum data For evaluating spelling
correction methods, we use an international pa-
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GIST forum Reddit forum
# Tokens 1,255,741 4,520,074
# Posts 36,277 274,532
Median post length (IQR) 20 (35) 11 (18)

Table 1: Raw data without punctuation. IQR: Inter-
quartile range

tient forum for patients with Gastrointestinal Stro-
mal Tumor (GIST). It is moderated by GIST Sup-
port International (GSI). This data set was do-
nated to us by GSI in 2015. We use a second
cancer-related forum to assess generalisability of
our methods: a sub-reddit community on cancer,
dating from 16/09/2009 until 02/07/2018.3 It was
scraped using the Pushshift Reddit API.4 The data
was collected by looping over the timestamps in
the data. This second forum is around 4x larger
than the first in terms of tokens (See Table 1).

Annotated data Spelling mistakes were anno-
tated for 500 randomly selected posts from the
GIST data. Real word errors and split or concate-
nation errors were not included, because we are
not interested in syntactic or semantic errors (Ku-
kich, 1992). In addition, we considered each word
independent of its content, because word bigrams
or trigrams are sparse in the small forum collec-
tions (Verberne, 2002). Each token was classified
as a mistake (1) or not (0) by the first author. A
second annotator checked if any of the mistakes
were false positives. 53 unique mistakes were
found: Their corrections were annotated individu-
ally by two annotators. Annotators were provided
with the complete post in order to determine the
correct word. The initial absolute agreement was
89.0%. If a consensus could not be reached, a third
assessor was used to resolve the matter. These 53
mistakes and their corrections form the test set for
evaluating spelling correction methods.5 As far as
we are aware, no other spelling error corpora for
this domain are publicly available.

In order to tune various thresholds for the de-
tection of spelling mistakes, we split these 500
posts into two sets of 250 posts: a development
and a test set. The development set contained
23 mistakes supplemented with a tenfold of ran-
domly selected correct words (230) with the same
word length distribution. The development set

3www.reddit.com/r/cancer
4https://github.com/pushshift/api
5Corpora and code are available on github https://

github.com/AnneDirkson

was split in a stratified manner into 10 folds for
cross-validation. The test set contained 32 unique
non-word errors 6, equal to 0.37% of the tokens,
supplemented with a tenfold of randomly selected
correct words with the same word length distribu-
tion.7

Spelling error frequency corpus Since by de-
fault all edits are weighted equally when calcu-
lating Levenshtein distance, we needed to com-
pute a weighted edit matrix in order to assign
lower costs and thereby higher probabilities to ed-
its that occur more frequently in the real world.
We based our weighted edit matrix on a corpus
of frequencies for 1-edit spelling errors compiled
by Peter Norvig.8 This corpus is compiled from
four sources: (1) a list of misspellings made by
Wikipedia editors, (2) the Birkbeck spelling cor-
pus, (3) the Holbrook corpus and (4) the ASPELL
corpus.

Specialized vocabulary for cancer forums To
be able to calculate the number of out-of-
vocabulary terms in two cancer forums, a spe-
cialized vocabulary was created by merging the
standard English lexicon CELEX (Burnage et al.,
1990) (73,452 tokens), the NCI Dictionary of Can-
cer Terms (National Cancer Institute) (6,038 to-
kens), the generic and commercial drug names
from the RxNorm (National Library of Medicine
(US)) (3,837 tokens), the ADR lexicon used by
Nikfarjam et al. (2015) (30,846 tokens) and our
in-house domain-specific abbreviation expansions
(DSAE) (42 tokens) (see Preprocessing for more
detail). As many terms overlapped with those in
CELEX, the total vocabulary consisted of 118,052
tokens (62.2% CELEX, 5.1% NCI, 26.1% ADR,
6.5% RxNorm and <0.01% DSAE).

Data sets for external validation We obtained
six public classification data sets that use health-
related social media data. They were retrieved
from the data repository of Dredze9 and the shared
tasks of Social Media Mining 4 Health workshop
(SMM4H) 201910. The data sets sizes range from
588 to 16,141 posts (see Table 2).

6Two errors overlapped between the sets
7Due to a limited number of words of length 17, 311 in-

stead of 320 words were added
8http://norvig.com/ngrams/count_1edit.

txt
9http://www.cs.jhu.edu/˜mdredze/data/

10https://healthlanguageprocessing.org/
smm4h/challenge/
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Data set Task Size Positive (%) Negative (%)
Task 1 SMM4H 2019* Presence adverse drug reaction 16,141 8.7 91.3
Task 4 SMM4H 2019* Flu vaccine Personal health mention of flu vaccina-

tion
6,738 28.3 71.7

Flu Vaccination Tweets (Huang et al.,
2017)

Relevance to topic flu vaccination 3,798 26.4 73.6

Twitter Health (Paul and Dredze, 2009) Relevance to health 2,598 40.1 59.9
Task4 SMM4H 2019* Flu infection Personal health mention of having flu 1,034 54.4 45.6
Zika Conspiracy Tweets (Dredze et al.,
2016)

Contains pseudo-scientific information 588 25.9 74.1

Table 2: Six classification data sets of health-related Twitter data. *SMM4H: Social Media Mining 4 Health
workshop

Figure 1: Sequential processing pipeline

4 Methods

Preprocessing To protect the privacy of users,
in-text person names were replaced as much as
possible using a combination of the NLTK names
corpus and part-of-speech tags (NNP and NNPS).
Additionally, URLs and email addresses were re-
placed by the strings -url- and -email- using reg-
ular expressions. Furthermore, text was lower-
cased and tokenized using NLTK. The first mod-
ules of the normalization pipeline of Sarker (2017)
were employed: converting British to Ameri-
can English and normalizing generic abbrevia-
tions (see Figure 1). Some forum-specific addi-
tions were made: Gleevec (British variant: Glivec)
was included in the British-American spelling
conversion and one generic abbreviation expan-
sion that clashed with a domain-specific one was
substituted (i.e. ‘temp’ defined as temperature
instead of temporary). Moreover, the abbrevi-
ations dictionary by Sarker (2017) was lower-
cased. Lastly, domain-specific abbreviations were
expanded with a lexicon of 42 non-ambiguous ab-
breviations, generated based on 500 randomly se-
lected posts from the GIST forum and annotated
by a domain expert and the first author. 11

11This lexicon is shared on github https://github.
com/AnneDirkson

Spelling correction We used the method by
Sarker (2017) as a baseline for spelling correc-
tion. Their method combines normalized abso-
lute Levenshtein distance with Metaphone pho-
netic similarity and language model similarity. For
the latter, distributed word representations (skip-
gram word2vec) of three large Twitter data sets
were used. In this paper, we used only the DIEGO
LAB Drug Chatter Corpus (Sarker and Gonzalez,
2017a), as it was the only health-related corpus
of the three. We also use a purely data-driven
spelling correction method for comparison: Text-
Induced Spelling Correction (TISC) developed by
Reynaert (2005). It compares the anagrams of a
token to those in a large corpus of text to cor-
rect mistakes. These two methods are compared
with simple absolute and relative Levenshtein dis-
tance and weighted versions of both. To evaluate
the spelling correction methods, the accuracy (i.e.
the percentage of correct corrections) was used.
The weights of the edits for weighted Levenshtein
distance were computed using the log of the fre-
quencies of the Norvig corpus. We used the log
to ensure that a 10x more frequent error does not
become 10x as cheap, as this would make infre-
quent errors too improbable. In order to make the
weights inversely proportional to the frequencies
and scale the weights between 0 and 1 with lower
weights signifying lower costs for an edit, the fol-
lowing transformation of the log frequencies was
used: Weight Edit Distance = 1

1+log(frequency) .

Spelling mistake detection We manually con-
structed a decision process, inspired by the work
by Beeksma et al. (2019), for detecting spelling
mistakes (See Figure 2). The decision process
uses the corpus frequency relative to that of the
token and the similarity to the token. The underly-
ing idea is that if a word is either common within
the domain-specific language or there is no simi-
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lar enough candidate available, it is unlikely to be
a mistake. A relative threshold enables us to cap-
ture more common mistakes.

To ensure generalisability, we opted for an un-
supervised, data-driven method that does not rely
on the construction of a specialized vocabulary.
Candidates are considered in order of frequency.
Of the candidates with the highest similarity score,
the first is selected. The spelling correction ig-
nores numbers and punctuation.

To optimize the decision process, a 10-fold
cross validation grid search was conducted with a
grid of 2 to 10 (steps of 1) for the minimum multi-
plication factor of the corpus frequency and a grid
of 0.05 to 0.15 (steps of 0.01) for the minimum
similarity. The choice of grid was based on pre-
vious work by Walasek (2016) and Beeksma et al.
(2019). The loss function used to tune the parame-
ters was the F0.5 score, which places more weight
on precision than the F1 score. We believe it is
more important to not alter correct terms, than to
retrieve incorrect ones.

Spelling correction candidates For evaluating
the mistake detection process, spelling correction
candidates are derived from the data itself using
the corpus frequency and similarity thresholds.
For internal and external validation, candidates are
also derived from the data itself. However, for
comparing the spelling correction methods, the
words of the specialized vocabulary for cancer fo-
rums (see section 3) were used as correction can-
didates in order to evaluate the methods indepen-
dently of the vocabulary present in the data.

Internal validation The percentage of out-of-
vocabulary (OOV) terms is used as an estimation
of the quality of the data: less OOV-terms and
thus more in-vocabulary (IV) terms is a proxy for
cleaner data. As the correction candidates are de-
rived from the data itself, one must note that words
that are not part of CELEX may also be trans-
formed from IV to OOV. The forum text was lem-
matised prior to spelling correction. OOV analysis
was done manually.

External validation Text classification was per-
formed with default sklearn classifiers: Stochas-
tic Gradient Descent (SGD), Multinomial Naive
Bayes (MNB) and Linear Support Vector Machine
(SVC). Uni-grams were used as features. A 10-
fold cross-validation was used to determine the av-
erage score and paired t-test was applied to deter-

Accuracy
Sarker’s method 20.8 %
TISC 24.5 %
Absolute Edit distance (AE) 56.6 %
Relative Edit distance (RE) 56.6 %
Absolute Weighted Edit distance (AWE) 54.7 %
Relative Weighted Edit distance (RWE) 62.3%
Upper bound 84.9%

Table 3: Accuracy of spelling correction methods

mine significance of the absolute difference. Only
the best performing classifier is reported per data
set. For the shared tasks of the SMM4H workshop,
only the training data was used.

To evaluate our method on generic social media
text, we used the test set of the ACL W-NUT 2015
task (Baldwin et al., 2015). The test set consists
of 1967 tweets with 2024 one-to-one, 704 one-to-
many, and 10 many-to-one mappings. We did not
need to use the training data, as our method is un-
supervised. For comparison, the F1 score on the
W-NUT training data was 0.562.

5 Results

5.1 Spelling correction

The state-of-the-art method for generic social me-
dia performed poorly on medical social media
with an accuracy of only 20.8% (see Table 3).
A second established data-driven approach, TISC,
also performed poorly (24.5%). The best perform-
ing baseline method on our spelling corpus was
Relative Weighted Edit distance (RWE) (62.3%).
As eight corrections did not occur in the CELEX,
the upper bound was 84.9%.

One of the reasons for the low accuracy of
Sarker’s method may be the absence of correct
terms (e.g. gleevec) in the language model it em-
ploys. This potential complication was already
highlighted by Sarker (2017) in their own paper.
Similarly, the large corpus of English news texts,
which TISC relies on, may not contain the right
terms or may not be comparable enough as a lan-
guage model to our domain-specific data set.

In contrast, the key to the success of weighted
edit distance methods is likely the incorporation
of probabilities for 1-edit errors. This matches
the intuition that certain errors are easier to make
than others. For example, someone is more likely
to wrongly spell sutent as sutant than as mutant
(see Table 4). Such weighted methods indirectly
integrate different types of possible errors, such
as typo- and orthographical errors. The relative
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Mistake gllevec stomack sutant
Correct gleevec* stomach sutent*
Sarker’s method clever smack mutant
TISC gllevec smack dunant
AE gleevec stomach mutant
RE gleevec stomach mutant
AWE gleevec smack sutent
RWE gleevec stomach sutent

Table 4: Corrections made by spelling methods.
*Gleevec and Sutent are important cancer medications
for GIST patients

Figure 2: Decision process for spelling corrections.
RWE: Relative Weighted Edit Distance

variant, as opposed to the absolute weighted edit
distance, can counterbalance cheap deletions and
additions, as can be seen for the mistake stomack
(See Table 4).

5.2 Detecting spelling mistakes

The grid search results in two criteria for correc-
tion candidates: (1) a minimum of 2 times the rel-
ative corpus frequency of the token and (2) a max-
imum similarity score of 0.08 (see Figure 2). This
combination attains the maximum F0.5 score for
all 10 folds.

On the test set, the decision process has an F0.5
of 0.888. Its precision is high (0.90). Although
the recall of a generic dictionary (i.e. CELEX) is
maximal (1.0), its precision is low (0.464). This
indicates, as hypothesized, that a dictionary-based
method can retrieve more of the mistakes, but
also will identify many correct terms as mistakes.
Some examples of false positives were: ‘oncolo-
gist’, ‘gleevec’ and ‘colonoscopy’. See Table 6
for some examples of errors made by our decision
process.

The accuracy of the RWE method is further in-
creased by 1.8% point by filtering the correction
candidates using the preceding decision process,

F0.5 F1 Recall Precision
CELEX 0.519 0.634 1.0 0.464

Decision process 0.888 0.871 0.844 0.900

Table 5: Results for mistake detection methods on the
test set

False positives oncologists recruiter angiogram
False negatives norvay stomach vac

Table 6: Examples of errors of the decision process

as is done in the full spelling module. The upper
limit for spelling correction also increased from
84.9% to 92.5% by using candidates from the data
instead of a specialized dictionary.

5.3 Effect on OOV rate

The reduction in OOV-terms was higher for the
GIST (0.50%) than for the Reddit forum (0.27%)
(See Figure 3). As expected, it appears that in-
vocabulary terms are occasionally replaced with
out-of-vocabulary terms, as the percentage of al-
tered words is higher than the reduction in OOV
(0.67% vs 0.50% for the GIST and 0.44% vs
0.27% for the Reddit forum).

Interestingly, the initial OOV count before
spelling correction of the GIST forum is almost
double that of the sub-reddit on cancer. This could
be explained by the more specific nature of the fo-
rum: it may contain more words that are excluded
from the dictionary, despite it being tailored to the
cancer domain. This again underscores the limita-
tions of dictionary-based methods.

Some of the most frequent corrections made
in the GIST forum data were medical terms (e.g.
gleevec, scan). Thus, although the overall re-
duction in OOV-terms may seem minor, our ap-
proach appears to target medical concepts, which
are highly relevant for knowledge extraction tasks.
Besides correcting mistakes in medical terms, our
method also normalizes variants of medical terms
(e.g. metastatic to metastasis). This is possibly
a result of the corpus frequency comparison be-
tween tokens and candidates, which favors more
prevalent variants.

Concerning the 50 most frequent remaining
OOV terms, only a small proportion of them are in
fact non-word spelling errors (e.g. ‘wa’ ), although
slang words (e.g ‘ya’) could arguably also be part
of this category (see Table 7). A significant portion
consists of real words (e.g. ‘online’, ‘website’,
‘stressful’) not present in the specialized dictio-
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Figure 3: Percentage of OOV-terms in two cancer fo-
rums pre- and post-spelling correction.

Figure 4: Most frequent mistakes and corrections in the
GIST forum

nary. Upon manual inspection, the abbreviations
frequently refer to treatments (e.g. ‘rai’), mutation
types (e.g. ‘nf’) or hospitals (e.g ‘ucla’). Impor-
tantly, also some drug names are considered OOV
(e.g. ‘ativan’). Since they can be essential for
downstream tasks, it is promising that they have
not been altered by our method.

5.4 External evaluation

As can been seen in Table 8, the spelling correc-
tion does not lead to significant changes in the
F1 score for five of the six tasks. For the Twit-

GIST forum Reddit
Spelling error 3 1
Real word 11 21
Abbreviation 14 9
Slang 6 13
Name of person or hospital 14 2
Drug name 1 4
Not English 1 0
TOTAL 50 50

Table 7: Analysis of 50 most frequent remaining OOV
in two cancer forums

ter Health classification task, the improvement is
significant with a p-value of 0.041 according to a
paired t-test.

In general, these changes are of the same order
of magnitude as those made by the normalization
pipeline of Sarker (2017). Moreover, the % of al-
terations due to spelling correction is comparable
to that of the two cancer-related forums (see Fig-
ure 3). Although the overall classification accu-
racy on Task 1 of the SMM4H workshop is low,
this is in line with the low F1 score (0.522) of the
best performing system on the comparable task in
2018 (Weissenbacher et al., 2018).

Neither the goal of the task, the relative amount
of corrections nor the initial result seem to corre-
late with the change in F1 score. Unlike in Sarker
(2017), the improvements also do not seem to in-
crease with the size of the data. The imbalance of
the data may be associated with the change in ac-
curacy to some extent: the two most balanced data
sets show the largest increase (see Table 2). Fur-
ther experiments would be necessary to elucidate
if this is truly the case.

As can be seen in Table 9, our method does not
perform well on generic social media text. In com-
parison, Sarker (2017)’s method attained state-of-
the-art results with a F1 of 0.836 on the ACL W-
NUT 2015, but functioned poorly for medical so-
cial media (see Table 3). Thus, the success on one
does not imply success on the other and conse-
quently, normalisation of generic social media text
and of domain-specific social media text appear
different to the extent that they necessitate differ-
ent approaches.

6 Discussion

Relative weighted edit distance outperforms both
Sarker’s method and other edit distance metrics
with an accuracy of 62.3%. The accuracy is in-
creased by a further 1.8% point if correction candi-
dates are filtered with the criteria of the preceding
decision process. This decision process is also ca-
pable of identifying mistakes with an F0.5 of 0.888
and a high precision (0.90).

The spelling correction method led to an over-
all reduction in OOV-terms of 0.50% and 0.27%
for two cancer-related forums. Although the re-
duction of OOV-terms may seem minor, relevant
medical terms appear to be targeted (see Figure
4) and, additionally, many of the remaining OOV-
terms are not spelling errors (see Table 7). Further-
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Data set Classifier Prenorm F1 Postnorm F1 Postspell F1 Change+ % of words corrected
Task 1 SMM4H 2019 SVC 0.410 0.413 0.417 +0.006 1.1
Task 4 SMM4H 2019 Flu
vaccine

MNB 0.780 0.781 0.782 +0.001 0.47

Flu Vaccination Tweets SVC 0.939 0.938 0.941 +0.002 0.83
Twitter Health MNB 0.702 0.708 0.713 +0.010* 0.64
Task4 SMM4H 2019 Flu
infection

MNB 0.784 0.792 0.795 +0.011 0.29

Zika Conspiracy Tweets MNB 0.822 0.818 0.811 -0.011 1.1

Table 8: Mean classification accuracy before normalization (prenorm), after normalization (postnorm) and after
spelling correction (postspell) for six health-related classification tasks. Only the results for the best performing
classifier per data set are reported. MNB: Multinomial Naive Bayes; SVC: Linear Support Vector Classification.
+Absolute change compared to prenorm.

F1 Precision Recall
Sarker’s method (Sarker, 2017) 0.836 0.880 0.796
IHS RD (Supranovich and Patsepnia, 2015) 0.827 0.847 0.808
USZEGED (Berend and Tasnádi, 2015) 0.805 0.861 0.756
BEKLI (Beckley, 2015) 0.757 0.774 0.742
LYSGROUP (Doval Mosquera et al., 2015) 0.531 0.459 0.630
Our method 0.522 0.646 0.577

Table 9: Results for unconstrained systems of ACL W-NUT 2015

more, our method was designed to be conservative
and to focus on precision to mitigate one of the
major challenges of correcting errors in domain-
specific data: the loss of information due to the
‘correction’ of correct domain-specific terms. The
marginal change in task-based classification accu-
racy may be due to the fact that classification tasks
do not rely strongly on individual terms, but on all
words combined. This could also explain the lack
of a correlation between the amount of alterations
and the change in F1 score. We plan to evaluate
these results further by analysing both the correc-
tions and the classification errors.

We speculate that our method will have a
larger impact on named entity recognition (NER)
tasks. Unfortunately, NER benchmarks for health-
related social media are limited. We have investi-
gated three relevant NER tasks that were publicly
available: CADEC (Karimi et al., 2015), ADR-
Miner (Nikfarjam et al., 2015), and the ADR ex-
traction task of the SMM4H 2019. For all three
tasks, extracted concepts could be matched ex-
actly to the forum posts, thus negating the poten-
tial benefit of normalization. The exact matching
can perhaps be explained by the fact that data col-
lection and extraction from noisy text sources such
as social media typically rely on keyword-based
searching (Sarker and Gonzalez, 2017b).

Our study has a number of limitations. Firstly,
the use of OOV-terms as a proxy for quality of the
data relies heavily on the vocabulary that is chosen

and, moreover, does not allow for differentiation
between correct and incorrect substitutions. Con-
sequently, we also test whether our method can
improve classification accuracy on various tasks.
Secondly, our method is currently targeted specif-
ically at correcting non-word errors and is thus is
unable to correct real word errors. Thirdly, our
evaluation data set for developing our method is
small: a larger evaluation data set would allow
for more rigorous testing. Nonetheless, as far as
we are aware, our corpora are the first for evaluat-
ing mistake detection and correction in a medical
patient forum. We welcome comparable data sets
sourced from various patient communities for fur-
ther refinement and testing of our method.

7 Conclusion and future work

Our data-driven, unsupervised spelling correction
can improve the quality of text data from medical
forum posts from two cancer-related forums. Our
method may also be useful for user-generated con-
tent in other highly specific and noisy domains,
which contain many OOV compared to available
dictionaries. Future work will include extending
the pipeline with modules for named entity recog-
nition, automated relation annotation and concept
normalization.
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Abstract

The number of users of social media contin-
ues to grow, with nearly half of adults world-
wide and two-thirds of all American adults
using social networking on a regular basis1.
Advances in automated data processing and
NLP present the possibility of utilizing this
massive data source for biomedical and pub-
lic health applications, if researchers address
the methodological challenges unique to this
media. We present the Social Media Mining
for Health Shared Tasks collocated with the
ACL at Florence in 2019, which address these
challenges for health monitoring and surveil-
lance, utilizing state of the art techniques for
processing noisy, real-world, and substantially
creative language expressions from social me-
dia users. For the fourth execution of this chal-
lenge, we proposed four different tasks. Task
1 asked participants to distinguish tweets re-
porting an adverse drug reaction (ADR) from
those that do not. Task 2, a follow-up to Task
1, asked participants to identify the span of
text in tweets reporting ADRs. Task 3 is an
end-to-end task where the goal was to first de-
tect tweets mentioning an ADR and then map
the extracted colloquial mentions of ADRs in
the tweets to their corresponding standard con-
cept IDs in the MedDRA vocabulary. Finally,
Task 4 asked participants to classify whether
a tweet contains a personal mention of one’s
health, a more general discussion of the health
issue, or is an unrelated mention. A total of
34 teams from around the world registered
and 19 teams from 12 countries submitted a
system run. We summarize here the corpora
for this challenge which are freely available
at https://competitions.codalab.
org/competitions/22521, and present
an overview of the methods and the results of
the competing systems.

1Pew Research Center. Social Media Fact Sheet.
2017. [Online]. Available: http://www.pewinternet.org/fact-
sheet/social-media/

1 Introduction

The intent of the #SMM4H shared tasks se-
ries is to challenge the community with Natu-
ral Language Processing tasks for mining rele-
vant data for health monitoring and surveillance
in social media. Such challenges require pro-
cessing imbalanced, noisy, real-world, and sub-
stantially creative language expressions from so-
cial media. The competing systems should be
able to deal with many linguistic variations and
semantic complexities in the various ways peo-
ple express medication-related concepts and out-
comes. It has been shown in past research (Liu
et al., 2011; Giuseppe et al., 2017) that automated
systems frequently under-perform when exposed
to social media text because of the presence of
novel/creative phrases, misspellings and frequent
use of idiomatic, ambiguous and sarcastic expres-
sions. The tasks act as a discovery and verification
process of what approaches work best for social
media data.

As in previous years, our tasks focused on min-
ing health information from Twitter. This year
we challenged the community with two different
problems. The first problem focuses on perform-
ing pharmacovigilance from social media data. It
is now well understood that social media data may
contain reports of adverse drug reactions (ADRs)
and these reports may complement traditional ad-
verse event reporting systems, such as the FDA
adverse event reporting system (FAERS). How-
ever, automatically curating reports from adverse
reactions from Twitter requires the application of
a series of NLP methods in an end-to-end pipeline
(Sarker et al., 2015). The first three tasks of this
year’s challenge represent three key NLP prob-
lems in a social media based pharmacovigilance
pipeline — (i) automatic classification of ADRs,
(ii) extraction of spans of ADRs and (iii) normal-
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ization of the extracted ADRs to standardized IDs.
The second problem explores the generalizabil-

ity of predictive models. In health research us-
ing social media, it is often necessary for re-
searchers to build individual classifiers to iden-
tify health mentions of a particular disease in a
particular context. Classification models that can
generalize to different health contexts would be
greatly beneficial to researchers in these fields
(e.g., (Payam and Eugene, 2018)), as this would
allow researchers to more easily apply existing
tools and resources to new problems. Motivated
by these ideas, Task 4 was testing tweet classifi-
cation methods across diverse health contexts, so
the test data included a very different health con-
text than the training data. This setting measures
the ability of tweet classifiers to generalize across
health contexts.

The fourth iteration of our series follows the
same organization as previous iterations. We col-
lected posts from Twitter, annotated the data for
the four tasks proposed and released the posts to
the registered teams. This year, we conducted the
evaluation of all participating systems using Co-
dalab, an open source platform facilitating data
science competitions. The performances of the
systems were compared on a blind evaluations sets
for each task.

All teams registered were allowed to participate
to one or multiple tasks. We provided the partic-
ipants with two sets of data for each task, a train-
ing and a test set. Participants had a period of six
weeks, from March 5th to April 15th, for train-
ing their systems on our training sets, and 4 days,
from the 16th to 20th of April, for calibrating their
systems on our test sets and submitting their pre-
dictions. In total 34 teams registered and 19 teams
submitted at least one run (each team was allowed
to submit, at most, three runs per task). In detail,
we received 43 runs for task 1, 24 for task 2, 10 for
task 3 and 15 for task 4. We briefly describe each
task and their data in section 2, before discussing
the results obtained in section 3.

2 Task Descriptions

2.1 Tasks

Task 1: Automatic classification of tweets men-
tioning an ADR. This is a binary classification
task for which systems are required to predict if a
tweet mentions an ADR or not. In an end-to-end
social media based pharmacovigilance pipeline,

such a system is needed after data collection to
filter out the large volume of medication-related
chatter that is not a mention of an ADR. This task
is a rerun of the popular classification task orga-
nized in past years.

Task 2: Automatic extraction of ADR mentions
from tweets. This is a named entity recogni-
tion (NER) task that typically follows the ADR
classification step (Task 1) in an ADR extraction
pipeline. Given a set of tweets containing drug
mentions and potentially containing ADRs, the
objective was to determine the span of the ADR
mention, if any. ADRs are rare events making
ADR classification a challenging task with an F1-
score in the vicinity of 0.5 (based on previous
shared task results (Weissenbacher et al., 2018))
for the ADR class. The dataset for the ADR ex-
traction task contains tweets that are both positive
and negative for the presence of ADRs. This al-
lowed participants to choose to train their systems
on either the set of tweets containing ADRs or in-
clude tweets that were negative for the presence of
ADRs.

Task 3: Automatic extraction of ADR mentions
and normalization of extracted ADRs to Med-
DRA preferred term identifiers. This is an ex-
tension of Task 2 consisting of the combination of
NER and entity normalization tasks: a named en-
tity resolution task. In this task, given the same
set of tweets as in Task 2, the objective was to ex-
tract the span of an ADR mention and to normal-
ize it to MedDRA identifiers 2. MedDRA (Med-
ical Dictionary for Regulatory Activities), which
is the standard nomenclature for monitoring med-
ical products, and includes diseases, disorders,
signs, symptoms, adverse events or adverse drug
reactions. For the normalization task, MedDRA
version 21.1 was used, containing 79,507 lower
level terms (LLTs) and 23,389 respective preferred
terms (PTs).

Task 4: Automatic classification of personal
mentions of health. In this binary classifica-
tion task, the systems were required to distinguish
tweets of personal health status or opinions across
different health domains. The proposed task was
intended to provide a baseline understanding of
the ability to identify personal health mentions in
a generalized context.

2https://www.meddra.org/ Accessed:
05/13/2019.
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2.2 Data
All corpora were composed of public tweets
downloaded using the official streaming API pro-
vided by Twitter and made available to the partici-
pants in accordance with Twitter’s data use policy.
This study received an exempt determination by
the Institutional Review Board of the University
of Pennsylvania.

Task 1. For training, participants were provided
with all the tweets from the #SMM4H 2017 shared
tasks (Sarker et al., 2018), which are publicly
available at: https://data.mendeley.
com/datasets/rxwfb3tysd/2. A total of
25,678 tweets were made available for training.
The test set consisted of 4575 tweets with 626
(13.7%) tweets representing ADRs. The evalua-
tion metric for this task was micro-averaged F1-
score for the ADR class.

Task 2. Participants of Task 2 were provided
with a training set containing 2276 tweets which
mentioned at least one drug name. The dataset
contained 1300 tweets that were positive for the
presence of ADRs and 976 tweets that were neg-
ative. Participants were allowed to include addi-
tional negative instances from Task 1 for training
purposes. Positive tweets were annotated with the
start and end indices of the ADRs and the corre-
sponding span text in the tweets. The evaluation
set contained 1573 tweets, 785 and 788 tweets
were positive and negative for the presence of
ADRs respectively. The participants were asked
to submit outputs from their systems that con-
tained the predicted start and end indices of ADRs.
The participants’ submissions were evaluated us-
ing standard strict and overlapping F1-scores for
extracted ADRs. Under strict mode of evaluation,
ADR spans were considered correct only if both
start and end indices matched with the indices in
our gold standard annotations. Under overlapping
mode of evaluation, ADR spans were considered
correct only if spans in predicted annotations over-
lapped with our gold standard annotations.

Task 3. Participants were provided with the
same training and evaluation datasets as in Task
2. However, the datasets contained additional
columns for the MedDRA annotated LLT and PT
identifiers for each ADR mention. In total, of the
79,507 LLT and 23,389 PT identifiers available in
MedDRA, the training set of 2276 tweets and 1832
annotated ADRs contained 490 unique LLT iden-

tifiers and 327 unique PT identifiers. The evalua-
tion set contained 112 PT identifiers that were not
present as part of the training set. The participants
were asked to submit outputs containing the pre-
dicted start and end indices of ADRs and respec-
tive PT identifiers. Although the training dataset
contained annotations at the LLT level, the perfor-
mance was only evaluated at the higher PT level.
The participants’ submissions were evaluated us-
ing standard strict and overlapping F-scores for ex-
tracted ADRs and respective MedDRA identifiers.
Under strict mode of evaluation, ADR spans were
considered correct only if both start and end in-
dices matched along with matching MedDRA PT
identifiers. Under overlapping mode of evaluation,
ADR spans were considered correct only if spans
in predicted ADRs overlapped with gold standard
ADR spans in addition to matching MedDRA PT
identifiers.

Task 4 Data. Participants were provided train-
ing data from one disease domain, influenza,
across two contexts, being sick and getting vac-
cinated, both annotated for personal mentions: the
user is personally sick or the user has been per-
sonally vaccinated. Test data included new tweets
of personal health mentions about influenza and
tweets from an additional disease domain, Zika
virus, with two different contexts, the user is
changing their travel plans in response to Zika
concerns, or the user is minimizing potential
mosquito exposure due to Zika concerns.

2.3 Annotation and Inter-Annotator
Agreements

Two annotators with biomedical education and
both experienced in Social Media research tasks
manually annotated the corpora for tasks 1, 2 and
3. Our annotators independently dual-annotated
each test sets to insure the quality of our annota-
tions. Disagreement were resolved after an adju-
dication phase between our two annotators. On
task 1, the classification task, the inter annotator-
agreement (IAA) was high with a Cohens Kappa
= 0.82. On task 2, the information extraction task,
IAAs were good with and an F1-score of 0.73 for
strict agreement, and 0.85 for overlapping agree-
ment3. On task 3, our annotators double annotated

3Since task 2 is a named-entity recognition task, we fol-
lowed the recommendations of (Hripcsak and Rothschild,
2005) and used precision and recall metrics to estimate the
inter-annotator rate.
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535 of the extracted ADR terms and normalized
them to MedDRA lower lever terms (LLT). They
achieved an agreement accuracy of 82.6%. Af-
ter converting the LLT to their corresponding pre-
ferred term (PT) in MedDRA, which is the coding
the task was scored against, accuracy improved to
87.7%4.

The annotation process followed for task 4 was
slightly different due to the nature of the task. We
obtained the two datasets of our training set, fo-
cusing on flu vaccination and flu infection, from
(Huang et al., 2017) and (Lamb et al., 2013) re-
spectively. Huang et al. (Huang et al., 2017) used
mechanical turk to crowdsource labels (Fleiss’
kappa = 0.793). Lamb et al. (Lamb et al., 2013)
did not report their labeling procedure or annotator
agreement metrics, but do report annotation guide-
lines5. A few of the tweets released by Lamb et
al. appeared to be mislabeled and were corrected
in accordance with the annotation guidelines de-
fined by the authors. We obtained the test data
for task 4 by compiling three datasets. For the
dataset related to travel changes due to Zika con-
cerns, we selected a subset of data already avail-
able from (Daughton and Paul, 2019). Initial la-
beling of these tweets was performed by two an-
notators with a public health background (Cohen’s
kappa = 0.66). We reuse the original annotations
for this dataset without changes. For the mosquito
exposure dataset, tweets were labeled by one an-
notator with public health knowledge and expe-
rienced with social media, and then verified by
a second annotator with similar experience. The
additional set of data on personal exposure to In-
fluenza were obtained from a separate group, who
used an independent labeling procedure.

3 Results

The challenge received a solid response with 19
teams from 12 countries (7 from North America,
1 from South America, 6 from Asia and 5 from
Europe) submitting 92 runs in total in one or more
tasks. We present an overview of all architec-
tures competing in the different tasks in Table 1,
2, 3, 4. We also list in these tables the exter-
nal resources competitors integrated for improving

4We measured agreement using accuracy instead of Co-
hens Kappa because, with greater than 70,000 LLTs for the
annotators to choose from, agreement due to chance is ex-
pected to be small.

5We used the awareness vs. infection labels as defined in
(Lamb et al., 2013).

the pre-training of their systems or for embedding
high-level features to help decision-making.

The overview of all architectures is interest-
ing in two ways. First, this challenge confirms
the tendency of the community to abandon tradi-
tional Machine Learning systems based on hand-
crafted features for deep learning architectures ca-
pable of discovering the features relevant for the
task at hand from pre-trained embeddings. Dur-
ing the challenge, when participants implemented
traditional systems, such as SVM or CRF, they
used such systems as baselines and, observing sig-
nificant differences of performances with systems
based on deep learning on their validation sets,
most of them did not submit their predictions as
official runs. Second, while last year convolu-
tional or recurrent neural networks “fed” with pre-
trained word embeddings learned on local win-
dows of words (e.g. word2vec, GloVe) were the
most popular architectures, this year we can see
a clear dominance of neural architectures using
word embeddings pre-trained with the Bidirec-
tional Encoder Representations from Transform-
ers (BERT) proposed by (Devlin et al., 2018), or
fine-tuning these words embeddings on our train-
ing corpora. BERT allows to compute words em-
beddings based on the full context of sentences
and not only on local windows.

A notable result from task 1-3 is that, despite
an improvement in performances for the detec-
tion of ADRs, their resolution remains challenging
and will require further research. The participants
largely adopted contextual word-embeddings dur-
ing this challenge, a choice rewarded by new
records in performances during the task 1, the only
task reran from last years. The performances in-
creased from .522 F1-score (.442 P, .636 R) (Weis-
senbacher et al., 2018) to .646 F1-score (0.608 P,
0.689 R) for the best systems of each years. How-
ever, with a strict matching F1-score of .432 (.362
P, .535 R) for the best system, the performances
obtained in task 3 for ADRs resolution are still
low and human inspection is still required to make
use of the data extracted automatically. As shown
by the best score of .887 Accuracy obtained on the
ADR normalization in task 3 ran during #SMM4H
in 2017 (Sarker et al., 2018)6, once ADRs are ex-
tracted, the normalization of the ADRs can be per-

6Organizers of the task 3 ran during #SMM4H 2017 pro-
vided participants with manually curated expressions refer-
ring to ADRs and participants had to map them to their cor-
responding preferred terms in MeDRA.
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formed with a good reliability. However errors are
made during all steps of the resolution — detec-
tion, extraction, normalization — and their over-
all accumulation render current automatic systems
inefficient. Note that bulk of the errors are made
during the extraction of the ADRs, as shown by
the low strict F1-score of the best system in task 2,
.464 F1-score (.389P, .576 R).

For task 4, we were especially interested in the
generalizability of first person health classifiers to
a domain separate from that of the training data.
We find that, on average, teams do reasonably
well across the full test dataset (average F1-score:
0.70, range: 0.41-0.87). Unsurprisingly, classi-
fiers tended to do better on a test set in the same
domain as the training dataset (context 1, average
F1-score: 0.82) and more modestly on the Zika
travel and mosquito datasets (average F1-score:
0.40 and 0.52, respectively). Interestingly, in all
contexts, precision was higher than recall. We note
that both the training and the testing data were lim-
ited in quantity, and that classifiers would likely
improve with more data. However, in general, it is
encouraging that classifiers trained in one health
domain can be applied to separate health domains.

4 Conclusion

In this paper we presented an overview of the re-
sults of #SMM4H 2019 which focuses on a) the
resolution of adverse drug reaction (ADR) men-
tioned in Twitter and b) the distinction between
tweets reporting personal health status form opin-
ions across different health domains. With a total
of 92 runs submitted by 19 teams, the challenge
was well attended. The participants, in large part,
opted for neural architectures and integrated pre-
trained word-embedding sensitive to their contexts
based on the recent Bidirectional Encoder Repre-
sentations from Transformers. Such architectures
were the most efficient on our four tasks. Re-
sults on tasks 1-3 show that, despite a continuous
improvement of performances in the detection of
tweets mentioning ADRs over the past years, their
end-to-end resolution still remain a major chal-
lenge for the community and an opportunity for
further research. Results of task 4 were more en-
couraging, with systems able to generalized their
predictions over domains not present in their train-
ing data.
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Rank Team System details
1 ICRC Architecture: BERT + FF + Softmax

Details: lexicon features (pairs of drug-ADR)
Resources: SIDER

2 UZH Architecture: ensemble of BERT & C CNN + W BiLSTM (+ CRF)
Details: multi-task-learning
Resources: CADEC corpus

3 MIDAS@IIITD Architecture: 1. BERT 2. ULMFit 3. W BiLSTM
Details: BERT + GloVe + Flair
Resources: additional corpus (Sarker and Gonzalez-Hernandez, 2015)

4 KFU NLP Architecture: BERT + logistic regression
Details: BioBERT

5 CLaC Architecture: Bert + W BiLSTM + attention + softmax + SVM
Details: BERT, Word2Vec, Glove, embedded features
Resources: POS, modality, ADR list

6 THU NGN Architecture: C CNN + W BiLSTM + features + Multi-Head attention + Softmax
Details: Word2Vec, POS, ELMo
Resources: sentiment Lexicon, SIDER, CADEC

7 BigODM Architecture: ensemble of SVMs
Resources: Word Embeddings

8 UMich-NLP4Health Architecture: 1. W BiLSTM + attention + softmax; 2. W CNN + BiLSTM + softmax; 3. SVM
Details: GloVe, POS, case
Resources: Metamap, cTAKES, CIDER

9 TMRLeiden Architecture: ULMfit
Details: Flair + Glove + Bert; transfer learning
Resources: external corpus (Sarker and Gonzalez, 2017)

10 CIC-NLP Architecture: C BiLSTM + W FF + LSTM + FF
Details: GloVe + BERT

12 SINAI Architecture: 1. SVM 2. CNN + Softmax
Details: GloVe
Resources: MetaMap

13 nlp-uned Architecture: W BiLSTM + Sigmoid
Details: GloVe

14 ASU BioNLP Architecture: 1. Lexicon; 2. BioBert
Details: Lexicon learned with Logistic regression model

15 Klick Health Architecture: ELMo + FF + Softmax
Details: Lexicons
Resources: MedDRA, Consumer Health Vocabulary, (Nikfarjam et al., 2015)

16 GMU Architecture: encoder-decoder (W biLSTM + attention)
Details: Glove
Resources: #SMM4H 2017-2018, UMLS

Table 1: Task 1. System and resource descriptions for ADR mentions detection in tweets7.
8 We use C BiLSMT and C CNN to denote bidirectonal LSTMs or CNNs encoding sequences of characters, W BiLSTM and

W FF to denote bidirectional LSTMs or Feed Forward encoders of word embeddings.
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Rank Team System details
1 KFU NLP Architecture: ensemble of BioBERT + CRF

Details: BioBERT
Resources: external dictionaries (Miftahutdinov et al., 2017);

CADEC, PsyTAR, TwADR-L corpora; #SMM4H 2017
2 THU NGN Architecture: C CNN + W BiLSTM + features + Multi-Head self-attention + CRF

Details: Word2Vec, POS, ELMo
Resources: sentiment Lexicon, SIDER, CADEC

3 MIDAS@IIITD Architecture: W BiLSTM + CRF
Details: BERT + GloVe + Flair

4 TMRLeiden Architecture: BERT + Flair
Details: Flair + Glove + Bert; transfer learning

5 ICRC Architecture: BERT + CRF
Resources: SIDER

6 GMU Architecture: C biLSTM + W biLSTM + CRF
Details: Glove
Resources: #SMM4H 2017-2018, UMLS

7 HealthNLP Architecture: W BiLSTM + CRF
Details: Word2vec, BERT, ELMo, POS
Resources: external dictionaries

8 SINAI Architecture: CRF
Details: GloVe
Resources: MetaMap

9 Architecture: BiLSTM + CRF
Details: Word2Vec
Resources: MIMIC-III

10 Klick Health Architecture: Similarity
Details: Lexicons
Resources: MedDRA, Consumer Health Vocabulary, (Nikfarjam et al., 2015)

Table 2: Task 2. System and resource descriptions for ADR mentions extraction in tweets

Rank Team System details
1 KFU NLP Architecture: BioBERT + softmax
2 myTomorrows-TUDelft Architecture: ensemble RNN & Few-Shot Learning

Details: Word2Vec
Resources: MedDRA, Consumer Health Vocabulary, UMLS

3 TMRLeiden Architecture: BERT + Flair + RNN
Details: Flair + Glove + Bert; transfer learning
Resources: Consumer Health Vocabulary

4 GMU Architecture: encoder-decoder (W biLSTM + attention)
Details: Glove
Resources: #SMM4H 2017-2018, UMLS

Table 3: Task 3. System and resource descriptions for ADR mentions resolution in tweets.

Rank Team System details
1 UZH Architecture: ensemble BERT

Resources: CADEC corpus
2 ASU1 Architecture: BioBERT + FF

Resources: Word2vec, manually compiled list, ConceptNet
4 MIDAS@IIITD Architecture: BERT; W BiLSTM

Details: BERT + GloVe + Flair
5 TMRLeiden Architecture: ULMfit

Details: Flair + Glove + Bert; transfer learning
Resources: external corpus (Payam and Eugene, 2018)

6 CLaC Architecture: Bert + W BiLSTM + attention + softmax + SVM
Details: BERT, Word2Vec, Glove, embedded features
Resources: POS, modality, ADR list

Table 4: Task 4. System and resource descriptions for detection of personal mentions of health in tweets.
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Team F1 P R
ICRC 0.6457 0.6079 0.6885
UZH 0.6048 0.6478 0.5671
MIDAS@IIITD 0.5988 0.6647 0.5447
KFU NLP 0.5738 0.6914 0.4904
CLaC 0.5738 0.5427 0.6086
THU NGN 0.5718 0.4667 0.738
BigODM 0.5514 0.4762 0.655
UMich-NLP4Health 0.5369 0.5654 0.5112
TMRLeiden 0.5327 0.6419 0.4553
CIC-NLP 0.5209 0.6203 0.4489
UChicagoCompLx 0.4993 0.4574 0.5495
SINAI 0.4969 0.5517 0.4521
nlp-uned 0.4723 0.5244 0.4297
ASU BioNLP 0.4317 0.3223 0.6534
Klick Health 0.4099 0.5824 0.3163
GMU 0.3587 0.4526 0.2971

Table 5: System performances for each team for task 1 of the shared task. F1-score, Precision and Recall over the
ADR class are shown. Top scores in each column are shown in bold.

Relaxed Strict
Team F1 P R F1 P R
KFU NLP 0.658 0.554 0.81 0.464 0.389 0.576
THU NGN 0.653 0.614 0.697 0.356 0.328 0.388
MIDAS@IIITD 0.641 0.537 0.793 0.328 0.274 0.409
TMRLeiden 0.625 0.555 0.715 0.431 0.381 0.495
ICRC 0.614 0.538 0.716 0.407 0.357 0.474
GMU 0.597 0.596 0.599 0.407 0.406 0.407
HealthNLP 0.574 0.632 0.527 0.336 0.37 0.307
SINAI 0.542 0.612 0.486 0.36 0.408 0.322
ASU BioNLP 0.535 0.415 0.753 0.269 0.206 0.39
Klick Health 0.396 0.416 0.378 0.194 0.206 0.184

Table 6: System performances for each team for task 2 of the shared task. (Strict/Relaxed) F1-score, Precision
and Recall over the ADR mentions are shown. Top scores in each column are shown in bold.

Relaxed Strict
Team F1 P R F1 P R
KFU NLP 0.432 0.362 0.535 0.344 0.288 0.427
myTomorrows-TUDelft 0.345 0.336 0.355 0.244 0.237 0.252
TMRLeiden 0.312 0.37 0.27 0.25 0.296 0.216
GMU 0.208 0.221 0.196 0.109 0.116 0.102

Table 7: System performances for each team for task 3 of the shared task. (Strict/Relaxed) F1-score, Precision
and Recall over the ADR resolution are shown. Top scores in each column are shown in bold.
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Team Acc F1 P R
Health concerns in all contexts

UZH 0.8772 0.8727 0.8392 0.9091
ASU1 0.8456 0.8036 0.9783 0.6818
UChicagoCompLx 0.8316 0.7913 0.9286 0.6894
MIDAS@IIITD 0.8211 0.783 0.8932 0.697
TMRLeiden 0.793 0.7256 0.9398 0.5909
CLaC 0.6386 0.4607 0.7458 0.3333

Health concerns in Context 1: Flu virus (infection/vaccination)
UZH 0.9438 0.9474 0.9101 0.9878
UChicagoCompLx 0.925 0.9231 0.973 0.878
ASU1 0.925 0.9221 0.9861 0.8659
MIDAS@IIITD 0.8875 0.88 0.9706 0.8049
TMRLeiden 0.8625 0.8493 0.9688 0.7561
CLaC 0.6625 0.5645 0.8333 0.4268

Health concerns in Context 2: Zika virus, travel plans changes
UZH 0.7536 0.7385 0.7059 0.7742
MIDAS@IIITD 0.6667 0.5818 0.6667 0.5161
ASU1 0.6957 0.5116 0.9167 0.3548
UChicagoCompLx 0.6377 0.4681 0.6875 0.3548
TMRLeiden 0.6377 0.4186 0.75 0.2903
CLaC 0.5362 0.2 0.4444 0.129
Health concerns in Context 3: Zika virus, reducing mosquito exposure
UZH 0.8393 0.7692 0.75 0.7895
MIDAS@IIITD 0.8214 0.6667 0.9091 0.5263
ASU1 0.8036 0.5926 1.0 0.4211
UChicagoCompLx 0.8036 0.5926 1.0 0.4211
TMRLeiden 0.7857 0.5385 1.0 0.3684
CLaC 0.6964 0.3704 0.625 0.2632

Table 8: System performances for each team for task 4 of the shared task. Accuracy, F1-score, Precision and
Recall over the personal mentions are shown. Top scores in each column are shown in bold.
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Abstract

The medical concept normalisation task aims
to map textual descriptions to standard termi-
nologies such as SNOMED-CT or MedDRA.
Existing publicly available datasets annotated
using different terminologies cannot be simply
merged and utilised, and therefore become less
valuable when developing machine learning-
based concept normalisation systems. To ad-
dress that, we designed a data harmonisation
pipeline and engineered a corpus of 27,979
textual descriptions simultaneously mapped to
both MedDRA and SNOMED-CT, sourced
from five publicly available datasets across
biomedical and social media domains. The
pipeline can be used in the future to integrate
new datasets into the corpus and also could be
applied in relevant data curation tasks. We also
described a method to merge different termi-
nologies into a single concept graph preserv-
ing their relations and demonstrated that rep-
resentation learning approach based on ran-
dom walks on a graph can efficiently encode
both hierarchical and equivalent relations and
capture semantic similarities not only between
concepts inside a given terminology but also
between concepts from different terminolo-
gies. We believe that making a corpus and em-
beddings for cross-terminology medical con-
cept normalisation available to the research
community would contribute to a better under-
standing of the task.

1 Introduction

The medical concept normalisation task aims to
assign a corresponding identifier from a standard
terminology to text descriptions. Depending on
the domain, descriptions may vary from formal
medical jargon terms (e.g. “Dizziness”) to more
informal and colloquial expressions that rather
explain how the patient feels (e.g. “everything
that surrounds me is circling or rolling”, “kept

bumping into things”). There are multiple termi-
nologies of medical concepts that are commonly
used for mapping, such as SNOMED-CT (Sys-
tematized Nomenclature of Medicine - Clinical
Terms) (Stearns et al., 2001) and MedDRA (Med-
ical Dictionary for Regulatory Activities) (Brown
et al., 1999). The Unified Medical Language Sys-
tem (UMLS) (Schuyler et al., 1993) integrates
concepts from various biomedical vocabularies
and lexicons, including SNOMED-CT and Med-
DRA. Each concept is represented by its Con-
cept Unique Identifier (CUI). Clinicians choose
the most suitable terminology based on their par-
ticular case or application. Hence, when creating
corpora with annotated medical concepts, there
is no general agreement on which terminology
to use or which annotation guidelines to follow.
Also, variety of available concepts in terminolo-
gies (e.g. over 70,000 lowest level terms in Med-
DRA and over 350,000 concepts in SNOMED-
CT) makes it harder to achieve high agreement be-
tween annotators. For instance, annotators could
pick a different level of hierarchy (e.g. Fatigue
or more specific term Tiredness) or inconsistently
pick from similarly described concepts when a de-
scription is vague (e.g. Insomnia and Poor qual-
ity sleep). As a result, such variable annota-
tions cannot be simply merged and utilised, and
therefore, such data become less valuable when
developing machine learning-based concept nor-
malisation systems. To combine and harmonise
datasets, we need to tackle various problems asso-
ciated with providing cross-terminology mappings
between concepts and resolving inconsistent an-
notations from different datasets. Due to hetero-
geneous structures of medical terminologies, sim-
ple one-to-one mappings may be insufficient to
match and compare concepts. Therefore, it is also
necessary to harmonise and align terminologies
and find a way to represent medical concepts con-
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sidering relations between them regardless of the
terminology. Representation learning techniques
have shown promising results in encoding struc-
tural information about nodes in graphs and het-
erogeneous networks (Perozzi et al., 2014; Grover
and Leskovec, 2016; Dong et al., 2017; Hamil-
ton et al., 2017), however this requires integrat-
ing various medical terminologies into a single
graph or network, which remains challenging. Re-
cently, it has been also demonstrated that termi-
nological embeddings can capture semantic simi-
larities and are especially well-suited for biomed-
ical ontology alignment (Kolyvakis et al., 2018).
In this paper, we present a MedNorm corpus con-
sisting of 27,979 textual descriptions (phrases)
simultaneously mapped to both MedDRA and
SNOMED-CT, that have been sourced from five
publicly available datasets across biomedical and
social media domains. To combine them, we
designed a data harmonisation pipeline that can
be re-used in the future to integrate new datasets
into the corpus or applied in relevant annotation
and data processing tasks. Also, we have de-
scribed a method to merge multiple medical ter-
minologies into a single network preserving both
terminology-specific and cross-terminology rela-
tions. We demonstrated that representation learn-
ing approach based on random walks on a graph
can efficiently encode equivalent and hierarchi-
cal relations and capture semantic similarities not
only between concepts inside a given terminol-
ogy, but also between concepts from different ter-
minologies. Finally, we have provided an analy-
sis of the corpus, investigated textual and concep-
tual similarities between utilised datasets and also
analysed cross-terminology medical concept em-
beddings. The corpus and concept embeddings1

as well as the harmonisation pipeline2 are publicly
available. Making such resources available to the
research community aimed to contribute to a better
understanding of the task.

2 Corpus material

2.1 Target medical ontologies
Relationships between medical concepts are en-
coded differently in medical ontologies. In this
section we describe the two ontologies that have
been used for mappings in the corpus.

SNOMED-CT (SCT) is a structured clinical
1https://dx.doi.org/10.17632/b9x7xxb9sz.1
2https://github.com/mbelousov/MedNorm-corpus

terminology that enables consistent documenta-
tion and annotation of clinical data. There are both
hierarchical and semantic (e.g. finding site, asso-
ciated morphology) relations between terms. Each
term can have multiple hierarchical paths with dif-
ferent lengths, so their specific level in the hierar-
chy is undefined.

MedDRA is a hierarchical terminology with
five levels (from very specific to very general) de-
signed for encoding adverse drug events for reg-
ulatory affairs. The most specific level is Lowest
Level Terms (LLT) and refers how a concept might
be reported in practice (e.g. “Feeling queasy”).
Each LLT is linked to exactly one Preferred Term
(PT), a distinct descriptor for a symptom, sign,
disease diagnosis, indication, procedure or medi-
cal history characteristic (e.g. “Nausea”). Related
PTs are grouped into High Level Terms (HLTs,
e.g. “Nausea and vomiting symptoms”), then into
High Level Group Terms (HLGTs, e.g. “Gas-
trointestinal signs and symptoms”), and finally
into “System Organ Classes” (SOC, e.g. “Gas-
trointestinal disorders”). Note that single HLT
can be linked to more than one HLGTs, and as
a result, PT will have more than one hierarchical
path to SOC.

2.2 Source corpora
The data for the MedNorm corpus was collected
across two different domains: biomedical docu-
ments (drug labels and PubMed abstracts) and so-
cial media (online health forums and drug-related
discussions in Twitter). The list of source datasets
and their descriptions are provided below. Table 1
represents the overview of utilised terminologies.

Dataset UMLS MedDRA SCT
CADEC ✗ ✓∗ ✓
TwADR-L ✓ ✗ ✗
TwiMed ✓ ✗ ✗
SMM4H-2017 ✗ ✓ ✗
TAC 2017 (ADR) ✗ ✓ ✗

∗ - partially mapped to MedDRA (only ADR mentions)

Table 1: Terminologies used in publicly available
datasets to annotate medical concepts.

CADEC: The CSIRO Adverse Drug Event Cor-
pus (CADEC) (Karimi et al., 2015) is an annotated
corpus of patient-reported adverse drug events
(ADEs) sourced from the medical forum called
AskAPatient3, which collects ratings and reviews
of medications from their consumers. It contains

3https://www.askapatient.com
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1,250 forum posts annotated for mentions of Drug,
ADR, Disease, Symptom and Finding. Every men-
tion other than Drug has been mapped to the
corresponding SNOMED-CT concept identifier,
whereas ADR mentions have been also mapped to
the corresponding MedDRA term.

TwADR-L: The TwADR-L dataset has been
constructed by the University of Cambridge (Lim-
sopatham and Collier, 2016) from a collection of
three months of Twitter posts, which has been
sampled and annotated by undergrad-level lin-
guists who mapped each phrase to one of the con-
cepts in the UMLS Metathesaurus.

TwiMed: A corpus consists of 1,000 tweets
and 1,000 PubMed sentences selected using the
same strategy and annotated by two pharmacists
for a set of drugs, diseases and symptoms (Al-
varo et al., 2017). The TwiMed-Twitter set
contains 827 phrases and the TwiMed-PubMed
contains 1,142 phrases, both mapped to the UMLS
Metathesaurus.

SMM4H-2017: This is a dataset of concept
mentions and their corresponding human-assigned
MedDRA PTs has been provided as a part of
the 2nd Social Media Mining for Health Appli-
cations Shared Task at AMIA 2017 (Subtask 3)
(Sarker et al., 2018). It consist of two sets: the
SMM4H2017-train set (6,650 phrases) and the
SMM4H2017-test set (2,500 phrases).

TAC 2017 (ADR Track): The Text Analysis
Conference (TAC) 2017 Shared Task had a track
on Adverse Drug Reaction Extraction from Drug
Labels (Demner-Fushman et al., 2018), the final
task of which was focused on mapping extracted
ADRs in a Structured Product Labels (SPL) to
MedDRA PTs. The training set (TAC2017 ADR)
of 101 annotated drug labels has been released,
which contain 7,045 ADR mentions mapped to
MedDRA.

3 Corpus creation

The overview of the data harmonisation pipeline
used to create a corpus is illustrated in Figure 1.
Initially, we have combined all seven datasets from
five data sources mentioned above into a single
set of instances where each phrase is associated
with corresponding original identifiers in different
terminologies. We have represented the corpus
as a graph to preserve relations between datasets
and their annotations (Section 3.1). Then, we ex-
tracted hierarchical relations and linked all con-

cepts to their closely matched (equivalent) con-
cepts across terminologies (Section 3.2). We have
encoded both hierarchical and equivalent relations
between concepts in different terminologies in a
low-dimensional vector space that enables to mea-
sure the similarity between them (Section 3.3). In
addition, we attempted to identify and resolve po-
tential inconsistencies in human annotations (Sec-
tion 3.4). In order to achieve consistent hierarchy
levels across annotations, all instances have been
simultaneously mapped to either the Preferred
Term (PT) or higher level (e.g. when original
annotation was less specific) in MedDRA and its
equivalent level in SNOMED-CT. After such pro-
cess, each phrase could have more than one equiv-
alent mapping candidate (multi-label). Therefore,
to provide one-to-one mapping between phrases
and concepts, multiple candidates have been re-
duced to a single concept (single-label). As a re-
sult, we constructed our corpus of 27,979 textual
descriptions (phrases) simultaneously mapped to
both MedDRA (version 21.1) and SNOMED-CT
(version 2018-07-31).

Combine 
datasets 

Extract hierarchical
relations between

concepts

Cross-terminology
mapping

Map to consistent
hierarchical level

Resolve potential
annotation errors

community-based
mappings from BioPortal

manually-curated
mappings

...

MedDRA SCT

Build graph
representation

Annotated
dataset 2

Annotated
dataset N

Annotated
dataset 1

Corpus graphLearn concept
representations (VSM)

Concept
embeddings

multi-label

single-label

Terminologies

views

MedNorm
corpus

Figure 1: The data harmonisation pipeline

3.1 Building a corpus graph

In order to utilise the structure and relations of an-
notations in different datasets, the directed graph
or network has been created (Figure 2). In such
graph, each DATASET (e.g. CADEC) has a set
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(a) Corpus graph schema (b) Example of a modelled instance
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MAPPED_TO
NAMED_ASNAMED_AS

CONTAINS

Figure 2: Corpus graph schema (left) and an example of a modelled instance (right).

of instances, each INSTANCE can be originally
annotated with one or multiple CONCEPTs (e.g.
LLT:10041017, SCT:248255005) and described
with textual PHRASE (e.g. “unable to sleep”),
which in its turn contains a set of TOKENs (e.g.
{sleep, unable, to}). Each of the CONCEPT has
a corresponding NAME in the terminology (e.g.
Sleeplessness, Cannot sleep at all), which is en-
coded using NAMED AS link and also contains a
set of tokens (similar to phrase). To represent
hierarchical relations between concepts extracted
from medical terminologies, each CONCEPT can
be linked to its parent node (i.e. concept from
the higher level in the hierarchy) with IS A link
(e.g. Sleeplessness → Insomnia → Disturbances
in initiating and maintaining sleep → Sleep dis-
orders and disturbances → Psychiatric disor-
ders) and mapped to the equivalent concept node
using MAPPED TO relation (e.g. Sleeplessness
LLT:10041017 → Insomnia SCT:193462001). The represen-
tation of the corpus as a graph makes the further
processing and analysis easier. For example, test-
ing whether a particular phrase has been inconsis-
tently annotated in the same dataset (i.e. has more
than one associated concept) could be done by
counting the number of unique CONCEPT nodes
reachable from the target phrase. Moreover, all
links between concepts in different terminologies
(despite their various structures) are stored inside
the single graph.

3.2 Cross-terminology mapping

The automatic mapping between UMLS, Med-
DRA and SNOMED-CT has been done using

community-based mappings from BioPortal (Noy
et al., 2008) through the REST API 4. The two
concepts from different ontologies are considered
as equivalent or closely matched if they share the
same UMLS Concept Unique Identifier (CUI). Af-
ter a careful review of results, we observed that
some of the frequently mentioned concepts have
not been mapped automatically. Therefore, with
the help of medical experts, we defined an addi-
tional set of manually-curated mapping rules (pro-
vided in Appendix A, Table 6).

3.3 Learning cross-terminology
representations of concepts

Cross-terminology mappings allowed to link con-
cepts from multiple terminologies together, but
their heterogeneous hierarchical structures (i.e.
concepts are located deeper in the hierarchy or
have more relations) makes graph distance alone
insufficient to measure the similarity between con-
cepts in different terminologies. However, med-
ical concepts (or their corresponding nodes) can
be embedded into a low-dimensional vector space.
Initially, we have constructed a simplified hierar-
chical concept graph whose vertices are groups
of equivalent concepts (i.e. nodes linked with
MAPPED TO relation in the main corpus graph)
and edges are hierarchical IS A relations. Then,
we have used the DeepWalk (Perozzi et al., 2014),
a deep learning method based on generalisation
of language modelling applied on the streams of
short random walks treating them as the equiva-

4http://data.bioontology.org
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lent of sentences. Performing 10 random walks
per node (with a length of 40 nodes) and train-
ing a Skip-gram model (Mikolov et al., 2013)
with the window size of 5, we have generated
64-dimensional concept vectors. The size of vec-
tors has been chosen empirically. Later, we have
split the groups under the assumption that all con-
cepts in a group (i.e. equivalent concepts) should
have the same vectors. Table 2 shows three se-
lected MedDRA concepts and their most similar
concepts (with cosine similarity) from all termi-
nologies. It demonstrates that both equivalent and
hierarchical relations between concepts has been
successfully encoded and the semantic similarity
can be captured by calculating the cosine similar-
ity between two corresponding concept vectors.

3.4 Corpus consistency

In order to make all annotations in our final corpus
consistent, we have performed the two operations
described below.

Resolving inconsistent annotations: After
performing a manual analysis of the combined
corpus we have noticed inconsistencies in the
original human annotations. For example, in
the CADEC, where phrases can be mapped si-
multaneously to both SNOMED-CT and Med-
DRA, 27 instances which were (correctly) an-
notated as Stomach cramps (SCT:51197009)
also were co-annotated as Learning disorder
(MEDDRA PT:10061265). To identify poten-
tial annotation errors in the original datasets, we
have utilised the concept graph to calculate the
distances between concept nodes (i.e. the short-
est path length) and the cosine similarity of corre-
sponding vectors in the latent vector space model
(VSM). Also, we made an effort to locate inconsis-
tent annotations across different datasets by iden-
tifying ambiguous tokens. In the usual case, a
specific token is used to describe groups (clusters)
of similar concepts (e.g. “walk” frequently de-
scribes concepts related to walking or mobility).
However, an ambiguous token describes clusters
of similar concepts frequently, but also sometimes
describes concepts that are different from those
clusters (i.e. the difference between the number of
occurrences in the groups is high). Note that com-
mon tokens (e.g. “unable”), that are not specific
for a particular group of concepts, will usually
have a high number of groups, but relatively small
difference between the numbers of occurrences.

We attempted to identify such outliers by calculat-
ing distances between concepts and their distance
deviations from the clusters. For example, token
“walk” was mentioned in 98 phrases and mapped
to 23 concepts in total. The most popular anno-
tation was Walking disability (e.g. “can barely
walk”), however it also has been annotated as My-
ocardial infarction (e.g. “walk a little funny”) that
could be a potential annotation error. After such
analysis and manual review, we have identified
and re-mapped 110 annotations (provided with the
source code).

Consistent hierarchical mapping: The Pre-
ferred Term (PT) level in MedDRA describes sin-
gle medical concept. Therefore it has been se-
lected as a standard to provide a consistent hi-
erarchical level among annotations in our cor-
pus. However, not all phrases are specific enough
to be mapped to the PT level or its equivalent.
In such cases, we kept annotations equivalent to
higher MedDRA levels (i.e. HLT, HLGT or SOC).
All lower level annotations (i.e. LLT-equivalent)
have been mapped to their PT-equivalent parents.
Using the corpus graph, we were able to au-
tomate this process. Initially, all instances re-
gardless of the terminology used in original an-
notations have been recursively mapped to their
corresponding equivalent PT candidates (i.e. in-
cluding mappings of mappings). Then, for each
MedDRA candidate, we selected equivalent can-
didates from SNOMED-CT. To filter concepts
that have emerged from such automatic mapping,
all concepts that have not been observed in the
original annotations were removed (except cases,
where it was the only possible candidate). Af-
ter such process, each phrase could have more
than one candidate for each terminology (multi-
label). Therefore, to provide one-to-one mapping
between phrases and terminologies, in each multi-
label group we have initially identified the most
similar MedDRA concept to the original annota-
tion (i.e. from the source dataset) but also the
most popular across the whole corpus (i.e. to min-
imise the number of outliers). Then, we selected
the SNOMED-CT concept (from the multi-label
group) that is the most similar to the selected Med-
DRA concept to achieve consistency in mapping
between terminologies. Hereby, each phrase has
been mapped to exactly one (single-label) Med-
DRA and its corresponding SNOMED-CT con-
cept simultaneously. As a result, the final corpus
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Insomnia PT:10022437 Weight increased PT:10047899 Nausea PT:10028813

1.0000 Insomnia disorder LLT:10078083
1.0000 Insomnia SCT:193462001
1.0000 Insomnia NOS LLT:10022442
1.0000 Sleeplessness LLT:10041017
1.0000 Sleeplessness C0917801
0.9795 Sleep loss C0235161
0.9795 Sleep loss LLT:10041001
0.9795 Sleep decreased LLT:10040982
0.9779 Middle insomnia SCT:67233009
0.9779 Middle insomnia C0393761
0.9779 Sleep maintenance insomnia LLT:10068671
0.9779 Middle insomnia PT:10027590
0.9743 Trouble falling asleep LLT:10044698
0.9743 Initial insomnia C0393760
0.9743 Initial insomnia SCT:59050008
0.9743 Initial insomnia PT:10022035
0.9689 Early morning awakening LLT:10014046
0.9689 Terminal insomnia PT:10068932
0.9689 Terminal insomnia SCT:67062000
0.9689 Awakening early LLT:10003867

1.0000 Ponderal increased LLT:10063441
1.0000 Wt gain LLT:10048060
1.0000 Weight increasing SCT:161831008
1.0000 Weight increase LLT:10047898
1.0000 Weight gain finding SCT:8943002
1.0000 Weight gain C0043094
1.0000 Weight increased SCT:262286000
1.0000 Weight gain LLT:10047896
0.9532 Weight change finding SCT:365921005
0.9532 Weight change finding C1287464
0.9375 Weight loss finding SCT:89362005
0.9375 Weight decreased PT:10047895
0.9375 Weight decreased SCT:262285001
0.9375 Wt loss LLT:10048061
0.9375 Weight decreasing SCT:161832001
0.9375 Lost weight LLT:10024886
0.9375 Loss of weight LLT:10024883
0.9375 Weight decrease LLT:10047893
0.9375 Losing wt LLT:10024849
0.9375 Weight loss LLT:10047900

1.0000 Nauseous LLT:10028823
1.0000 Feeling queasy LLT:10016361
1.0000 Nauseated LLT:10028822
1.0000 Nausea SCT:422587007
1.0000 Nausea C0027497
1.0000 Queasy LLT:10037730
0.8677 Nausea and vomiting symptoms HLT:10028817
0.8677 Nausea and vomiting SCT:16932000
0.8677 Nausea and vomiting C0027498
0.7902 Gastrointestinal tract finding C1261141
0.7902 Gastrointestinal tract finding SCT:386618008
0.7832 Travel sickness NOS LLT:10044549
0.7832 Motion sickness C0026603
0.7832 Travel sickness LLT:10044548
0.7832 Motion sickness PT:10027990
0.7832 Motion sickness SCT:37031009
0.7721 Retching C0232602
0.7721 Dry heaves LLT:10052104
0.7721 Retching SCT:84480002
0.7721 Vomiturition LLT:10072124

Prefixes for concept identifiers: SCT - SNOMED-CT; C - UMLS; LLT, PT, HLT, HLGT, SOC - MedDRA (based on the level).
The equivalent concepts have similarity value of 1.0.

Table 2: MedDRA concepts and their most similar concepts across different terminologies.

Phrase Original annotations Mapped MedDRA Mapped SNOMED-CT
screwed my
endocrine system Endocrine

disorders SOC:10014698

Endocrine disorders SOC:10014698

Endocrine disorder PT:10014695

Disorder of endocrine
system SCT:362969004

Got 1.5 hours
of sleep Sleep disturbance C0037317 Sleep disturbances HLGT:10040998

Sleep disorder PT:10040984

Disturbance in
sleep behavior SCT:53888004

Sleep disorder SCT:39898005

wrecking my sleep Poor quality sleep C1262141 Poor quality sleep PT:10062519

Dyssomnia PT:10061827

Sleep disorder PT:10040984

Dyssomnia SCT:44186003

Sleep disorder SCT:39898005

all I want to
do is sleep Somnolence PT:10041349 Somnolence PT:10041349

Insomnia PT:10022437

Drowsy SCT:271782001

Insomnia SCT:193462001

weak Asthenia PT:10003549 Asthenia PT:10003549 Asthenia SCT:13791008

fatigue Fatigue C0015672 Fatigue PT:10016256

Asthenia PT:10003549

Fatigue SCT:84229001

Asthenia SCT:13791008

Lack of energy SCT:248274002

extremely tired
feeling Tiredness LLT:10043890

Feeling tired SCT:314109004

Fatigue PT:10016256

Asthenia PT:10003549

Fatigue SCT:84229001

Asthenia SCT:13791008

Lack of energy SCT:248274002

Feeling tired SCT:248274002

Selected concepts (during multi-label reduction to single-label) are in bold-italic.

Table 3: Examples of originally annotated phrases and their multi-label and single-label mappings

has 27,957 PT-equivalent, two HLT-equivalent, 18
HLGT-equivalent and two SOC-equivalent anno-
tations. In Table 3 we have provided examples of
phrases, original annotations and our final Med-
DRA and SNOMED-CT annotations (mappings).

4 Corpus analysis

The descriptive statistics of datasets constituting
a corpus (grouped into biomedical and social do-
mains) are presented in Table 4. The length of
medical concept descriptions (phrases) are longer
in social domain. The longest phrase has been
found in the CADEC corpus: “when I went to sit
down instead of siting normally I would almost fall
down in the chair no control no strength, upon get-
ting up I had to hold on to something to get up”

(36 tokens) that describes Muscle weakness. We
have also investigated the degree of class imbal-
ance in the corpus and illustrated the most reported
MedDRA concepts in Figure 3. The most reported

Figure 3: Most popular concepts in the corpus
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Dataset # inst # MedDRA∗ # SCT∗ # phrases # words phrase length
TAC2017 ADR 5,835 1,113 1,087 2,106 1,633 2.46± 1.49 [1− 13]
TwiMed-PubMed 1,067 254 255 436 478 1.93± 1.11 [1− 8]
All biomedical 6,902 1,191 1,169 2,397 1,804 2.42± 1.46 [1− 13]

CADEC 6,797 530 557 3,376 1,966 3.42± 2.26 [1− 36]
SMM4H2017-train 6,416 411 404 2,638 2,084 3.24± 2.22 [1− 25]
TwADR-L 4,626 1544 1566 2,581 2,492 2.46± 1.78 [1− 20]
SMM4H2017-test 2,447 227 224 1,148 1,165 3.31± 2.33 [1− 18]
TwiMed-Twitter 791 185 185 428 524 2.08± 1.49 [1− 12]
All social 21,077 1,740 1,778 8,890 4,975 3.26± 2.21 [1− 36]

ALL 27,979 2,062 2,089 10,572 5,584 3.18± 2.12 [1− 36]

∗ - single-label annotations

Table 4: Statistics of the datasets constituting the corpus.

concept is Insomnia (1,311 instances, 553 unique
phrases), followed by Pain (1,145 instances, 320
unique phrases) and Fatigue (800 instances, 125
unique phrases). However, about 40% of concepts
were under-reported and have only one instance,
corresponding to about 3% instances in the whole
corpus. The average number of unique phrases
per terminology concept is 5.13 for MedDRA and
5.06 for SNOMED-CT.

4.1 Asymmetric transferability between
datasets

To investigate how the knowledge acquired from
one dataset is potentially transferable to another
dataset, we introduced the asymmetric transfer-
ability index that takes into account both concep-
tual (i.e. concepts from various terminologies
used in the dataset) and textual (i.e. language used
to describe those concepts) similarities. Asymme-
try allows to see how much information can be un-
derstood from another dataset having all informa-
tion about the first dataset. It utilises two similarity
measures: cosine similarity CS(X,Y ) = X·Y

󰀂X󰀂󰀂Y 󰀂
and the special case of Tversky Index (Tversky,
1977) with α = 1 and β = 0, that can be re-
written as TI(X,Y ) = |X∩Y |

|X∩Y |+|X−Y | . We can
calculate the similarity between two sequences of
labels l1 and l2 with the cosine similarity between
the corresponding label count vectors c(l1) and
c(l2). However that measure will be symmetric,
and therefore we multiply it by asymmetric set-
based similarity:

s(l1, l2) = TI(l1, l2)× CS(c(l1), c(l2)) (1)

Having two datasets A and B, sets of phrases PA,
PB and sets of words WA, WB we obtain the
textual transferability index (from A to B) as the
arithmetic mean of phrasal and verbal asymmetric

similarities:

Itxt(A,B) =
TI(PA, PB) + TI(WA,WB)

2
(2)

For each terminology t, we extract sequences of
labels ℓ(A, t) in dataset A and ℓ(B, t) in dataset
B. The conceptual transferability index is the av-
erage asymmetric similarity between terminology-
specific label sets:

Icon(A,B) =
1

|T |
󰁛

t∈T
s(ℓ(A, t), ℓ(B, t)) (3)

Finally, we obtain the overall transferability index:

Iovr(A,B) =
Itxt(A,B) + Icon(A,B)

2
(4)

We have presented textual, conceptual and over-
all transferability matrices in Figure 4. The higher
transferability index shows the better chance to
understand information (i.e. match vocabulary
or concepts). The most transferable dataset was
TwADR-L, whereas the least transferable was
TwiMed-PubMed. It directly corresponds to the
number of unique concepts, phrases and words re-
ported previously in Table 4. Also, the datasets
collected from Twitter are highly transferable be-
tween each other. The CADEC dataset collected
from AskAPatient reports is still more similar to
Twitter (i.e. social domain).

4.2 Cross-terminology concept
representations

In order to analyse cross-terminology concept
representations, we used T-distributed Stochastic
Neighbour Embedding (t-SNE) (Maaten and Hin-
ton, 2008) to perform dimensionality reduction
from 64D to 2D (Figure 5). It can be observed that
semantically similar concepts have been clustered
together, providing additional evidence about the
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Figure 4: Asymmetric dataset transferability matrices.

ability of concept representations to encode hier-
archical and equivalent relations and capture se-
mantic similarities.

Figure 5: t-SNE visualisation of cross-terminology
medical concept representations

In Table 5 we have presented the most simi-
lar MedDRA and SNOMED-CT annotations (i.e.
the final labels in the corpus) for the three most
frequently reported concepts: Insomnia, Pain and
Fatigue. Although such representations encoded
conceptual similarity well, they are insufficient to
identify opposite concepts correctly (e.g. Fatigue
and Energy increased). This is because we only
utilised hierarchical relations in terminologies (in-
formation about opposite concepts is not provided
in these terminologies explicitly).

5 Conclusion

We have presented a corpus for cross-terminology
medical concept normalisation that has been
sourced from five publicly available datasets
across the biomedical and social domains. The

Concept MedDRA SNOMED-CT

Insomnia

0.98 Middle insomnia
0.97 Initial insomnia
0.97 Terminal insomnia
0.97 Hyposomnia
0.91 Poor quality sleep

0.98 Middle insomnia
0.97 Initial insomnia
0.97 Early morning waking
0.97 Not getting enough sleep
0.91 Dyssomnia

Pain

0.82 Labour pain
0.78 Nyctalgia
0.76 Tenderness
0.60 Painful respiration
0.58 Odynophagia

0.82 Labor pain
0.78 Night pain
0.76 Tenderness
0.68 Burning epigastric pain
0.68 Postoperative pain

Fatigue

0.83 Asthenia
0.83 Lethargy
0.69 Malaise
0.69 Feeling abnormal
0.68 Energy increased

0.83 Asthenia
0.83 Lethargy
0.77 Sensation of heaviness in limbs
0.69 Generally unwell
0.69 Malaise

Table 5: Most similar MedDRA and SNOMED-CT
concepts (from annotations).

data harmonisation pipeline described in the paper
combines instances from various datasets and pro-
vides consistent simultaneous mappings to both
MedDRA and SNOMED-CT terminologies. Such
pipeline can be used in the future to integrate new
datasets into the corpus or could be also applied
in relevant data annotation and processing tasks.
Also, we have described a method to merge multi-
ple medical terminologies and demonstrated that
equivalent and hierarchical relations can be en-
coded into cross-terminology concept representa-
tions that are able to capture semantic similarities
not only between concepts inside a given termi-
nology but also between concepts from different
terminologies. The generated cross-terminology
medical concept representations can be used to im-
prove and analyse the performance of concept nor-
malisation systems. Making such resources avail-
able to the research community as well as provid-
ing an analysis of the final corpus aimed to con-
tribute to a better understanding of the task and
associated challenges.
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A Appendices

MedDRA Concept SNOMED-CT Concept
Withdrawal syndrome
(PT:10048010)

Drug withdrawal
(SCT:363101005)

Depression
(PT:10012378)

Depressive disorder
(SCT:35489007)

Drug ineffective
(PT:10013709)

Lack of drug action
(SCT:58848006)

Hangover
(PT:10019133)

Hangover
(SCT:32553006)

Infection
(PT:10021789)

Infectious disease
(SCT:40733004)

Feeling abnormal
(PT:10016322)

Malaise
(SCT:367391008)

Feeling jittery
(PT:10016338)

Feeling nervous
(SCT:424196004)

Poor quality sleep
(PT:10062519)

Dyssomnia
(SCT:44186003)

Thirst
(PT:10043458)

Thirst symptom
(SCT:249475006)

Lightheadedness
(LLT:10024492)

Lightheadedness
(SCT:386705008)

Table 6: An additional set of manually-curated map-
ping rules between MedDRA and SNOMED-CT.
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Abstract

Depression and anxiety are the two most
prevalent mental health disorders worldwide,
impacting the lives of millions of people each
year. In this work, we develop and evaluate a
multilabel, multidimensional deep neural net-
work designed to predict PHQ-4 scores based
on individuals written text. Our system outper-
forms random baseline metrics and provides
a novel approach to how we can predict psy-
chometric scores from written text. Addition-
ally, we explore how this architecture can be
applied to analyse social media data.

1 Introduction

According to the World Health Organization
(WHO), major depressive disorder1 is the largest
cause of disability worldwide (World Health Or-
ganization, 2018), with a lifetime prevalence rate
between 15% and 17% (Ebmeier et al., 2006). De-
pression is highly co-morbid with several other
mental disorders, the most prevalent of which is
a generalized anxiety disorder.2 Almost 50% of
individuals diagnosed with depression will also be
diagnosed with anxiety (Johansson et al., 2013).

As a result, many clinicians will investigate for
the presence of both disorders at the time of diag-
nosis. To do so, psychometric questionnaires are
often employed as a quick and reliable initial as-
sessment tool, the most common of which is the
Patient Health Questionnaire (PHQ). The PHQ-
4 is a short form questionnaire design to access
the presence or absence of the core symptoms in
depression and anxiety (Löwe et al., 2010). The
questionnaire has demonstrated both high validity
and reliability across several languages and cul-
tures (Kroenke et al., 2010).

1Hereafter referred to as simply depression.
2Hereafter referred to as simply anxiety.

Despite the usefulness of these questionnaires,
there is still a reliance on individuals actively seek-
ing a diagnosis from a medical professional be-
fore they can be applied. Research has shown that
those suffering depression and anxiety often are
unaware their symptoms are due to a medical dis-
order and attribute them to poor mood or external
factors (Barney et al., 2006; Latalova et al., 2014).
This presents a unique challenge in the medical
community, in how to inform and encourage indi-
viduals to come forward for diagnosis.

Delahunty et al. (2018) have proposed the con-
cept of passive diagnosis, also known as high-
performance medicine (Topol, 2019). This term
refers to the ability for machine learning algo-
rithms to constantly monitor an individuals health
and inform the individual if certain changes are ev-
idence of a possible disorder in the future. This
is in comparison to the traditional concept of ac-
tive diagnosis where an individual suffering cer-
tain symptoms would actively seek out a medical
diagnosis.

Examples of applications in this domain in-
clude DeepCare, which is an end-to-end applica-
tion designed to diagnose a wide range of disor-
ders (Pham et al., 2016). Such systems allow clin-
icians to either prevent a disorder occurring or pro-
vide early intervention to minimise its effects.

2 Related work

While exploring the effects of expressive writing
on PTSD3 treatment, (Pennebaker et al., 2003) es-
tablished that the way in which individuals wrote
was often indicative of their mental state, specifi-
cally their use of function words (Prendinger and
Ishizuka, 2005). Examples of this included higher
counts of the personal pronouns and negative

3Post-Traumatic Stress Disorder
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words in depressed individuals’ writing, which is
attributed to a manifestation of Beck’s cognitive
model and Pyczsinski and Greenberg’s self-focus
model of depression (Rude et al., 2004).

Over recent years this work has been combined
with the fields of natural language processing and
machine learning to develop classifiers algorithms
which can predict if an individual is likely to be
diagnosed with a certain disorder. Work has fo-
cused on bipolar disorder (Huang et al., 2017), de-
pression (De Choudhury et al., 2013) and anorexia
(Ramiandrisoa and Benamara, 2018). For the last
number of years, the CLEF conference has hosted
a workshop on early risk prediction of mental dis-
orders based on social media data (Losada and
Crestani, 2016), resulting in almost 50 publica-
tions in this area.

However, much of the existing work suffers
from the limitation of viewing these disorders as
binary occurrences, whether a disorder is present
or not. Although this approach makes sense given
the nature of machine learning classifiers, from
the perspective of medical professionals, how-
ever, individuals can rarely be placed into binary
classes. Different combinations of symptoms can
dramatically affect the diagnosis (American Psy-
chiatric Association, 2013).

Previous work in 2018 was the first to view
these disorders on a symptomatic level (Delahunty
et al., 2018). In this paper, we expand the previ-
ous work by including anxiety and making use of
the PHQ, which compared to the Beck’s depres-
sion inventory is a non-commercial psychometric
questionnaire (Kung et al., 2013).

The PHQ-4 assess the severity of the two pri-
mary symptoms for depression and anxiety re-
spectfully, anhedonia, depressed mood, excessive
anxiety and uncontrollable worry (American Psy-
chiatric Association, 2013). An individual is asked
to rate the occurrence of each symptom over the
last two weeks on a four-point scale from ”Not at
all” to ”Nearly every day”. The aim of our work
was to develop a machine learning algorithm that
given textual data could predict an outcome value
for each of the four questions on the PHQ-4. Un-
like previous work, e.g. Delahunty et al. (2018),
we did not employ separate algorithms for the four
symptoms, but considered that all four symptoms
are intrinsically interconnected. Within the ma-
chine learning literate, multilabel and multi-class
approaches have been shown to outperform indi-

vidual separate classifiers (Schmidhuber, 2015).
Previous work in this domain has often em-

ployed extracted data from social media sites as
training data (Losada and Crestani, 2016). In
many cases, this limits the application of the
work because it is impossible if the individuals
in the training data actually had clinical diagnosis
(De Choudhury and De, 2014). To overcome this
limitation, our work employs a dataset collected in
an in-person medical setting where clinical diag-
nosis are performed by trained professionals. We
aim to explore if training on non-social media data
will allow for accurate evaluation on social media
data.

3 System Description

3.1 Data

Our initial dataset is the DAIC-WOZ, which is
composed of transcribed clinical interviews col-
lected through a Wizard-of-Oz approach for 142
patients (Gratch et al., 2014). The topic of the
interviews are general conversations and were all
collected within the United States. For each pa-
tient, a transcript of their interview is provided
along with PHQ-8 scores, where bot statements
were removed leaving only patient statements.
PHQ-8 scores can be mapped to PHQ-2 scores,
and GAD-2 scores were inferred from data pro-
vided by Johansson et al. (2013). The final dataset
was composed of 23,726 text statements.

To evaluate our system on social media data, we
employed the Reddit depression dataset (Losada
and Crestani, 2016). This dataset we gained access
to contained Reddit posts for 253 users (of which
161 are attributed as to be suffering depression).
Diagnosis is binary (depressed or not depressed)
depending on if users post on certain depression
sub-forums.

3.2 Feature extraction

Three methods of feature extraction were em-
ployed.
Text representation was employed using the Uni-
versal Sentence Encoder (USE), specifically de-
veloped for longer than word representations. The
model is trained using a deep learning trans-
former neural network architecture on a variety
of datasets (Cer et al., 2018). Each of our pa-
tient statements was passed into their pretrained
model and a statement level representation vector
of shape 512 was returned.

41



LIWC is a psycholinguistic dictionary containing
94 psychological trait dimensions and over 2,000
words related to these dimensions (Pennebaker
et al., 2001). A percentage count of the number
of words in the text related to each dimension is
computed. To identify an optimal subset of the
number of relevant dimensions, we reviewed all
proceedings from the CLEF eRisk workshop 2017
and 2018 (Losada and Crestani, 2016). For each
proceeding that employed LIWC, the list of di-
mensions included was taken. An intersection of
these lists was then taken to create a subset of 22
relevant dimensions, which resulted in the follow-
ing features being included in our model: word
count, analytical thinking, authentic, emotional
tone, function words, pronoun, personal pronouns,
1st person singular, 1st person plural, 2nd person,
3rd person singular, articles, auxiliary verbs, con-
junctions, negations, regular verbs, negative emo-
tions, social words, cognitive processes, past fo-
cus, present focus, future focus.
Psychometric similarity Recent work has seen
success in comparing word embeddings in terms
of semantic similarity (Mihalcea et al., 2006; Li
et al., 2003), where the distance between embed-
dings in xN -dimensional space is considered equal
to their likeness in terms of the semantic con-
tent. Since USE creates sentence level embed-
dings, this allows us the ability to compare sen-
tences in terms of similarity. We employed this
approach by comparing the semantic similarity of
patient statements with responses from psychome-
tric questionnaires. The principle was that if a pa-
tient statement reflected the same content of a psy-
chometric test it should have a higher similarity
score compared with a random statement.

Four questionnaires were identified by choos-
ing cognitive theories relevant to the aetiology of
each of the four PHQ-4 symptoms. Details regard-
ing the theories are included in Table 1. The con-
catenation of questions across all four question-
naires amounted to 104 questions. For each pa-
tient statement, a 512 embedding dimension was
computed with the USE pre-trained model, along
with this, embeddings for each of the 104 patient
questions were computed. The inner dot product
for each statement and question was computed and
returned as a feature. The inner dot product mea-
sures how close two vectors are in the Euclidean
space of the trained model, closer vectors implies
more similar semantic similarity.

The resulting dataset was composed of 638
features. All features were scaled by removing
the mean and scaling to unit variance within the
bounds of -1 and 1.

3.3 Our approach

To model the interconnectivity of the four PHQ-
4 symptoms, we employed a deep neural network
(DNN) architecture. Unlike simpler algorithms,
such as classical regression, which uses a single
function, (Y ≈ f(X,β)),4 DNNs employ a large
number of ”neurons”, each of which is fitted with
an independent function with a set of weights and
an activation function (Schmidhuber, 2015). Cur-
rent work demonstrates that this architecture mod-
els the internal representation better than separate
classifiers (Schmidhuber, 2015).

For each patient statement, the neural network
needs to be able to output an ordinal value score
for each question. This requires that the net-
work outputs both multilabel (four symptoms) and
multivalue (ordinal score). This architecture is
regarded as multi-dimensional or multi-targeted
classification, where the output is assigned both a
set of labels y = (y0, . . . , yd), and for each label y
an ordinal value in the 0 to d (Read et al., 2014).
These methods are still in early development are
mostly untested outside of theoretical proposals.

Our proposed method to address this problem is
a two-step approach. Firstly, we apply a multil-
abel learning approach to constantly predict a Sig-
moid score for each of the four symptoms. This
is achieved by using a binary cross entropy loss
function that can model the interconnectivity of
the labels (Trotzek et al., 2018; Nam et al., 2014;
Zhang and Zhou, 2014; Mencıa and Fürnkranz,
2008) and a Sigmoid function on the final layer
(Trotzek et al., 2018). Secondly, following that,
we set manual threshold values to refine this score
into ordinal values for interpretability.

For the final output per symptom, we set the
value to 0, if the outcome of the Sigmoid function
is less than 0.25, 1 if the Sigmoid score is between
0.25 and 0.50, 2 between 0.50 and 0.75 and 3, if
the Sigmoid score is larger than 0.75.

To compare our approach against a simpler
model architecture, and determine if a DNN archi-
tecture is appropriate, we also trained a random
forest classifier which is equally able to model

4Y is dependent variable, X is independent variable & β
is unknown parameter.
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PHQ-4 Symptom Theory Assessment tool
Feeling nervous or anxious Intolerance of uncertainty (Clark et al., 1994) Intolerance of Uncertainty Scale
Uncontrollable worry Positive belief about worry (Clark et al., 1994) Penn State Worry Questionnaire
Anhedonia Avoidance behaviour (Clark et al., 1994) Cognitive-Behavioural Avoidance Scale
Depressed mood Negative triad (Beck, 1991) Beck’s depression inventory

Table 1: Summary of aetiology theories and assessment tools.

multilabel outputs (Gharroudi et al., 2014).

3.4 Hyperparameter Tuning

Hyperparameter tuning was achieved using a ge-
netic algorithm approach. This approach takes
its basis from the biological concept of evolution
(Friedrichs and Igel, 2005). A broad set of hyper-
parameters are chosen (details in the appendix),
the algorithm creates a generation by choosing a
random subset of these and trains a population of
20 network networks with different random hyper-
parameters. Each network is evaluated on a met-
ric, in this case, the minimization of the Hamming
loss criteria (Zhang and Zhou, 2014). The five best
networks based on this metric are chosen, along
with five random ones to allow some variability in
the population. Another generation is created with
random hyperparameters chosen from within the
subset of the last generation, while we repeat this
process for a total of ten generations.

The final optimal hyperparameters, based on the
minimized Hamming loss, were six dense layers
with dimensions of 1024, 768, 256, 128, 64 and
4 in that order. Each layer contained a relu activa-
tion function, except for the final layer, which con-
tained Sigmoid. Binary cross entropy was applied
to compute the loss function and adagrad function
as the optimizer.

The following hyperparameters were employed
for the RFC, number of trees in the forest = 10,
split criterion = gini, no max depth of trees, min-
imum samples to split a tree = 2, minimum leaf
sample = 1.

4 Results

Multilabel Our evaluation was first performed on
the multilabel aspect of the network. PHQ scores
were reduced to a binary class (0 for 0, 1 for 1,2,3)
and Sigmoid outputs were binarized on a cutoff
point of 0.5. Hamming loss was the chosen met-
ric for evaluation (Zhang and Zhou, 2014), which
computes the distance between predicted and true
values. A ten-fold cross-validation resulted in a
score of 0.388, 95% [0.3870, 0.3905]. To com-
pare this against a random baseline, where a set

Question Accuracy Sensitivity Specificity
1 0.25 0.96 0.66
2 0.58 0.79 0.84
3 0.39 0.87 0.91
4 0.32 0.94 0.71

Table 2: Sensitivity and specificity scores for each
question as predicted by the model

Precision Recall F1-score
Depressed 0.16 0.17 0.16
Non-Depressed 0.59 0.56 0.57

Table 3: Classification scores from the eRisk data

of prediction scores are computed using a random
number generator, a Hamming loss of 0.49, 95%
[0.481, 0.519], is achieved.

Multidimensional Using the cutoffs mentioned
above, Sigmoid scores were transformed into ordi-
nal values. Since the Hamming loss is unsuited
to this evaluation, a more suitable metric is the
Example Accuracy, which consists of comparing
if the prediction of each individual is completely
correct (all values match) or incorrect and taking
the mean value across all predictions (Read et al.,
2014). The result across ten-fold cross-validation
is 0.221, 95% [0.201, 0.243]. In comparison to
ten-fold cross-validation of the RFC which re-
sulted in a score of 0.087, 95% [0.086, 0.085].

EX. ACCURACY =
1

N

N∑

i=1

I(ŷ(i), y(i)) (1)

Sensitivity, Specificity are both common eval-
uation metrics employed in medical literature and
are important in considering the real-life implica-
tions of true positives and false negatives. Results
from the trained neural network per question are
presented in Table 2.

Social media evaluation To perform this, we
evaluated our network on the Reddit dataset com-
piled by the authors (Losada and Crestani, 2016).
We considered a score above 3 on the PHQ-2 (lat-
ter two questions on the PHQ-4) to be indicative of
a user suffering depression. Results are presented
in Table 3. Accuracy score was 43%, which was
18% below the majority class baseline.
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5 Conclusion and Future Work

Exploring new methods to diagnose and treat men-
tal health disorders has become a priority in many
countries. Passive diagnosis has the potential to
allow for early treatment and diagnosis to become
standard practice in society. In the course of this
work, we have developed a method to apply this
concept to the PHQ-4 to screen for depression and
anxiety.

Our approach is the first publication to explore
how multilabel neural networks can predict de-
pression and anxiety. We have developed a Mul-
tidimensional classification architecture to model
the interconnectivity of the symptoms combined
with a hardcoded threshold value to output ordi-
nal scores. For multilabel evaluation, our model
scores considerably better than the random base-
line. While for multidimensional classification our
system outperforms a simpler RFC by 14%. When
evaluating on social media data from Losada and
Crestani (2016), the models fail to match the ma-
jority class baseline.

In almost all questions on the PHQ-4, we
demonstrate high sensitivity for predicting the dis-
order. Specificity is slightly lower in many cases,
however, for early-stage diagnostics, this is often
an acceptable outcome since it often better to en-
sure false negatives do not occur.

This demonstrates the non-trivial nature of
training on one domain of data and evaluating on
another. Two out of three of our feature sets, psy-
chometric similarity and text representation em-
ployed the pre-trained USE model, which was
also trained on non-social media style data. Fu-
ture work will need to explore the ability to create
models that are less semantically domain specific
and better able to generalize across writing styles.
The concept of transfer learning has seen success
in this area (Glorot et al., 2011).

Our approach is incomparable to the proceed-
ings in the eRisk workshop who focus on the tem-
poral aspect of the prediction. Data is released in
chunks over time and accuracy is penalized as the
length of time from the beginning increases.

In final conclusion, our work has demonstrated
that neural networks offer a potential new route for
the area of passive diagnosis and prediction of de-
pression and anxiety. Future work is required to
ensure the generalizability of the approach, how-
ever.
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A Appendices

A.1 Hyperparameters
The full pool of possible hyperparameter fed into
the genetic algorithm is as follows; possible neu-
rons (64, 128, 256, 768, 2014), possible layers (1,
2, 3, 4, 5, 6, 7), possible activation functions (relu,
elu, tanh, sigmoid, hard sigmoid, softplus, linear),
possible optimizers (rmsprop, adam, sgd, adagrad,
adadelta, adamax, nadam)
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Abstract 

This is the system description of the Harbin 

Institute of Technology Shenzhen (HITSZ) 

team for the first and second subtasks of the 

fourth Social Media Mining for Health 

Applications (SMM4H) shared task in 

2019. The two subtasks are automatic 

classification and extraction of adverse 

effect mentions in tweets. The systems for 

the two subtasks are based on bidirectional 

encoder representations from transformers 

(BERT), and achieves promising results. 

Among the systems we developed for 

subtask1, the best F1-score was 0.6457, for 

subtask2, the best relaxed F1-score and the 

best strict F1-score were 0.614 and 0.407 

respectively. Our system ranks first among 

all systems on subtask1. 

1 Introduction 

Adverse drug reaction (ADR), namely adverse 

drug effect, is one of the leading causes of post-

therapeutic deaths (Saha, Naskar, Dasgupta, & Dey, 

2018). Nowadays, more and more people share 

information in social platform, including health 

information such as drugs and their ADRs. Twitter, 

as one of the most popular social platforms, has 

attracted a great deal of attention from researchers 

in the medical domain. Some methods, such as 

HTR_MSA (Wu et al., 2018) and Neural DrugNet 

(Nikhil & Mundra, 2018), have been proposed to 

detect tweets mentioning ADRs and medicine 

intake. In order to facilitate the use of social media 

for health monitoring and surveillance, the health 

language processing lab at University of 

Pennsylvania organized Social Media Mining for 

Health Applications (SMM4H) shared task four 

times. In 2019, the fourth SMM4H shared task was 

comprised of four subtasks: (1) Automatic 

classifications of adverse effect mentions in tweets, 

(2) Extraction of Adverse Effect mentions, (3) 

Normalization of adverse drug reaction mentions 

(ADR), and (4) Generalizable identification of 

personal health experience mentions 

(Weissenbacher et al., 2019). 

We participated in subtask 1 and subtask2, and 

developed two systems based on bidirectional 

encoder representations from transformers (BERT) 

(Devlin, Chang, Lee, & Toutanova, 2018) for the 

two subtasks respectively. The system for subtask 

1 achieved the best F1-score of 0.6457, ranking 

first. Among the systems we developed for 

subtask2, the best relaxed F1-score and the best 

strict F1-score were 0.614 and 0.407 respectively. 

2 Task and Data Description 

2.1 Task 1: Automatic Classifications of 

Adverse Effect Mentions in Tweets 

Task 1 was formulated as follows: given a tweet, 

determine whether it mentions drug adverse effect 

mentions, denoted by 1 and 0, indicating a tweet 

mentions drug adverse effects and not, respectively. 

The organizers provided a train dataset consisting 

of 25,678 tweets for all participants to develop 

their system, and a test dataset consisting of 4,575 

tweets to evaluate the performance of all systems. 

Table 1 shows the distribution of 0 and 1 labels 

over the training and test datasets, where #* 

denotes the number of tweets labeled with *, and 

NA denotes that the corresponding number is 

currently unknown. 

Dataset #1 #0 #all 

Training set 2,377 23,301 25,678 

Test set NA NA 4,575 

Table 1: Distribution of labels over the training and 

test datasets of task1. 
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2.2 Task 2: Extraction of Adverse Effect 

Mentions 

Task 2 as a follow-step of Task 1 was formulated 

as follows: given a tweet, identify the text span of 

adverse effect mentions. The challenge of task 2 is 

to distinguish adverse effect mentions from similar 

non-ADR expressions. A training set of 3,225 

tweets annotated with 1830 adverse effect 

mentions was provided for system development, 

and a test set of 1,573 tweets was provided for 

system evaluation. The statistics of the training and 

test datasets are listed in Table 2. 

Dataset #tweets #ADRs 

Training set 3,225 1,830 

Test set 1,573 NA 

Table 2: Statistics of the training and test datasets of 

task 2 

3 Methods 

Our systems for both task 1 and task 2 were based 

on BERT, an unsupervised language representation 

method to obtain deep bidirectional representations 

of sentences by jointly conditioning on both left 

and right context in all layers from free text. Below 

we described in detail the methods for the two tasks: 

task 1 and task 2, respectively. 

3.1 Task 1: BERT and BERT+Knowledge 

Base 

In this task, we designed two methods, BERT and 

BERT +Knowledge Base. The model architecture 

is shown in Fig. 1. 

BERT: Like what BERT did, we took the final 

hidden state of the first input token [CLS] as the 

representation of a tweet. Then we applied a 

softmax layer over the output to classify a tweet. 

We denote the representation vector as 𝐻, then the 

predicted label �̂� is computed as: 

 �̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐻 + 𝑏)  (1) 

where 𝑊 , 𝑏  is the parameters of the fully 

connected layer. 

BERT+Knowledge Base: Inspired by Li et al. 

(2018), we tried to combine the BERT output with 

features from knowledge bases to improve the 

performance of systems. We firstly extracted drugs 

which appear in the SIDER 4.1 (a side effect 

resource which contains information on marketed 

medicines and their recorded adverse drug 

reactions) from the train dataset, and obtained a 

drug lexicon of 538 drugs. Then we extracted 

corresponding adverse effects in SIDER according 

to the drug lexicon, and obtained 4,411 <drug, 

ADR> pairs. For each tweet, according to the 

presence of <drug ADR> pairs, we could build a 

binary feature. We incorporated the binary feature 

into representation vectors of a tweet. The final 

representation of a tweet is a concatenation of its   

BERT output and lexicon feature. Then we used a 

fully connected layer to fuse information from 

different feature spaces, and applied a softmax 

layer on it to classify tweets. We denote the output 

of BERT as 𝐻1, the lexicon feature as 𝐻2, then the 

predicted label �̂� of a tweet is computed as : 

 �̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊[𝐻1, 𝐻2] + 𝑏)  (2) 

where 𝑊 , 𝑏  is the parameters of the fully 

connected layer. The loss function for two models 

training is crossentropy: 

 𝐿 = − ∑ ∑ 𝑦𝑖𝑗 . 𝑙𝑜𝑔(�̂�𝑖𝑗)𝐶
𝑗=1

𝑁
𝑖=1     (3) 

Where 𝑦𝑖𝑗  and �̂�𝑖𝑗  are gold label and predicted 

label for the 𝑖𝑡ℎ sample in the 𝑗𝑡ℎ label category. 𝑁 

is the number of samples in a batch, 𝐶  is the 

number of label categories. 

 

Figure 1: The model architecture in Task 1 

3.2 Task 2: BERT and BERT+CRF 

In task2, we still took BERT as the basic 

architecture, and designed two methods. The 

model architecture is shown in Fig. 2. 

BERT: This method is very similar to the first 

method in Task 1. The difference is that we feed the 
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final hidden representation for to each token into a 

classification layer over the NER tags set, because 

we need to obtain predicted tag of each input token. 

BERT +CRF: This method is a follow step of 

the first method. For BERT method, the predictions 

are not conditioned on the surrounding predictions. 

A CRF layer has a state transition matrix as 

parameters (Huang, Xu, & Yu, 2015). With such a 

layer, the system can efficiently use past and future 

tags to predict the current tag. Therefore, we 

applied a CRF layer on the classification layer. We 

denote the output sequence after softmax layer as 

𝐻 = [ℎ1, ℎ2, … ℎ𝑛], then the predicted tag 

sequence 𝑍 = [𝑧1, 𝑧2, … 𝑧𝑛] is as follows: 

 𝑍 = argmax
𝑦

𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝐻,𝑦))

∑ 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝐻,𝑦′))𝑦′
    (4) 

where 𝑠𝑐𝑜𝑟𝑒(𝐻, 𝑦) = ∑ 𝐸𝑡, 𝑦𝑡

𝑛
𝑡=1 + ∑ 𝑇 𝑦𝑡𝑦𝑡+1

𝑛−1
𝑡=0 , 

𝐸𝑡, 𝑦𝑡
= 𝑤𝑦𝑡

T ℎ𝑡 is the score of predicting tag  𝑦𝑡 at 

the 𝑡𝑡ℎ   time, and 𝑇 𝑦𝑡𝑦𝑡+1
  is the score of 

transitioning from  𝑦𝑡 to  𝑦𝑡+1. 

 

Figure 2: The model architecture in Task 2 

3.3 Experiments 

For task1, we compared BERT and 

BERT+knowledge base with two classic deep 

learning methods, TextCNN (Kim, 2014) and 

LSTM (Hochreiter & Schmidhuber, 1997), and 

also investigated the effect of different BERT 

models, including the BERT model (Devlin et al., 

2018) publicly released by 

(https://github.com/google-research/bert) (denoted 

by BERT_noRetrained) and the BERT model 

retrained on a large-scale tweet unlabeled corpus 

based on the previous BERT model (denoted by 

BERT_Retrained). The unlabeled corpus consisted 

of 1,500,000 tweets crawled from Twitter 

according to 150 drug names collected from the 

training set. For task2, we only used the retrained 

BERT model. 

In our experiments, we set batch size to 32, 

learning rate to 5e-5 when training all models. The 

epoch number was set to 8 for BERT retraining, 

and 20 for other models. The dimension of word 

embeddings used in TextCNN and LSTM was set 

to 200. We split out about 10% from the training 

set as a validation set for parameter optimization. 

The performance of all methods for the two tasks 

were measured by precision, recall and F1-score, 

which can be calculated by the official tools 

provided by the organizers. For task2, there were 

two criteria for system performance evaluation: 

relaxed and strict. 

4 Results 

Table 3 and Table 4 show the performance of our 

systems for task 1 and task 2 on the test set, 

respectively.  

For task 1, among the systems we developed, 

“BERT_Retrained” achieved the best F1-score of 

0.6457 and recall of 0.6885 on the test set, 

“BERT_Retrained+Knowledge Base” achieved 

the best precision of 0.6916 on the test set. 

Compared with TextCNN and LSTM on the 

validation set, methods based on BERT showed 

much better performance. As officially reported, 

“BERT_Retrained” ranked first among all systems. 

For task 2, among the systems we developed, 

“BERT_Retrained+CRF” achieved the best 

relaxed F1-score of 0.614 and the best strict F1-

score of 0.407, outperforming “BERT_Retrained” 

by 0.024 in relaxed F1-score and 0.060 in strict F1-

score. 

5 Discussion 

For Task 1, the distribution of 0 and 1 is highly 

imbalanced, 90% of samples are negative, 10% of 

samples are positive. When we used CNN and 

LSTM, if we did not deal with the data imbalance 

problem, the performance of them was quite poor, 

most tweets were classified to 0. In order to balance 

the number of positive and negative samples, we 

randomly divided into the negative 
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System 
Validation Test 

F1 P R F1 P R 

TextCNN 0.491 0.464 0.522 \ 

LSTM 0.483 0.516 0.453 \ 

BERT_noRretrained 0.618 0.646 0.593 \ 

BERT_Retrained 0.665 0.611 0.728 0.6457 0.6079 0.6885 

BERT_Retrained+Knowledge Base 0.642 0.720 0.579 0.6289 0.6916 0.5767 

Average of participants' systems \ \ \ 0.5019 0.5351 0.5054 

Table 3: Results on validation and test data for Task 1 

System 
Relaxed Strict 

F1 P R F1 P R 

BERT_Retrained+CRF 0.614 0.538 0.716 0.407 0.357 0.474 

BERT_Retrained 0.59 0.529 0.666 0.347 0.311 0.392 

Average of participants' systems 0.5383 0.5129 0.6174 0.3169 0.3026 0.3581 

Table 4: Results on test data for Task 2 

 

samples into five equal parts, and combined each 

part with the positive samples to form a new 

training dataset. After this operation, we obtained 

five new balanced training datasets. Then we 

trained five models on them, and ensembled the 

five models. The ensembled model brought an 

increase of about 8% in F1-score. However, when 

applying this operation to BERT and 

“BERT+Retrained”, we obtained little increase on 

F1-score.  

By analyzing results of “BERT_Retrained”, we 

found that the main errors are: 

 ADR mentions cannot be compeletely 

distinguished from the reason mentions of 

taking drugs. For example, in “oxycodone 

just took my headache away so fast”, 

“headache” is the reason of taking 

oxycodone, not an adverse effect mention of 

oxycodone. The tweet was wrongly 

classified to 1. 

 Implicit adverse effect mentions are difficult 

to identified. For example, “pristiq and im 

livin in a cold world” and “uhh my 

gabapentin does went up today and I don't 

even know what planet i'm on. i hope i adjust 

to this quickly ... #endometriosis”. 

For task 2, because the CRF layer takes full 

advantages of relations between neighbor labels, 

“BERT_Retrained+CRF” could avoid some 

terrible tag sequences such as “I-B-B-O-O”. The 

main errors appearing in task 2 are the same as task 

1. 

For further improvement, a possible direction is 

dealing with task 1 and task 2 at the same time 

using joint learning methods. 

6 Conclusion 

In this paper, we developed systems for task 1 and 

task 2 of the SMM4H shared task in 2019. Our 

systems were based on BERT and achieved 

promising results, especially ranking first on task 1.   

References  

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 

(2018). Bert: Pre-training of deep bidirectional 

transformers for language understanding. ArXiv 

Preprint ArXiv:1810.04805. 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural Computation, 9(8), 1735–

1780. 

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional 

LSTM-CRF Models for Sequence Tagging. ArXiv 

Preprint ArXiv:1508.01991. 

Kim, Y. (2014). Convolutional neural networks for 

sentence classification. ArXiv Preprint 

ArXiv:1408.5882. 

Li, H., Yang, M., Chen, Q., Tang, B., Wang, X., & Yan, 

J. (2018). Chemical-induced disease extraction via 

recurrent piecewise convolutional neural networks. 

BMC Medical Informatics and Decision Making, 

18(2), 60. 

Nikhil, N., & Mundra, S. (2018, October). Neural 

DrugNet. Proceedings of the 2018 EMNLP 

Workshop SMM4H: The 3rd Social Media Mining 

for Health Applications Workshop and Shared Task. 

50



 

Saha, R., Naskar, A., Dasgupta, T., & Dey, L. (2018). 

Leveraging Web Based Evidence Gathering for 

Drug Information Identification from Tweets. 

Proceedings of the 2018 EMNLP Workshop 

SMM4H: The 3rd Social Media Mining for Health 

Applications Workshop & Shared Task. 

Weissenbacher, D., Sarker, A., Magge, A., Daughton, 

A., O’Connor, K., Paul, M., & Graciela Gonzalez-

Hernandez. (2019). Overview of the Fourth Social 

Media Mining for Health (SMM4H) Shared Task at 

ACL 2019. Proceedings of the 2019 ACL Workshop 

SMM4H: The 4th Social Media Mining for Health 

Applications Workshop & Shared Task. 

Wu, C., Wu, F., Liu, J., Wu, S., Huang, Y., & Xie, X. 

(2018, October). Detecting Tweets Mentioning 

Drug Name and Adverse Drug Reaction with 

Hierarchical Tweet Representation and Multi-Head 

Self-Attention. Proceedings of the 2018 EMNLP 

Workshop SMM4H: The 3rd Social Media Mining 

for Health Applications Workshop and Shared Task. 

 

51



Proceedings of the 4th Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task, pages 52–57
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

KFU NLP Team at SMM4H 2019 Tasks: Want to Extract Adverse Drugs
Reactions from Tweets? BERT to The Rescue

Zulfat Miftahutdinov and Ilseyar Alimova
Kazan Federal University,

Kazan, Russia
zulfatmi@gmail.com
ISAlimova@kpfu.ru

Elena Tutubalina
Kazan Federal University,

Kazan, Russia
Samsung-PDMI Joint AI Center,

PDMI RAS, St. Petersburg, Russia
elvtutubalina@kpfu.ru

Abstract

This paper describes a system developed for
the Social Media Mining for Health (SMM4H)
2019 shared tasks. Specifically, we partici-
pated in three tasks. The goals of the first two
tasks are to classify whether a tweet contains
mentions of adverse drug reactions (ADR) and
extract these mentions, respectively. The ob-
jective of the third task is to build an end-to-
end solution: first, detect ADR mentions and
then map these entities to concepts in a con-
trolled vocabulary. We investigate the use of a
language representation model BERT trained
to obtain semantic representations of social
media texts. Our experiments on a dataset
of user reviews showed that BERT is superior
to state-of-the-art models based on recurrent
neural networks. The BERT-based system for
Task 1 obtained an F1 of 57.38%, with im-
provements up to +7.19% F1 over a score aver-
aged across all 43 submissions. The ensemble
of neural networks with a voting scheme for
named entity recognition ranked first among
9 teams at the SMM4H 2019 Task 2 and ob-
tained a relaxed F1 of 65.8%. The end-to-end
model based on BERT for ADR normalization
ranked first at the SMM4H 2019 Task 3 and
obtained a relaxed F1 of 43.2%.

1 Introduction

Short-text communication forms, such as Twitter
microblogging, present a wide variety of facts and
opinions on numerous topics, and this treasure
trove of information is currently severely under-
explored. Here we focus on the problem of dis-
covering adverse drug reaction (ADR) concepts in
Twitter messages as part of the Social Media Min-
ing for Health (SMM4H) 2019 shared tasks.

This work is based on the participation of our
team, named KFU NLP, in the first three tasks.
Organizers of SMM4H 2019 Tasks 1-3 (Weis-
senbacher et al., 2019) provided participants with

datasets of English tweets annotated at the mes-
sage level with binary annotation indicating the
presence or absence of ADRs, text spans of re-
ported ADRs, and their corresponding medical
codes from the Medical Dictionary for Regula-
tory Activities (MedDRA). The goal of Task 1 is
to classify the tweets according to the presence of
ADRs. For the second task, named entity recogni-
tion (NER) aims to detect the mentions of ADRs.
The third and final task is designed as an end-to-
end problem, intended to perform full evaluation
of a system operating in real conditions: given a
set of raw tweets, the system has to find the tweets
that are mentioning ADRs, find the spans of the
ADRs, and normalize them with respect to a given
knowledge base (KB). These tasks are especially
challenging due to specific characteristics of user-
generated texts from social networks which are
noisy, containing misspelled words, abbreviations,
emojis, etc.

Motivated by the recent success of deep ar-
chitectures in general and language representa-
tion networks in particular, we explore an appli-
cation of Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018)
and its extension for biomedical domain BioBERT
(Lee et al., 2019) to the SMM4H 2019 tasks.
For both ADR extraction and medical concept
normalization, we conclude that BERT outper-
forms previous state-of-the-art baselines based on
recurrent neural architectures (RNNs), including
bidirectional Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), and Gated
Recurrent Units (Cho et al., 2014) paired with
word2vec word embeddings.

The paper is organized as follows. In Section 2,
we present the task description, machine learning
baselines, and classification experiments for Task
1. We describe our models for end-to-end extrac-
tion of ADR concepts in Sections 3 and 4. Finally,

52



we discuss future directions in Section 5.

2 Task 1: Classification

The goal of this sub-task is to identify the tweets
with ADR mentions. This is a necessary filter-
ing step to remove noise, since most of the health-
related chatter in the domain does not contain rel-
evant information.

2.1 Dataset

The training set consists of 25,678 tweets with
2,377 labeled as positive examples with ADRs;
this statistic shows that the corpus has huge class
imbalance. Tweet text lengths vary from 1 to 53
words, the average length is 20 words. The test
dataset includes 4,576 tweets. Minimum tweet
length is also 1 and the maximum consists of 186
words, which is much longer than in the training
set. However, the average amount of words in
tweets is on par with the training set and equals
23 words.

2.2 Method

Previous studies have shown the effectiveness of
classical machine learning approaches (Ofoghi
et al., 2016; Jonnagaddala et al., 2016; Kiritchenko
et al., 2018; Alimova and Tutubalina, 2017). We
applied the SVM-based model with a set of fea-
tures as a baseline method. For SVM features,
we utilized the bag-of-words representation, drug
name, and ADRs from a Diego Lab ADR lexi-
con (Sarker et al., 2015). The list of drug names
was obtained from the Food and Drug Adminis-
tration (FDA). We’ve also explored the potential
of sent2vec tool for tweets representation (Pagliar-
dini et al., 2018). The Twitter unigram pre-trained
model was applied for obtaining vectors1.

Our main solution is a classifier based on the
BERT architecture. For the BERT-based model,
the tweet’s representation was obtained with the
Transformer architecture (Vaswani et al., 2017),
and then logistic regression was used as a classi-
fier. We used the implementation from the model’s
official repository2.

2.3 Experiments

For the SVM-based classifier, we set class weights
to 0.3 and 0.7 for non-ADR and ADR classes re-

1https://github.com/epfml/sent2vec
2https://github.com/google-research/

bert

Run name F1 P R
KFU NLP, BERT 57.38 69.14 49.04
KFU NLP, SVM 51.64 56.2 47.76
Average scores 50.19 53.51 50.54

Table 1: Text classification results on the Task 1 test
set.

spectively and applied a linear kernel. The BERT-
based model was trained on 20 epochs with learn-
ing rate equal to 5∗10−5, maximum sequence size
128, and batch size 32.

The official evaluation metrics are precision (P),
recall (R), and F1-measure (F1) computed for the
positive class. During preprocessing, we removed
all URLs, user mentions, and symbols of re-tweets
using the tweet-preprocessor package3. We con-
ducted a set of experiments on the training set with
5-fold cross-validation. Results of these experi-
ments shows that utilizing sent2vec as tweet rep-
resentations did not improve classification quality.
Results on the test set are presented in Table 1. Our
baseline SVM classifier (run-2) obtained the F1
score of 51.64%, which is on par with average re-
sults. The BERT-based classifier (run-1) achieved
the F1 score of 57.38 and outperformed by 7.19%
the F1 score averaged across 43 submissions.

3 Task 2: Extraction of Adverse Effect
Mentions

Following state-of-the-art research (Miftahutdi-
nov et al., 2017; Tutubalina and Nikolenko, 2017;
Lee et al., 2019), we view the second task from the
perspective of a sequence labeling problem. Se-
quence labeling refers to the task of learning to
predict a label for each token in a sequence of
tokens. State-of-the-art methods employ neural
architectures based on bidirectional LSTMs and
conditional random fields (CRF) (Lample et al.,
2016; Tutubalina and Nikolenko, 2017; Giorgi and
Bader, 2019). Recent advancements in language
representation models such as BERT have opened
up new directions of research in sequence labeling.

3.1 Dataset

The data for the second sub-task includes 2,367
tweets that are fully annotated for ADR mentions
and Indications. This set contains a subset of (i)
1,212 tweets from Task 1 tagged as ‘hasADR’ and

3https://pypi.org/project/
tweet-preprocessor/
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(ii) 1,155 tweets marked as ‘noADR’ (1,828 ADR
mentions in total).

3.2 Method

Sequence labeling methods view a message as a
sequence of tokens labeled using the BIO tag-
ging scheme: B indicates the beginning of the
entity mention, I is used for tokens inside the
entity mention, and O indicates tokens outside
any entities. To solve the sequence labeling
task, we utilize and empirically compare several
models: (i) bidirectional LSTM-CRF; (ii) BERT;
(iii) BERT for Biomedical Text Mining named
BioBERT. We have also utilized a CRF tagger on
top of BioBERT. A technical explanation of these
neural models is omitted due to space constraints;
we refer to the studies listed above.

We have also combined deep neural network
representations with additional dictionary-based
features. Dictionary-based features are calculated
for each token in a text as follows: first, all
the occurrences of predefined vocabulary entries
were found in the text, then the first token of
the matched part tagged was with B-tag, the last
with I-tag, and all other tokens in the text with
O-tag. The dictionary-based features are concate-
nated with the representation learned by the neural
network that captures extensional semantic infor-
mation of an entity mention. We adopted the dic-
tionaries from our previous work (Miftahutdinov
et al., 2017).

3.3 Experiments

For the NER sub-task each network was trained
for 25 epochs with batch size set to 32. We used
the Adam algorithm as the optimizer with initial
learning rate 5 ∗ 10−5. We used the publicly avail-
able implementation of BioBERT-CRF4. Training
all 10 networks took 2-3 hours on eight NVIDIA
Tesla P40 GPUs. Additionally, we have used the
CADEC corpus along with the corpus provided by
the organizers.

Since the boundaries of an entity mention in so-
cial media texts are hard to define, two types of
evaluation were used: strict and relaxed. Preci-
sion, recall, and F-measure are used for perfor-
mance evaluation.

In order to select the best neural models,
we evaluated our models on the CADEC cor-
pus using 5-fold cross-validation at the develop-

4https://github.com/dmis-lab/biobert

Run name F1 P R
Relaxed Evaluation

KFU NLP Team 65.8 55.4 81.0
Average scores 53.83 51.29 61.74

Strict Evaluation
KFU NLP Team 46.4 38.9 57.6
Average scores 31.69 30.26 35.81

Table 2: The NER results on the Task 2 test set.

ment stage. BERT showed 5-7% improvement
in the strict evaluation over LSTM-CRF, while
BioBERT showed slightly better performance over
BERT. BioBERT with CRF stayed roughly on par
with the model without CRF.

During BioBERT evaluation, we encountered
unstable results on development sets. Therefore,
for the final submission we combined the results
of ten BioBERT-CRF with the same settings us-
ing a simple voting scheme with the intent of in-
creasing the robustness of the final system. Table 2
shows a comparison of the ensemble model to the
official average scores computed using the partic-
ipants’ submissions. Our model has obtained the
highest relaxed F1 score of 65.8% among 9 teams.

4 Task 3: Medical Concept
Normalization

A crucial part of this problem is to translate a
text from social media language (e.g., “felt sick to
my stomach” or “couldn’t sleep much”) to formal
medical language (e.g., “nausea” and “insomnia”,
respectively).

The SMM4H 2019 Task 3 is designed as an end-
to-end task. This setup is closer to a real pro-
duction environment, where the system has free-
form text as input and should be able to produce
a set of extracted medical concepts. This end-to-
end setup is more challenging due to the sequential
two-stage pipeline: the system has to (i) first detect
ADR mentions and then (ii) map extracted ADRs
to knowledge base entries. For the first step, we
use the NER model described in Section 3. The
system used for concept normalization is based on
our previous works (Tutubalina et al., 2018; Mif-
tahutdinov and Tutubalina, 2019) and presented
below.

4.1 Dataset

ADR mentions from the SMM4H 2019 dataset are
mapped to Preferred Terms (PTs) of the Medical
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Figure 1: The code frequency distribution of MedDRA codes in the training set (Task 3).

Figure 2: Top 20 entities in the training set (Task 3).

Dictionary for Regulatory Activities (MedDRA).
The training SMM4H 2019 set consists of 1,828
phrases mapped to 489 MedDRA codes. The av-
erage number of ADR mentions mapped to a given
concept is 3.74. The minimum and maximum
numbers of queries mapped to a given concept are
1 and 65, respectively. Figure 1 shows a plot of
the code frequency distribution of MedDRA con-
cepts presented in the training set. Additionally,
we present statistics on the top 20 entity mentions
from the training set in Figure 2.

4.2 Method

Following state-of-the-art research (Tutubalina
et al., 2018; Sarker et al., 2018; Miftahutdinov and
Tutubalina, 2019), we view concept normalization
as a classification task. Following (Miftahutdi-

nov and Tutubalina, 2019), we convert each ADR
mention into a vector representation using BERT
or RNN. Next, we employ the standard softmax
activation for the output layer. The softmax layer
over all possible medical codes from the training
set yields a probability for the sequence.

In order to train the classification model, we
utilized training sets from five different sources:
SMM4H 2019 dataset, SMM4H 2017 dataset
(Sarker et al., 2018), CADEC dataset (Karimi
et al., 2015), PsyTAR dataset (Zolnoori et al.,
2019), and TwADR-L (Limsopatham and Collier,
2016). SMM4H datasets and CADEC were man-
ually mapped to MedDRA codes. PsyTAR and
TwADR-L were mapped to the MedDRA coding
system using the UMLS metathesaurus (version
2017AA).
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Run name F1 P R
Relaxed Evaluation

KFU NLP Team 43.2 36.2 53.5
Average scores 29.72 29.06 31.15

Strict Evaluation
KFU NLP Team 34.4 28.8 42.7
Average scores 21.18 20.53 22.41

Table 3: The concept normalization results on the Task
3 test set.

4.3 Experiments
We trained the BERT model for 40 epochs, using
batch size 96 and learning rate 5∗10−5. In order to
prevent neural networks from overfitting, we used
a dropout of 0.2 to control the inputs and the soft-
max layer. We used the publicly available imple-
mentation of BERT5.

The strict and relaxed evaluations proposed for
Task 2 were also adopted for Task 3. As in
previous work, we evaluated our models on the
CADEC corpus at the development stage using 5-
fold cross-validation. The BERT model consis-
tently outperformed attention-based bidirectional
LSTM and GRU paired with pre-trained word em-
beddings in this set of experiments, showing a 6-
9% improvement. We did not experiment with
BioBERT for this task.

For the final submission, we used the two-stage
pipeline based on the ensemble of BioBERT-CRF
for NER and BERT for normalization. Table 3
shows a comparison of our best model to the of-
ficial average scores computed using the partici-
pants’ submissions. The end-to-end model ranked
first at SMM4H 2019 Task 3 and obtained a re-
laxed F1 of 43.2%. The strict recall of the end-
to-end system is 15% lower than the recall of the
NER system: 42.7 vs 57.6. Results in Tables 2 and
3 indicate that more than 80% of extracted ADR
mentions have been correctly mapped to MedDRA
concepts.

5 Conclusion

In this work, we have explored an application
of Bidirectional Encoder Representations from
Transformers (BERT) to the task of text classifica-
tion, extraction of adverse drug reactions, and con-
cept normalization. We have evaluated BERT and
BioBERT empirically against bidirectional LSTM

5https://github.com/huggingface/
pytorch-pretrained-BERT

and GRU. Experiments have shown that BERT
outperforms LSTM and GRU on all three tasks,
achieving new state-of-the-art results in ADR ex-
traction and normalization.

We foresee three directions for future work.
One potential direction is to investigate neural ar-
chitectures including BERT and RNNs in the end-
to-end setup on other existing corpora. Another
future direction is to explore how to effectively
use of contextual information to map entity men-
tions to medical concepts. Additionally, the effect
of data imbalance can be investigated for BERT-
based models.
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Abstract

We describe our submissions to the 4th edi-
tion of the Social Media Mining for Health
Applications (SMM4H) shared task. Our
team (UZH) participated in two sub-tasks:
Automatic classifications of adverse effects
mentions in tweets (Task 1) and Generaliz-
able identification of personal health expe-
rience mentions (Task 4). For our submis-
sions, we exploited ensembles based on a pre-
trained language representation with a neu-
ral transformer architecture (BERT) (Tasks 1
and 4) and a CNN-BiLSTM(-CRF) network
within a multi-task learning scenario (Task 1).
These systems are placed on top of a care-
fully crafted pipeline of domain-specific pre-
processing steps.

1 Introduction

The Social Media Mining for Health Applica-
tions (SMM4H) shared task 2019 (Weissenbacher
et al., 2019) focused on classical natural-language-
processing (NLP) problems applied to Twitter mi-
croposts (tweets). Our team participated in two
tasks of binary text classification: tweets are la-
beled positive if they contain an Adverse Drug Re-
action (ADR) in Task 1 or a Personal Health Men-
tion (PHM) in Task 4. Task 1 (automatic classi-
fications of adverse effects mentions in tweets) is
a re-run of the ADR task from previous editions
of the SMM4H shared task. Task 4 (generaliz-
able identification of personal health experience
mentions) was run for the first time. This task
consists in deciding if a tweet contains personal
health mentions, as opposed to mentions of gen-
eral awareness of a health issue. Here, the main
challenge is to generalize from the health contexts
given by the two datasets provided as training data
(i.e. flu vaccination and flu infection) to other, pos-
sibly very different, health contexts.

2 Data and Pre-processing

The organizers provided all participants with la-
beled training data which included the text of the
tweets (as opposed to the previous years where
only tweet ids were provided). Table 1 describes
the size of the available datasets.

Data for Task 4 originated from two different
flu-related contexts, namely flu infection (Lamb
et al., 2013) and flu vaccination (Huang et al.,
2017). Each of these two datasets has their own
specific scope. Within the infection dataset, pos-
itively labeled examples are restricted to reports
of own infection (i.e., the author of the tweet is
infected) or infection of somebody close to the
author, whereas tweets mentioning personal vac-
cination are labeled as negative. The vaccination
dataset labels tweets as positive only if they report
that either the author, or a person close to the au-
thor, has actually been vaccinated. Tweets about
personal infection are labeled as negative within
this dataset. Task 4, on the other hand, looks to
label all instances as positive which contain a per-
sonal health mention (be it infection or vaccination
or any other health context) without a specified re-
stricted scope. Therefore, the main challenge of
Task 4 is to generalize from the specific health
contexts, as provided within the training data, to
personal health mentions in general.

For both tasks, we pre-processed all tweets with
the following steps:

• Without sentence splitting, the tweets are to-
kenized using NLTK’s Twitter tokenizer.1

• User names and numbers are replaced with
“@user” and “NUMBER”, respectively.

• URLs are truncated to their domain names.

• Hash symbols are stripped from hash tags.
1https://www.nltk.org/api/nltk.

tokenize.html
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# tweets # unique tweets
neg pos total neg pos total

Task 1 total 23301 2377 25678 22497 2368 24861

Task 4
Inf 472 564 1036 460 545 1005
Vacc 4815 1900 6715 4680 1885 6515
total 5287 2464 7751 5140 2430 7570

Table 1: Number of tweets provided for each task as
training data. Task 4 includes data from the health con-
text of Vaccination (Vacc) and Infection (Inf ). Unique
tweets are counted after pre-processing followed by re-
moval of duplicates.

• Camel-cased expressions like “SideEffects”
are split into their component words.

• Artifacts of upstream processing like
“&amp;” are fixed.

• Frequent colloquial abbreviations (e.g. “w/”
for “with”) are resolved.

• Repeated letters (“greaaaaat”) are removed.
Specifically, runs of three or more equal let-
ters are replaced with a single occurrence, ex-
cept for “e”, where two letters are retained
(e.g. “freeeeeze” becomes “freeze”). Letter
de-repetition was not applied to the BERT-
based systems (described below).

The datasets contain a considerable number
of duplicates, i.e. tweets with the same or very
close content, including retweets. For the cross-
validation in Task 1, we ensured that duplicate
tweets were not spread across different folds. In
Task 4, this was achieved by removing all du-
plicate tweets from the training set after pre-
processing and before training (i.e. for our experi-
ments, numbers of unique tweets in Table 1 apply).

3 Experiments and System Descriptions

For Task 1, we experimented with two different
systems, separately and in combination. The first
system (labeled MTL) is a CNN+BiLSTM neu-
ral network with multi-task-learning (MTL) ca-
pabilities (Caruana, 1997). The multi-task archi-
tecture allows tackling multiple tasks (datasets) in
a single model, based on the idea that comple-
mentary information from different tasks can lead
to mutual benefit when they are trained jointly
(see e.g. Crichton et al., 2017). The architecture
distinguishes shared layers, where parameters are
updated for all tasks during training, and task-
specific layers with parameters dedicated to a sin-
gle task. Our MTL architecture is able to han-

dle different types of tasks, such as sequence la-
beling and document classification, in the same
model. In the present configuration, the model
was trained on data from Task 1, Task 2, and the
CADEC corpus (Karimi et al., 2015), where the
latter two served as helper tasks, solving the prob-
lem of span detection for ADRs. In the shared part
of the model, character embeddings are combined
with pre-trained word embeddings (Godin et al.,
2015) into a bidirectional Long-Short Term Mem-
ory (BiLSTM) layer. In the task-specific layer, the
sequence-labeling tasks are modeled with Condi-
tional Random Fields (CRF), whereas the text-
level classifier for Task 1 is based on the final state
of the BiLSTM layer directly. Additionally, the
Task-1 classifier uses a lexicon feature based on
a fuzzy-match lookup in the MedDRA vocabu-
lary.2 We trained 10 different models in a cross-
validation setting, using a held-out set to prevent
overfitting through early stopping. The predicted
labels are based on the mean of the scores of all
folds (transformed by softmax).

We based the second system (labeled BERT)
for Task 1 on BERT, a pre-trained language rep-
resentation with a neural transformer architecture
(Devlin et al., 2018). Our system merged param-
eters of 20 models (originating from 10-fold cross
validation trained once for four epochs and once
with early stopping3) into a single model (Utans,
1996; Junczys-Dowmunt et al., 2016). For this,
we calculated the weighted sum of parameters
across models: we weighted parameters of each
model by their performance on the respective test-
ing fold (measured as F-score and transformed by
softmax). By applying this method, we first sep-
arately merged the systems resulting from train-
ing with early stopping and from training for 4
fixed epochs, and subsequently, merged the two
resulting systems into a single system. For this
last merging step, we gave the system resulting
from merging early stopping systems nine times
the weight of the other system which resulted from
merging systems trained for a fixed number of
epochs. For the last run (MTL+BERT), we com-
bined predictions from all 20 BERT systems with
the first system and a second MTL configuration
which uses different word embeddings (Ellendorff
et al., 2018) and omits lexicon features.

For Task 4, our submission consisted of three
2https://www.meddra.org/
3Early stopping was done on 0.2 of the training portion

with a patience of 2.
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System Precision Recall F-Score Accuracy
Ta

sk
1 MTL 0.585 0.438 0.501

BERT 0.648 0.567 0.605
MTL+BERT 0.705 0.420 0.527
mean 0.535 0.505 0.502

Ta
sk

4 Merge 0.839 0.909 0.873 0.877
Average 0.988 0.614 0.757 0.818
Join 1.000 0.515 0.680 0.775
mean 0.902 0.585 0.701 0.781

Table 2: Official scores for our submissions, compared
to mean scores of all participating systems (best results
in bold).

Precision Recall F-Score Accuracy

Task 4
HC 1 0.910 0.988 0.947 0.944
HC 2 0.706 0.774 0.739 0.754
HC 3 0.750 0.790 0.769 0.839

Table 3: Official scores for Task 4, System 1
(Merged BERT models across contexts) by Health
Context/Health Concern (HC).

different types of BERT-based ensemble systems.
Our first system (labeled Merge) is similar to the
second system (BERT) of Task 1. We trained two
systems using 10-fold cross validation: one for
infection and one for vaccination. Subsequently,
we first merged the resulting systems across folds4

and, in a second step, we merged the two resulting
systems into one single system, giving nine times
the weight to the system resulting from training
on the infection dataset. This run has ranked first
among all systems participating in the task. The
second run (labeled Average) is again trained on
both datasets separately using 10-fold cross vali-
dation, resulting in 20 independent systems. La-
bels are determined by averaging label probabili-
ties returned by all 20 systems. Finally, the third
run (Join) is trained on both datasets jointly but
giving twice as much weight to all data points
from the infection dataset, again using 10-fold
cross validation, and probabilities were averaged
across these 10 systems.

For both tasks, our BERT classifiers are
based on the PyTorch implementation of BERT5

and fine-tune the pre-trained model provided by
Google research as BERT-Base, Uncased6. Where
not mentioned otherwise, all systems were trained
with the BertAdam optimizer for four epochs with

4For Task 4 we did not weight systems by their perfor-
mance on the test fold, as we did for Task 1.

5https://github.com/huggingface/
pytorch-pretrained-BERT

6https://github.com/google-research/
bert

System Precision Recall F-Score

Task 1

Single 0.765 0.385 0.512
Majority vote 0.688 0.462 0.552
Merge unweighted 0.623 0.617 0.619
Merge weighted 0.625 0.621 0.623

Table 4: Scores for post-submission runs for Task 1
(all BERT classifiers trained with early stopping).
Single: single system trained on the whole training
data; Majority vote: majority voting ensemble; Merge
unweighted: unweighted parameter merging; Merge
weighted: weighted parameter merging.

a batch size of 30 (Task 1) or 5 (Task 4), a learning
rate of 5× 10−5 and linear warmup schedule with
a fixed number of 9050 training steps.

4 Results and Discussion

Table 2 shows official results on the test set. The
official unlabeled test sets for Tasks 1 and 4 com-
prise 4575 and 285 tweets, respectively. Apart
from an overall evaluation, systems submitted for
Task 4 were also evaluated with respect to three
different health contexts (also: health concerns),
which were still undisclosed by the time we wrote
this system description. For our best performing
system (Merge), results for each health context can
be found in Table 3.

In Task 1, the BERT-based model clearly out-
performed our competing MTL-based approach.
After the submission deadline, we used the eval-
uation interface to obtain test set evaluation scores
for a BERT system, which for Task 1 only in-
cludes the systems trained with early stopping (i.e.
we excluded the system which was trained for 4
fixed epochs). This still gave us a considerable
improvement. Besides merging the 10 models into
one, we also experimented with voting ensembles
but found that merging models in fact gave us
the best performance, with the weighted version
still achieving a slight improvement compared to
the unweighted version. Results for Task 1 post-
submission runs can be found in Table 4.

Our results for both tasks show that merging
models gives us a large improvement compared
to traditional ensembling techniques (such as ma-
jority voting). Furthermore, merging parameters
from several models into a single model means
that only a single model is needed at prediction
time. This brings a considerable advantage in
terms of memory and computation time when pre-
dicting labels.
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Abstract

Identifying mentions of medical concepts in
social media is challenging because of high
variability in free text. In this paper, we pro-
pose a novel neural network architecture, the
Collocated LSTM with Attentive Pooling and
Aggregated representation (CLAPA), that in-
tegrates a bidirectional LSTM model with at-
tention and pooling strategy and utilizes the
collocation information from training data to
improve the representation of medical con-
cepts. The collocation and aggregation lay-
ers improve the model performance on the
task of identifying mentions of adverse drug
events (ADE) in tweets. Using the dataset
made available as part of the workshop shared
task, we show that careful selection of neigh-
borhood contexts can help uncover useful local
information and improve the overall medical
concept representation.

1 Introduction

Multiple studies have analyzed health forums and
other social media for drug uses, pharmacovigi-
lance, and effectiveness of medications (Nikfar-
jam et al., 2015; Daniulaityte et al., 2016). How-
ever, research related to drugs and adverse drug
effects (ADE) in social media continues to grow
rapidly. Automatically detecting ADE mentions
in social media posts has been challenging due to
the large variability of free text. One of the main
challenges in studying natural language process-
ing (NLP) approaches for medical information ex-
traction is the lack of access to health-related in-
formation on social media (Weissenbacher et al.,
2019).

Having a robust representation of words is im-
portant to train high-performance information ex-
traction approaches. In domain-specific tasks,
being able to properly represent domain words
or concepts could significantly improve the mod-

els. While many studies have undertaken classi-
fications of ADE mentions in posts with various
state-of-the-art techniques (Nikfarjam et al., 2015;
Weissenbacher et al., 2018), there is still room to
improve for the task. For example, in many trained
word embedding models (Pennington et al., 2014;
Godin et al., 2015; Joulin et al., 2017), the embed-
ding of each word is treated as a vector summariz-
ing multiple semantic meanings for each word as
independent dimensions. Indeed, pre-trained em-
beddings that are trained on a large data corpus
usually provide robust representation for common
words, compared to traditional feature-based tech-
niques such as bag of words. Yet, for domain-
specific tasks, a drawback of pre-trained embed-
dings is that representations of domain words may
not be sufficiently tuned to be able to represent the
expected meaning.

Attempts have been made previously to cap-
ture the word embedding for medical concepts
from a variety of medical data sources (Huang
et al., 2016). Similarly, domain-specific knowl-
edge graphs have been shown effective as external
resources for feature expansion to represent medi-
cal concepts (Choi et al., 2017; Wang et al., 2017).
However, even domain-based knowledge graphs
sometime contain redundant information stem-
ming from how they are constructed (Yu et al.,
2014; Paulheim, 2017; Zaveri et al., 2016). Fol-
lowing prior work by (Turenne, 2003) that show
that co-occurring pattern of terms could be bene-
ficial to classification tasks, in this work, we con-
sider an alternate graph-based representation that
utilizes local information derived from the training
data set. We build a collocation graph – a word-
based graph built from the training data set where
nodes correspond to vocabulary words and edges
between two nodes indicate the co-occurrence of
the corresponding words. We investigate if a
model built over the collocation graph could use
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pre-trained word embeddings and other informa-
tion to recognize medical concepts from data. We
hypothesize that the representation of a medical
word can be further enriched by its neighbors in
the collocation graph.

In this paper, we propose Collocated LSTM
with Attentive Pooling and Aggregated repre-
sentation (CLAPA), a novel approach that inte-
grates bidirectional LSTM model with attention
and pooling strategy and utilizes the collocation
information in the training data set to help enhance
the pre-trained word embedding of medical con-
cepts. We show that our model leads to a signif-
icant improvement on an ADE detection task. To
the best of our knowledge, this is the first attempt
that utilizes local collocation information to im-
prove the representation of domain concepts in so-
cial media.

To summarize, we make the following contribu-
tions in this paper:

• We propose a novel architecture that encodes
locally stored domain information into sen-
tence representation.

• Our work explores the possibility that limited
training data could be better exploited by in-
cluding attentive collocation information.

• We provide implication for other domain-
related works where better representation of
domain terms is important, especially when
the data set is highly imbalanced.

2 Related work

Researchers have tackled the problem of iden-
tifying posts mentioning ADEs in social me-
dia in different ways. Various methods have
been used in the 2018 Social Media Mining for
Health Applications (SMM4H) shared task, rang-
ing from statistical models such as support vec-
tor machines (SVM) to deep neural network mod-
els such as convolutional neural network (CNN),
long short-term memory (LSTM), and bidirec-
tional LSTM models. Fourteen teams participated
in the 2018 SMM4H shared tasks (Weissenbacher
et al., 2018), and used deep neural network mod-
els and various text processing steps such as cor-
recting misspellings, accounting for class imbal-
ance in data, and incorporating external resources.
For the ADE mention classification task, the best
system achieved an F1 score of 0.522, while the

next best system achieved an F1 score of 0.478.
The best system (Wu et al., 2018) was based on a
bidirectional LSTM model with hierarchical tweet
representation and multi-head self-attention.

In recent years, models such as CNN (Kim,
2014) and bidirectional LSTM (Graves and
Schmidhuber, 2005) were used for text classifica-
tion. In addition, models with attention mecha-
nism, which incorporates information of other in-
put tokens to improve representation of each to-
ken, was introduced by (Vaswani et al., 2017).
Several max-pooling techniques, which help to de-
tect important ngrams, were explored by (Jacovi
et al., 2018) and (Zhou et al., 2016). Such mech-
anisms and technique have been powerful tools to
build better text classification systems. To train
distributed representations of words, (Mikolov
et al., 2013) introduced Word2Vec in which each
word is represented in a low-dimensional vector
space. Other popular, pre-trained word embed-
dings include GloVe (Pennington et al., 2014),
Word2vec over Twitter (Godin et al., 2015), and
FastText (Joulin et al., 2017). Similarly, graph
embedding techniques over large-scale networks
were studied by numerous prior works, includ-
ing LINE (Tang et al., 2015), DeepWalk (Per-
ozzi et al., 2014), and Node2Vec (Grover and
Leskovec, 2016). Although graph embedding is
similar to word embedding, it is trained on not
only nodes adjacent to each node but on the entire
local network around the node. So, graph embed-
ding could capture the relations between nodes,
and has been used for multi-label classification
and community detection (Grover and Leskovec,
2016; Qiu et al., 2018). Since most text-based
graphs are typically reducible to a linear chain, and
the ADE detection task is a binary classification
problem, we focus on only the word embedding-
based approaches in this paper.

3 Collocation and aggregated
representation models

In this section, we describe the architecture of our
model in detail. The model contains the follow-
ing three key components — medical collocation
embedding, sentence encoder, and max pooling.
The overall architecture of our model is shown in
Figure 1. For each word, the embedding is com-
posed of two parts, namely, a pre-trained word
embedding and an attentive neighborhood embed-
ding. Attentive neighborhood embedding is de-
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Figure 1: Overall architecture of the proposed model for identifying adverse drug events

rived from the Concept-Neighbor (C-N ) tensor.
In a C-N cube, each Ni represents the neighbor-
hood for the i-th concept. Based on an attention
vector (MedAttni), a concept embedding matrix C
is formed in which ci is the embedding for the
concept. The collocation embedding for a word
wt will be ci if wt is the i-th concept, otherwise,
the collocation embedding will be initialized to the
zero vector. The concatenated embedding is then
fed into an LSTM layer, and multi-head attention
and maxpooling are applied to extract informative
neurons, which are then concatenated with (1) the
final state of the LSTM (sentence encoding) and
(2) the sum of the concept embedding matrix. The
final output is then computed via a fully connected
neural network with a softmax function. Table 1
summarizes the notations used in this paper.

3.1 Medical collocation embedding

In order to better utilize the medical information
embedded in text, we propose two word embed-
ding methods – a pre-trained word embedding,
and a second embedding method that enhances the
pre-trained representation of medical terms by ex-
tracting information around those terms from the
collocation graph.

Our medical collocation embedding can there-

Notation Definition
W = [w1, . . . , wT ] a sequence of words
S = [s1, . . . , s|S|] medical concept set
C = [c1, . . . , c|S|] concept matrix of size R|S|×d

Ni = [ni1, . . . , niK ] neighborhood matrix of size
RK×d for the i-th concept.

C-N tensor neighborhood tensor with the
size R|C|×K×d composed by the
neighborhood of each concept

wt t-th word in a text sequence.
si i-th medical concept word in S
ci medical collocation embedding

of the si
nik word embedding of the k-th

neighbor for the i-th concept in
the concept set.

mt medical collocation embedding
for the word wt.

|S| total number of concepts
T total number of words in a se-

quence
K maximum neighborhood size
L total number of attention heads
d dimension of word embedding

dh dimension of hidden states in
LSTM

Table 1: Notation definitions

fore be defined as following (Eq. 1):

MedAttnij =
exp(f(nij ,W1))∑
k exp(f(nik,W1))

ci = MedAttnij ×Ni

mt = ∆(wt, si)× ci

(1)

where f(·) represents a linear transformation
and the WK×1

1 is a trainable parameter matrix.
MedAttnij calculates the attention that should be
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paid to the j-th neighbor for the concept si. There-
fore, the embedding ci is represented by the em-
bedding of its neighborhood weighted by attention
scores. Lastly, mt represents the medical colloca-
tion embedding for the t-th word in text, wt. If the
word is matched to the i-th medical concept, then
mt = ci. (∆(x, y) = 1 if x = y; 0 otherwise).

3.2 Aggregated Medical Representation

In addition to the word-based medical concept em-
bedding described in Sec. 3.1, we propose an-
other aggregated medical representation strategy
using the collocation information that aggregates
the medical concept information in a sentence into
a fixed feature space.

First, we use an attentive embedding, ci, de-
scribed in Eq. 1, to construct a medical concept
representation using the neighborhood informa-
tion. Then, the aggregated representation is con-
structed, as follows:

c∗i = ci ⊕ e(si)
Aggre =

∑

i

δ(i)× c∗i (2)

where e(·) is the function that retrieves the orig-
inal representation of the medical concept word
from pre-trained embedding. δ(·) = 1, when the
sentence contains the concept word, and 0 oth-
erwise. This aggregated medical representation
serves as the residual medical information that is
to be added to the output layer.

3.3 Sentence encoding

To encode a sentence for the classification task,
we used an attention-based LSTM to encode the
entire sentence into a fixed vector space. L at-
tention heads are applied to re-represent hidden
states. The new hidden states from the l-th atten-
tion head can be described as follows (Eq. 3):

H, s = LSTM([e(w1)⊕m1, . . . , e(wT )⊕mT ])

SentAttnlt =
exp(f(ht,W

l
2))∑

k exp(f(hk,W
l
2))

ĥlt = SentAttnlt · ht
(3)

where H = [h1, . . . , hT ] ∈ Rdh×T is a hidden
state matrix representing the information status at
each time step, and dh is a hidden dimension. e(·)
and f(·) are the same as defined in Eq. 1. SentAttnlt
is a scalar representing the attention that should be

paid to ht. Therefore, ĥlt is the attentive hidden
state scaled by attention values in the l-th attention
head.

3.4 Max pooling layer
Motivated by previous studies (Jacovi et al., 2018;
Zhou et al., 2016), the application of max pooling
behavior can highlight the important signals from
features and hence improve classification tasks.
Following these previous approaches, we apply
a max pooling layer to extract important signals
from the attentive hidden state in each attention
head (Eq. 4).

signall = pooling(Ĥl) (4)

where Ĥl = [ĥl1, . . . , ĥ
l
T ] ∈ Rdh×T , and the

pooling is applied on the dimension of dh so that
signall ∈ Rdh contains important signals from
each hidden dimension.

3.5 Classification layer
In the final output layer, the classification decision
is made on whether or not a sentence contains an
ADE mention. A fully connected network module
is implemented as:

r = s⊕ signal1 ⊕ . . .⊕ signalL ⊕ Aggre

r
′

= ReLU(U1r + b1)

ŷ = softmax(U2r
′
+ b2)

(5)

where r is the combination of the final state of
LSTM, multiple pooled states using max pool-
ing, and aggregated medical concept representa-
tion. Each pooled state vector signall comes from
one attention layer (L attention layers in total) that
is applied in sentence encoding (Eq. 3). U1, U2, b1,
and b2 are parameters to be trained. Cross-entropy
is used as the loss function for training:

loss = −
∑

i

∑

k

yk log(ŷk) (6)

4 Experiments

4.1 Data
For our experiments, we used the data set pro-
vided as part of Task 1 of the SMM4H 2019 shared
tasks (Gonzalez-Hernandez et al., 2019). As sum-
marized in Table 2, the total number of anno-
tated tweets is 25,678. The data set was randomly
split into a training set (80%) and a validation set
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Training set Validation set
N = 25,678 (80% of data) (20% of data)
ADE tweets 1,892 485

Non-ADE tweets 18,650 4,651

Table 2: Number of ADE and non-ADE tweets in
training and validation data sets.

(20%), while maintaining the target class propor-
tions according to the original distribution. As a
result, our training set contains 1,892 tweets that
have an ADE mention (positive cases), and 18,650
tweets that do not have any mention of ADEs (neg-
ative cases). The validation set contains 485 pos-
itive and 4,651 negative tweets. We cleaned the
tweets by separating punctuation marks, removing
special characters, and replacing mentions, URLs,
and number representations with normalized to-
kens. Finally, we used fastText (Joulin et al., 2017)
as the pre-trained word embedding model.

4.2 Collocation graph
To build our collocation graph, we treat each
unique word in the training set as a node, and add
undirected edges from a word to adjacent words in
a tweet. The collocation graph consists of 27,440
nodes and 188,329 edges. To reduce the graph
size, we removed all words that appeared fewer
than three times in the corpus. The resultant graph
has 12,438 nodes and 159,759 edges. The mean of
degree centrality is 25.39 (sd =114.59). 50% of
the nodes have degrees less than 8, and 75% of the
nodes have degrees less than 17.

Tysabri Walgreens

Figure 2: Examples of a collocation graph: Tysabri is
considered as a medical concept while Walgreens is not
considered as a medical concept.

Figure 2 shows the examples of a collocation
graph. The graph has two colors: red and grey.
The red nodes are words that are identified as med-
ical concepts while the grey nodes are words that
are not identified as medical concepts. The col-
location graph on the left is for a medical word,
Tysabri. The neighborhood of the word is com-
prised of both medical and non-medical words.

Tysabri contains other medical words as neigh-
bors such as infusion, treatment, and gilenya. The
collocation graph on the right is for a word, wal-
greens. It contains few medical words such as
cipro and miralax.

4.3 Medical concepts extraction

MetaMap, a widely used system for identifying
medical concepts in the unified language medical
system (UMLS), is used to extract potential con-
cepts from our tweet data set (Aronson, 2006).
Given a sentence as input, MetaMap identifies
phrases that could be medical concepts, and maps
concepts to a preferred name using UMLS. How-
ever, since MetaMap is designed to parse clinical
documents rather than free text on social media,
we consider only those marked phrases that are the
same as the preferred name as valid medical con-
cepts. After processing, 1, 340 concepts were ex-
tracted by MetaMap from ADE tweets and 3, 921
concepts were extracted from non-ADE tweets.
Concepts are later split into single words.

4.4 Training setup

All hyperparameters are jointly trained with a
learning rate of 0.001 for ten epochs. In the exper-
iments, we used FastText pretrained embedding,
and the hidden size for LSTM is set to be 300.
Number of multi-head attention layer is set to be
3. For each experiment, the score is taken from the
average of five runs.

4.5 Results

To evaluate our model, we set two baselines:
an attention-based LSTM model (Eq. 3), and an
attention-based LSTM model with max pooling
(Eq. 4). The results are presented in Table 3 as
rows (1) and (4), respectively.

Model Precision Recall F1
(1). LSTM+Attn (LA) 0.6626 0.4495 0.5356
(2). (1)+colloc (CLA) 0.6392 0.4639 0.5142
(3). (2)+Aggr (CLAA) 0.5181 0.5918 0.5525
(4). (1)+Pool (LAP) 0.6475 0.4887 0.5570
(5). (4)+colloc (CLAP) 0.6359 0.5546 0.5925
(6). (5)+Aggr (CLAPA) 0.6017 0.5979 0.5998
CLAPA on Test set 0.5944 0.5431 0.5676
Avg. system score 0.5351 0.5054 0.5019

Table 3: Comparison of models on Precision, Recall,
and F1 measures for the ADE detection task on the val-
idation set. The scores in the last two rows are over the
test set of the 2019 SMM4H 2019 shared task 1.
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As presented in Table 3, the model perfor-
mance is significantly improved with the addition
of collocation medical embedding and aggregated
embedding, over the attention-based bi-direction
LSTM models. Further, adding aggregated medi-
cal information helps improve recall, but reduces
the model precision and only slightly increases
the F1 score, compared to the collocation based
model. Hence, while highlighting medical in-
formation can reduce false negative decisions, it
also causes more instances to be labeled as ADE
tweets, thereby increasing a false positive rate as
well. The CLAPA model, that integrates both col-
location and aggregated representation along with
attentive pooling strategy performs the best.

When run against the test set for the shared
task, the CLAPA model achieves a F1 score of
0.5676 (see Table 3). As a comparison, the aver-
age F1 score of systems participating in this task is
0.5019. This shows our CLAPA model performs
significantly better than average on this task.

4.6 Model learning stability
To show that our model consistently works better
even with smaller training data, we independently
and randomly sampled 10%, 30%, 50%, 70%, and
90% data from training set and retrained the mod-
els. Figure 3 shows that our model consistently
performed well on the validation set, even with
reduced training size, compared to the baseline
model of bidirectional LSTM model with atten-
tive pooling (the “LAP” model). The results are
similar to those on the full validation data set in
Table 3, in that even when only a fraction of train-
ing data is available, the model achieves higher F1
score because of significantly better recall and at a
relatively small reduction in precision.

4.7 Effect of concept vocabulary
Next, we analyzed the effect of medical concepts
observed in the ADE tweets to understand if there
is any difference in terms of the use of medical
concepts in ADE tweets vs. non-ADE tweets.
We calculated a propensity ratio of each medi-
cal term, based on number of times it appears in
ADE tweets compared to non-ADE tweets. We
found that causing, gain, drowsiness, and sweats
are likely to appear in ADE tweets about 15 times
more often than in non-ADE tweets. Similarly,
crippled is likely to appear in an ADE tweet about
26 times more often than in a non-ADE tweet.
Considering the highly skewed appearance ratio

Figure 3: Effects of training size on model performance
stability

for certain concepts, we analyzed the effect on us-
ing concepts from the ADE tweets alone. We com-
pared two models – one trained over medical con-
cepts identified from the ADE tweets and another
trained over concepts from the entire training set,
i.e. both ADE and non-ADE tweets.

Concepts from Precision Recall F1
All tweets 0.6142 0.5546 0.5829
Only ADE tweets 0.6017 0.5979 0.5998

Table 4: Effects of concept vocabulary on model per-
formance

As summarized in Table 4, the model trained
with concepts from just the ADE tweets achieved
a higher F1 score. While the precision is slightly
lower, the model trained over concepts from ADE
tweets has a significantly higher recall. On fur-
ther analysis, we find that out of the 1, 183 concept
words extracted from the ADE tweets, 866 con-
cepts (73.2%) occurred more frequently in ADE
tweets than in non-ADE tweets. However, when
using the concepts words extracted from both
ADE and non-ADE tweets, the number of con-
cepts are higher (n = 4, 643), but only 1, 094 con-
cepts (23.6%) of those appear more frequently in
the ADE tweets. This indicates that propensity ra-
tio could be used for selecting medical concepts
used in the ADE tweets as features.

4.8 Effects of neighborhood selection
We analyzed two additional questions related to
parameter tuning:

(1) What method should be used to pick a
neighbor? To answer this question, we fixed the
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neighborhood size as 15 words, and selected one
of the following three methods to choose neigh-
bors:

(a) Random: Given a node n, we randomly se-
lect k of its neighbors n1, n2, . . . , nk ∈ N , where
N is a set of all neighbors for node n.

(b) Popularity: For each medical concept, we
first selected a neighbor that has the highest de-
gree. When node ni has more neighbors than node
nj , we say that node ni is more popular than node
nj . Then, given a node n, we select k popular
neighbors n1, n2, . . . , nk that have the highest de-
gree. In case of ties in popularity, neighbors are
selected at random from this set.

(c) Medical neighbor: Given node n, we add k
medically-related neighbors.

For all three neighborhood selection methods,
if the total number of first-degree neighbors is less
than k, then an additional random selection is used
among second-degree neighbors to fill the gap.

Table 5 shows the results using different selec-
tion methods under the two scenarios described in
Section 4.7. The left column depicts the model
trained on concepts from all tweets, and the right
column represents the model trained with concepts
from ADE tweets alone.

F1 scores
Selection method ADE+non-ADE ADE
Random 0.5796 0.5683
Popularity 0.5819 0.5998
Medical neighbor 0.5829 0.5887

Table 5: Effects of neighborhood selection methods
on F1 scores on both ADE+non-ADE tweets and only
ADE tweets

Table 5 shows that targeting at neighbors us-
ing either popularity or medical attributes always
leads to better performance regardless of differ-
ent scenarios. However, when using medical con-
cepts of both ADE and non-ADE tweets, picking
a medical neighborhood could be a better choice,
whereas popular neighborhood is preferred when
concepts are identified from ADE tweets. Med-
ical neighborhood has a higher probability of in-
cluding informative words related to ADE; and
when only ADE tweets are considered, the fre-
quency of co-occurrence of a neighbor and the
concepts become more important. This explana-

tion also aligns with how language models are usu-
ally trained.

Figure 4: Effects of neighborhood size (k) on model
performance

(2) How should we decide neighborhood size?
We experimented with different neighborhood
size. As shown in Fig. 4, as the neighborhood
size k increases, the performance is not affected
much when k is small (from 5 to 20). How-
ever, the performance drops significantly when k
is larger (k > 20). We explain this by aligning
back to our neighborhood selection method where
we found that choosing good neighbors (popular
or medically related) favors the model. We want to
choose informative neighbors instead of all neigh-
bors. Therefore, when k is small, the selected
neighbors (high degree) can be easily differenti-
ated from the ones not selected. However, when k
is large, the selected neighbors become less infor-
mative because many unimportant, noisy, neigh-
bor words (low degree/non-popular) may be in-
cluded that harm the model.

5 Limitation and future work

After the above examination of our model, we
argue that our model suffers from three main
limitations. First, although MetaMap has been
found useful at parsing medical notes, due to the
different linguistic use on social media, running
MetaMap on tweets may not identify relevant con-
cepts. Second, the use of collocation graph and ag-
gregated medical concept representation reduced
precision of models, although the overall recall
and F1 improved. Additional studies are need to
further improve the precision. Third, the colloca-
tion graph is built solely on the training data set.
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This may not favor the model when the data set
is not representative enough to provide neighbor-
hood of high quality. To address the first two is-
sues, we believe a pre-trained state-of-the-art med-
ication detection system could be helpful to iden-
tify high-quality medical concepts from tweets.
For the third issue, we plan to use domain based
knowledge base such as UMLS to expand the cov-
erage of the limited data.

We used fastText as the pre-trained word em-
bedding for our model. While fastText is trained
on sub-word representations, models trained over
medical or larger text corpora might provide addi-
tional contextual representation. Additional stud-
ies are needed to test our model on different pre-
trained word embeddings such as Word2vec over
Twitter (Godin et al., 2015). We also note that
there is a difference in the use of medical related
concepts in different classes by testing two scenar-
ios — a model using medical concepts identified
from both ADE and non-ADE cases and one us-
ing those from the ADE cases. In future, we plan
to test this approach by exploring the use of unique
nodes in different classes. Meanwhile, the appli-
cation of our approach on other domain-specific
tasks should be verified to examine the generaliza-
tion of the approach.

6 Conclusion

In this work, we argue that a collocation graph can
be utilized to enrich the representation of a med-
ical concept. We further propose a novel neural
network architecture that uses attentive informa-
tion from a collocation graph to re-embed medical
words. Our experiments show that, with a good
selection of neighborhood, more useful local in-
formation can be accessed, which in turn improves
the medical concept representation and the overall
model performance in detecting mentions of ad-
verse drug events in tweets.
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Abstract

We study how language on social media is
linked to diseases such as atherosclerotic heart
disease (AHD), diabetes and various types of
cancer. Our proposed model leverages state-
of-the-art sentence embeddings, followed by a
regression model and clustering, without the
need of additional labelled data. It allows
to predict community-level medical outcomes
from language, and thereby potentially trans-
late these to the individual level. The method
is applicable to a wide range of target vari-
ables and allows us to discover known and
potentially novel correlations of medical out-
comes with life-style aspects and other socioe-
conomic risk factors.

1 Introduction

Surveys and empirical studies have long been
a cornerstone of psychological, sociological and
medical research, but each of these traditional
methods pose challenges for researchers. They are
time-consuming, costly, may introduce a bias or
suffer from bad experiment design.

With the advent of big data and the increasing
popularity of the internet and social media, larger
amounts of data are now available to researchers
than ever before. This offers strong promise new
avenues of research using analytic procedures, ob-
taining a more fine-grained and at the same time
broader picture of communities and populations as
a whole (Salathé, 2018). Such methods allow for
faster and more automated investigation of demo-
graphic variables. It has been shown that Twitter
data can predict atherosclerotic heart-disease risk
at the community level more accurately than tradi-
tional demographic data (Eichstaedt et al., 2015).
The same method has also been used to capture
and accurately predict patterns of excessive alco-
hol consumption (Curtis et al., 2018).

In this study, we utilize Twitter data to pre-
dict various health target variables (AHD, dia-
betes, various types of cancers) to see how well
language patterns on social media reflect the geo-
graphic variations of those targets. Furthermore,
we propose a new method to study social media
content by characterizing disease-related correla-
tions of language, by leveraging available demo-
graphic and disease information on the commu-
nity level. In contrast to (Eichstaedt et al., 2015),
our method is not relying on word-based topic
models, but instead leverages modern state-of-the-
art text representation methods, in particular sen-
tence embeddings, which have been in increas-
ing use in the Natural Language Processing, In-
formation Retrieval and Text Analytics fields in
the past years. We demonstrate that our approach
helps capturing the semantic meaning of tweets
as opposed to features merely based on word fre-
quencies, which come with robustness problems
(Brown and Coyne, 2018; Schwartz et al., 2018).
We examine the effectiveness of sentence embed-
dings in modeling language correlates of the med-
ical target variables (disease outcome).

Section 2 gives a generalized description of
our method. We apply the previously described
method to the tweets and health data in Section 3
The system’s performance is evaluated in Sec-
tion 4 followed by the discussion in Section 5. Our
code is available on github.com/epfml/correlating-
tweets.

2 Method

We are given a large quantity of text (sentences or
tweets) in the form of social media messages by
individuals. Each individual—and therefore each
sentence—is assigned to a predefined category, for
example a geographic region or a population sub-
set. We assume the number of sentences to be sig-
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nificantly larger than the number of communities.
Furthermore, we assume that the target variable of
interest, for example disease mortality or preva-
lence rate, is available for each community (but
not for each individual). Our system consists of
two subsystems:

1. (Prediction) The predictive subsystem makes
predictions of target variables (e.g. AHD
mortality rate) based on aggregated language
features. The resulting linear predictions
are applicable on the community level (e.g.
counties) or on the individual level, and are
trained using k-fold cross-validated Ridge re-
gression.

2. (Interpretability) The averaged regression
weights from the prediction system allow for
interpretation of the system: We use a fixed
clustering (which was obtained from all sen-
tences without any target information), and
then rank each topic cluster with respect to a
prediction weight vector from point 1). The
top and bottom ranked topic clusters for each
target variable give insights into known and
potentially novel correlations of topics with
the target medical outcome.

In summary, the community association is used
as a proxy or weak labelling to correlate individual
language with community-level target variables.
The following subsections give a more detailed de-
scription of the two subsystems.

2.1 System Description
Let S be the set of sentences (e.g. tweets), with
their total number denoted as |S| = S. Each sen-
tence is associated to exactly one of the A com-
munities A = {a1, . . . , aA} (e.g. geographic re-
gions). The function δ : S → A defines this map-
ping. Let y ∈ RA be the target vector for an ar-
bitrary target variable, so that each community aj
has a corresponding target value yaj ∈ R.

Preprocessing and Embeddings. The complete
linguistic preprocessing pipeline of a sentence
is incorporated by the function ρ(si), ∀ i ∈
{1, . . . , S}, which represents an arbitrary sen-
tence si as a sequence of tokens. Each sentence si
then is represented by a D-dimensional embed-
ding vector providing a numerical representation
of the semantics for the given short text:

xi = Sent2Vec(ρ(si)) ∈ RD. (1)

Sentences

Sent2Vec

Learning

Subsampling

ClusteringTarget

Ranking

Category 
Aggregation

Figure 1: System Description.

While our method is generic for any text represen-
tation method, here Sent2Vec (Pagliardini et al.,
2018) was chosen for its computational efficiency
and scalability to large datasets.

2.2 Feature Aggregation
We use averaging of the sentence embedding vec-
tors over each community to obtain the language
features for each community. Formally, the com-
plete feature matrix of all sentences is denoted
as X ∈ RS×D. For our approach, the sentence
embedding features are averaged over each com-
munity aj . Formally, an individual feature xaj ,d of
the averaged embedding xaj ∈ R1×D for a given
community aj is defined as

xaj ,d =
1

Naj

∑

xi:si∈S ∧ δ(si)=aj

xi,d, (2)

where Naj = |{si : si ∈ S ∧ δ(si) = aj}|
is the number of sentences belonging to commu-
nity aj . Consequently, the aggregated community-
level embedding matrix is given by

X =



x>a1

...
x>aA


 ∈ RA×D. (3)

2.3 Train-Test Split
Leveraging the targets available for each commu-
nity, our regression method is applied to the aggre-
gated features X and the target y. We employ K-
fold cross-validation: the previously defined setA
is split into K as equally sized pairwise disjoint
subsets Ak as possible such that: A =

⋃K
k=1Ak,

Ai ∩ Aj = ∅ ∀i, j ∈ 1, . . . ,K, i 6= j and
|A1| ≈ · · · ≈ |AK |. The training set for a fold k
is TRk =

(⋃K
i=1Ai

)
\Ak with the corresponding

test set TEk = Ak, where N θ
k = |TRk| and NΛ

k =
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|TEk|. The operators θk : {1, . . . , N θ
k} → TRk

and Λk : {1, . . . , NΛ
k } → TEk uniquely map the

indexes to the corresponding communities aj for
the kth train-test split. For each split k the train
and test embedding matrices respectively are de-
fined as

Xθk =
[
xθk(1), . . . ,xθk(Nθ

k )

]>
, (4)

XΛk =
[
xΛk(1), . . . ,xΛk(NΛ

k )

]>
. (5)

Accordingly, we define the target vectors

yθk =
[
yθk(1), . . . , yθk(Nθ

k )

]>
, (6)

yΛk =
[
yΛk(1), . . . , yΛk(NΛ

k )

]>
. (7)

2.4 Ridge Regression
For each train-test split k we perform linear re-
gression from the community-level textual fea-
tures Xθk to the health target variable yθk . We em-
ploy Ridge regression (Hoerl and Kennard, 1970).
In our context, the Ridge regression is defined as
the following optimization problem:

min
ωk∈RD

1

2A

Nθ
k∑

i=1

[
yθk(i)−x>θkωk

]2
+λ‖ωk‖22, (8)

where the optimal solution is

ω?k =
(
X
>
θk
Xθk + 2N θ

kλI
)−1

X
>
θk

∈ RD. (9)

Within each each fold we tune the regularization
parameter λ.

2.5 Prediction Subsystem
Let yΛk

= XΛkω
?
k = [yΛk(1), . . . , yΛk(NΛ

k )]
> be

the predicted values for the test set of the split k.
The concatenated prediction vector for all splits is

yΛ =



y>Λ1

...
y>ΛK


 ∈ RA (10)

Accordingly, we define the concatenated true
target vector as

yΛ =



y>Λ1

...
y>ΛK


 ∈ RA, (11)

i.e., the set of individual scalars is identical to the
entries in the original target vector y. The pre-
dictive performance of the system can be assessed
through the following metrics:

• Pearson Correlation Coefficient

• Mean Average Error of prediction (MAE)

• Classification Accuracy for Quantile Predic-
tion

The first two metrics are evaluated with the vec-
tors yΛ and yΛ from all folds. In the quantile-
based assessment we independently bin the true
values yΛ and the predicted values yΛ into C
different quantiles. Each individual true and
predicted value is assigned to a quantile cj ∈
{c1, . . . , cC}. These assignments can be used to
visually compare results on a heat-map or as regu-
lar evaluation scores in terms of accuracy.

2.5.1 Ridge-Weight Aggregation
For the final prediction model, the regression
weights ω?k from Ridge regression are averaged
over the K folds, i.e. ω = 1

K

∑K
k=1ω

?
k.

For every sentence embedding xq, the predic-
tion is computed as yq = x>q ω ∈ R.

2.6 Interpretation Subsystem: Cluster
Ranking

We employ predefined textual topic clusters—
which are independent of any target values—in
order to enable interpretation of the textual cor-
relates. Each cluster is a collection of sentences
and should, intuitively, be interpretable as a topic,
e.g. separate topics about indoor and outdoor ac-
tivities as shown in Fig. 4. For each cluster m a
ranking score can be computed with respect to a
linear prediction model ω such as defined above.
Let Qm = {q : ζ(q) = m ∧ q ∈ Q} be the set
of sentences assigned to cluster m. The score ιm
for the cluster m is the average of all predictions
yq = x>q ω within the cluster m:

ιm =
1

|Qm|
∑

yq : q∈Qm
yq (12)

By ordering the scores ιm of all clusters, we
obtain the final ranking sequence of all clusters,
with respect to the target-specific model ω.

Clustering Preprocessing. For obtaining the
fixed clustering, as X is a very large matrix, clus-
tering might require subsampling to reduce com-
putational complexity. Hence, Q out of the S em-
beddings in S are randomly subsampled into the
set Q. The mapping Φ(Q) = [φ(1), . . . , φ(Q)]>
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is a uniformly random selection of row indexes in
X out of

(
N
Q

)
. We define the subsampled data ma-

trix as XQ =
[
xφ(1), . . . ,xφ(Q)

]> ∈ RQ×D.
The subset XQ is clustered with the Yinyang

K-Means algorithm (Ding et al., 2015). We
use M centroids and the cosine similarity as a
distance function. The cluster assignment vec-
tor M ∈ [1, . . . ,M ]> assigns one cluster for
each embedding in XQ. Accordingly, the opera-
tor ζ : {1, . . . , Q} → {1, . . . ,M} indicates the
assigned clusterm for a given sentence s inQ (see
cluster ranking above). The cluster centers are de-
fined in MQ ∈ RQ×D.

3 Data sources

We apply the method described in Section 2 to the
following setting: The pool of sentences S con-
sists of geotagged Tweets. The assigned locations
are in the United States. The geotags are catego-
rized into US-counties which represent the set of
communities A. The target variables y are health-
related variables, for example normalized mortal-
ity or prevalence rates. We focus on cancer and
AHD mortality as well as on diabetes prevalence.
Hence, the quantile-based predictions give a cate-
gorization of the Ridge regression predictions on
a US-county level. The ranked topics assess what
language might relate to higher or lower rates of
the corresponding disease. Table 1 provides an
overview of the size of the data sources, the year
the data was collected in and the mean µ and
standard deviation σ of the target variables. Not
all counties are covered in the publicly available
datasets, usually being limited to more populous
counties. The collected Tweets are from 2014 and
2015. The target variables are the union-averaged
values from 2014 and 2015: if the target variable
is available for both years the two values are av-
eraged. Conversely, if a county data point is only
available for one, but not both years, we use this
standalone value.

3.1 Datorium Tweets

Tweets are short messages of no more than 140
characters1 published by users of the Twitter plat-
form. They reflect discussions, thoughts and ac-
tivities of its users. We use a dataset of approxi-
mately 144 million tweets collected from first of
June 2014 to first of June 2015 (Datorium, 2017).

1Twitter increased the limit to 280 characters in 2017,
which doesn’t affect our data.

Name # tweets Year
Datorium 147M 14/15
Name # counties Year µ, σ
AHD 803 14/15 43.0, 16.1
Diabetes 3129 13 9.7, 2.2
Breast 487 13/14 12.4, 2.8
Colon 490 13/14 12.1, 3.0
Liver 293 13/14 7.5, 2.4
Lung 1612 13/14 52.4, 16.2
Melanoma 162 13/14 3.8, 1.2
Prostate 351 13/14 8.5, 2.0
Stomach 136 13/14 3.6, 0.9

Table 1: Overview of data sources.

Each tweet was geotagged by the submitting user
with exact GPS coordinates and all tweets are
from within the US, allowing accurate county-
level mapping of individual tweets.

3.2 AHD & Cancer Mortality

Our source of the statistical county-level target
variables is the CDC WONDER2 database (CDC,
2018) for AHD and cancer. Values are given as
deaths per capita (100’000).

3.3 Diabetes Prevalence

We use county-wise age-adjusted diabetes preva-
lence data from the year 2013 (CDC, 2016), pro-
vided as percent of the population afflicted with
type II diabetes. The data is available for almost
all the 3144 US counties, making it a valuable tar-
get to use.

4 Results

The results of our method for the various target
variables are listed in Table 2 along with the per-
formance of the baseline model outlined in Sec-
tion 4.1. We provide the Pearson correlation (ρ)
and the mean absolute error (MAE) of our system
along with the baseline model’s Pearson correla-
tion.

4.1 LDA Baseline Model

We reimplemented the approach proposed by
Eichstaedt et al. (2015) as a baseline for compar-
ison, and were able to reproduce their findings
about AHD with recent data: similar results were

2US Centers for Disease Control and Prevention - Wide-
ranging Online Data for Epidemiologic Research.
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found with the Datorium Twitter dataset (Dato-
rium, 2017) and CDC AHD data from 2014 and
2015. Their approach averages topics generated
with Latent Dirichlet Allocation (LDA) of tweets
per county as features for Ridge regression. We do
not use any hand-curated emotion-specific dictio-
naries, as these did not impact performance in our
experiments. We used the predefined Facebook
LDA coefficients of Eichstaedt et al. (2015), up-
dated them with the word frequencies of our col-
lected Twitter data (Datorium, 2017). Our results
are computed with a 10-fold cross-validation and
without any feature selection.

Type ρ ρ LDA MAE
AHD 0.46 0.31 13.4
Diabetes 0.73 0.72 1.1
Breast 0.44 0.42 1.80
Colon 0.55 0.51 1.87
Liver 0.29 0.40 1.59
Lung 0.68 0.63 8.44
Melanoma 0.72 0.61 0.68
Prostate 0.39 0.38 1.34
Stomach 0.44 0.51 0.72

Table 2: Results of predictions on different health tar-
gets. ρ: our system (Section 2.5), ρ LDA: topic model
baseline (Eichstaedt et al. (2015), Section 4.1), MAE:
mean absolute error of our system (Section 2.5).

4.2 Detailed Results

In this section we discuss a selection of our re-
sults in detail, with additional information avail-
able in Appendix A.1.

Diabetes has a strong demographic bias, with a
higher prevalence in the south-east of the US, the
so called diabetes belt. Compared to the national
average, the african-american population in the di-
abetes belt has a higher risk of diabetes by a factor
of more than 2 (Barker et al., 2011) and the south-
east of the US has a large african-american popula-
tion. Therefore, linguistic features (Green, 2002)
common in african-american are a strong predic-
tor of diabetes rates. The model learns these lin-
guistic features, as seen in Figure 3, and its predic-
tions closely match the actual geographic distribu-
tion, as seen in Figure 2. A moderate alcohol con-
sumption is linked to a low risk of type II diabetes
compared to no or excessive consumption (Koppes
et al., 2005). The strongest negatively correlated
word clouds in Figure 3 support this finding.

The most positively related word clouds for
melanoma in Figure 4 are related to outdoor ac-
tivities (Elwood et al., 1985). Conversely, the
strongest negatively correlated word clouds sug-
gest indoor activity related language.

5 Discussion

In this paper, we introduced a novel approach
for language-based predictions and correlation
of community-level health variables. For vari-
ous health-related demographic variables, our ap-
proach outperforms in most cases (Table 2) simi-
lar models based on traditional demographic data
by using only geolocated tweets. Our approach
provides a method for discovering novel correla-
tions between open-vocabulary topics and health
variables, allowing researchers to discover yet un-
known contributing factors based on large collec-
tions of data with minimal effort.

Our findings, when applying our method to
AHD risk, diabetes prevalence and the risk of vari-
ous types of cancers, using geolocated tweets from
the US only, show that a large variety of health-
related variables can be predicted with surpris-
ingly high precision based solely on social media
data. Furthermore, we show that our model iden-
tifies known and novel risk or protective factors in
the form of topics. Both aspects are of interest to
researchers and policy makers. Our model proved
to be robust for the majority of targets it was ap-
plied to.

For AHD risk, we show that our approach sig-
nificantly outperforms previous models based on
topic models such as LDA or traditional statis-
tical models (Eichstaedt et al., 2015), achieving
a ρ-value of 0.46, an increase of 0.09 over pre-
vious approaches. For diabetes prevalence our
model correctly predicts its geographic distribu-
tion by identifying linguistic features common in
high-prevalence areas among other features, with
a ρ-value of 0.73. For melanoma risk, it finds a
high-correlation with the popularity of outdoor ac-
tivities, corresponding to exposure to sunlight be-
ing one of the main risk factors in skin cancer, with
an overall ρ-value of 0.72.

One of the main limitations of our approach
is the need for a large collection of sentences
for each community as well as a large number
of communities with target variables, leading to
potentially unreliable results when this is not the
case, such as for social media posts by individuals
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(a) (b)

Figure 2: Quantiles of the prevalence of diabetes. (a) Target values (b) Predicted values from tweets

(a) (b)

(c) (d)

Figure 3: Word clouds of topics correlating with di-
abetes: (a) (b) strongest positive correlation (c) (d)
strongest negative correlation among M = 2000 clus-
ters.

(a) (b)

(c) (d)

Figure 4: Word clouds of topics correlating with
melanoma: (a) (b) strongest positive correlation (c) (d)
strongest negative correlation among M = 2000 clus-
ters.

or when modeling target values which are only
available in e.g. few counties. Further research
is needed to ascertain whether significant results
can also be achieved in such scenarios, and if
robustness of our approach is improved compared
to bag-of-words-based baselines (Eichstaedt et al.,

2015; Brown and Coyne, 2018; Schwartz et al.,
2018). Furthermore, all mentioned approaches
rely on correlation, and thus do not provide a way
to determine any causation, or ruling out of poten-
tial underlying factors not captured by the model.
Even though using social media data introduces a
non-negligible bias towards users of social media,
our approach was able to predict target variables
tied to very different age-groups, which is encour-
aging and supports the robustness of our approach.

Our method captures language features on a
community scale. This raises the question of how
these findings can be translated to the individual
person. Theoretically, a community-based model
as described above could be used to rank social
media posts or messages of an individual user,
with respect to specific health risks. However, as
we currently do not have ground truth values on
the individual level, and since user’s social media
history has very high variance, this is left for fu-
ture investigation.

Future research should also address the applica-
bility of our model to textual data other than Twit-
ter and potentially from non-social media sources,
to communities that are not geography based, to
the time evolution of topics and health/lifestyle
statistics, as well as to targets that are not health
related. The general methodology offers promise
for new avenues for data-driven discovery in fields
such as medicine, sociology and psychology.
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A Appendices

A.1 Additional Figures

(a)

(b)

(c)

(d)

Figure 5: Word clouds of topics correlating with col-
orectal cancer: (a) (b)strongest positively correlated
topics (c) (d) strongest negatively correlated topics
among M = 2000 clusters.

Figure 6: Confusion matrix for decile-based prediction
of diabetes prevalence.

A.2 Implementation Details
Tweets were collected according to the provided
datorium IDs using the Tweepy3 library. The
tweets were then imported into Google BigQuery4

and processed using Apache Beam5. The sen-
tence embeddings were computed using the offi-
cial Sent2Vec source code and the provided 700-
dimensional pre-trained model for tweets (using
bigrams)6. Clustering was performed by libKM-
CUDA7. Scikit-learn8 was used for 10-fold cross
validation, Ridge regression, calculating the corre-
lation and hyperparameter search.

3https://www.tweepy.org/
4https://cloud.google.com/bigquery/
5https://beam.apache.org/
6https://github.com/epfml/sent2vec
7https://github.com/src-d/kmcuda
8https://scikit-learn.org/stable/
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Abstract
The increase in the prevalence of mental health
problems has coincided with a growing popu-
larity of health related social networking sites.
Regardless of their therapeutic potential, on-
line support groups (OSGs) can also have neg-
ative effects on patients. In this work we pro-
pose a novel methodology to automatically
verify the presence of therapeutic factors in
social networking websites by using Natural
Language Processing (NLP) techniques. The
methodology is evaluated on on-line asyn-
chronous multi-party conversations collected
from an OSG and Twitter. The results of the
analysis indicate that therapeutic factors occur
more frequently in OSG conversations than in
Twitter conversations. Moreover, the analysis
of OSG conversations reveals that the users of
that platform are supportive, and interactions
are likely to lead to the improvement of their
emotional state. We believe that our method
provides a stepping stone towards automatic
analysis of emotional states of users of online
platforms. Possible applications of the method
include provision of guidelines that highlight
potential implications of using such platforms
on users’ mental health, and/or support in the
analysis of their impact on specific individuals.

1 Introduction

Recently, people have started looking at online fo-
rums either as a primary or secondary source of
counseling services (Vogel et al., 2007). McMa-
hon (2016) reported that over the first five years of
operation (2011-2016), ReachOut.com – Ireland’s
online youth mental health service – 62% of young
people would visit a website for support when go-
ing through a tough time. With the expansion of
the Internet, there has been a substantial growth
in the number of users looking for psychological
support online.

The importance of the on-line life of patients
has been recognized in research as well. Amichai-
Hamburger et al. (2014) stated that the online life

of patients constitutes a major influence on their
self-definition. Furthermore, according to Back
et al. (2010), the social networking activities of
an individual, offer an important reflection of their
personality. While dealing with patients suffer-
ing from psychological problems, it is important
that therapists do not ignore this pivotal source of
information which can provide deep insights into
their patients’ mental conditions.

Acceptance of on-line support groups (OSG)
by Mental Health Professionals is still not estab-
lished (Andersson, 2017). Since OSG can have
double-edged effects on patients and the presence
of professionals is often limited, we argue that
their properties should be further studied. Accord-
ing to Barak et al. (2008) OSG effectiveness is
hard to assess, while some studies showed OSG’s
potential to change participants’ attitudes, no such
effect was observed in other studies (see Related
Work Section for more details). Furthermore the
scope of previous work on analysis of users’ be-
haviour in OSG has been limited by the fact that
they relied on expert annotation of posts and com-
ments (Mayfield et al., 2012).

We present a novel approach for automatically
analysing online conversations for the presence of
therapeutic factors of group therapy defined by
Yalom and Leszcz (2005) as “the actual mecha-
nisms of effecting change in the patient”. The
authors have identified 11 therapeutic factors in
group therapy: Universality, Altruism, Instillation
of Hope, Guidance, Imparting information, Devel-
oping social skills, Interpersonal learning, Cohe-
sion, Catharsis, Existential factors, Imitative be-
havior and Corrective recapitulation of family of
origin issues. In this paper, we focus on 3 ther-
apeutic factors: Universality, Altruism and Instil-
lation of Hope (listed below), as we believe that
these can be approximated by using established
NLP techniques (e.g. Sentiment Analysis, Dia-
logue Act tagging etc.).
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1. Universality: the disconfirmation of a user’s
feelings of uniqueness of their mental health
condition.

2. Altruism: others offer support, reassurance,
suggestions and insight.

3. Instillation of Hope: inspiration provided to
participants by their peers.

The selected therapeutic factors are analysed in
terms of illocutionary force1 and attitude2. Due to
the multi-party and asynchronous nature of on-line
social media conversations, prior to the analysis,
we extract conversation threads among users – an
essential prerequisite for any kind of higher-level
dialogue analysis (Elsner and Charniak, 2010).
Afterwards, the illocutionary force is identified us-
ing Dialogue Act tagging, whereas the attitude by
using Sentiment Analysis. The quantitative analy-
sis is then performed on these processed conversa-
tions.

Ideally, the analysis would require experts to an-
notate each post and comment on the presence of
therapeutic factors. However, due to time and cost
demands of this task, it is feasible to analyse only
a small fraction of the available data. Compared
to previous studies (e.g. (Mayfield et al., 2012))
that analysed few tens of conversations and sev-
eral thousand lines of chat; using the proposed ap-
proach – application of Dialogue Acts and Sen-
timent Analysis – we were able to automatically
analyse approximately 300 thousands conversa-
tions (roughly 1.5 million comments).

The rest of the paper is structured as follows. In
Section 2 we introduce related work. Next, in Sec-
tion 3 we describe the pre-processing pipeline and
the methodology to perform thread extraction on
asynchronous multi-party conversations. In Sec-
tion 4 we provide the describe the final dataset
used for the analysis, and in Section 5 we present
the results of our analysis. Finally, in Section 6 we
provide concluding remarks and future research
directions.

1The illocutionary force of an utterance is the speaker’s
intention in producing that utterance according to Loos
(2003).

2“The attitude may be either his or her affective state,
namely the emotional state of the author when writing, or the
intended emotional communication, namely the emotional
effect the author wishes to have on the reader” Gala et al.
(2014).

2 Related Work

On-line support groups have been analyzed for
various factors before. For instance, Chung (2013)
analysed stress reduction in on-line support group
chat-rooms, and the effects of on-line social inter-
actions. Such studies mostly relied on question-
naires and were based on a small number of users.
Nevertheless, in Chung (2013), the author showed
that social support facilitates coping with distress,
improves mood and expedites recovery from it.
These findings highlight that, overall, on-line dis-
cussion boards appear to be therapeutic and con-
structive for individuals suffering alcohol-abuse.

Application of NLP to the analysis of men-
tal health-related conversation has been studied as
well (e.g. (Ghosh et al., 2017; Stepanov et al.,
2018)). Mayfield et al. (2012) applied sentiment-
analysis combined with extensive turn-level anno-
tation to investigate stress reduction in on-line sup-
port group chat-rooms, showing that sentiment-
analysis is a good predictor of entrance stress
level. Furthermore, similar to our setting, they
applied automatic thread-extraction to determine
conversation threads.

Kissane et al. (2007) have shown that on-
line support group therapy increased the qual-
ity of life of patients with metastatic breast can-
cer. Since many original posters reported the
benefits of group therapy on patients (McDer-
mut et al., 2001; Amichai-Hamburger et al., 2014;
Tartakovsky, 2016; Espie et al., 2012; Gary and
Remolino, 2000; Yalom and Leszcz, 2005), we
evaluate the effect of the user interaction using
sentiment scores of comments in on-line support
groups.

According to Mayfield et al. (2012), users with
high incoming stress tend to request less informa-
tion from others, as a percentage of their time, and
share much more information, in absolute terms.
In addition, high information sharing has been
shown to be a good predictor of stress reduction
at the end of the chat (Mayfield et al., 2012). Re-
garding information sharing, we rely on Dialogue
Acts (Austin, 1975) to model the speaker’s inten-
tion in producing an utterance. In particular, we
are interested in Dialogue Act label that is defined
to represent descriptive, narrative, or personal in-
formation – the statement.

Dialogue Acts have been applied to the analy-
sis of spoken (Stolcke et al., 2000; Cervone et al.,
2018) as well as on-line written synchronous con-
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versations (Forsythand and Martell, 2007). We ap-
ply Dialogue Act tag set defined in Forsythand and
Martell (2007) to the analysis of our on-line asyn-
chronous conversations. We argue that Dialogue
Acts can be used to analyse user behaviour in so-
cial media and verify the presence of therapeutic
factors.

3 Methodology

We select the three therapeutic factors – Universal-
ity, Altruism and Instillation of Hope – that can be
best approximated using NLP techniques: Senti-
ment Analysis and Dialogue Act tagging. We dis-
cuss each one of the selected therapeutic factors
and the identified necessary conditions. The listed
conditions, however, are not sufficient to attribute
the presence of a therapeutic factor with high con-
fidence, which only can be obtained using expert
annotation. Our analysis focuses on the structure
of conversations; though content plays an impor-
tant role as well.

Universality consists in the disconfirmation of
patients’ belief of uniqueness of their disease.
This therapeutic factor is shown to be a powerful
source of relief for the patient, according to Yalom
and Leszcz (2005). From this definition, we can
draw the following conditions that are applicable
to our environment:

1. improvement of original poster’s sentiment:
we hypothesize that the discovery that other
people passed through similar issues leads to
a higher sentiment score;

2. posts containing negative personal experi-
ences: to disconfirm the belief of uniqueness
users have to share their story;

3. comments containing negative statements: to
disconfirm the patient’s feelings of unique-
ness, the commenting user must tell a simi-
lar negative personal experience. This condi-
tion requires two sub-conditions: high pres-
ence of statements in comments and the pres-
ence of negative comments replying to nega-
tive posts.

Instillation of Hope is based on inspiration pro-
vided to participants by their peers. Through the
inspiration provided by their peers, patients can in-
crease their expectation on the therapy outcome.
Yalom and Leszcz (2005) in several studies have
demonstrated that a high expectation of help be-
fore the start of a therapy is significantly corre-

lated with a positive therapy outcome. The author
states that many patients pointed out the impor-
tance of having observed the improvement of oth-
ers. Therefore, the three main conditions are the
following:

1. improvement of original poster’s sentiment:
we hypothesize that instillation of hope leads
to a higher sentiment score;

2. posts containing negative personal experi-
ences: hope can be instilled in someone who
shares a negative personal experience;

3. comments containing positive personal expe-
riences: in order to instill hope, comment-
ing posters must show to original posters an
overall positive personal experience. To de-
tect positive personal experience, we require
the presence of statements in comments and
a positive sentiment of comments replying to
negative posts.

Altruism consists of peers offering support, re-
assurance, suggestions and insight, since they
share similar problems with one another (Yalom
and Leszcz, 2005). The experience of finding that
a patient can be of value to others is refreshing
and boosts self-esteem (Yalom and Leszcz, 2005).
However, in the current study we focus on testing
whether commenting posters are altruists or not.
We do not test whether the altruistic behavior leads
to an improvement on the altruist itself. For these
reasons, we define three main conditions:

1. improvement of original poster’s sentiment:
we hypothesize that supportive and reassur-
ing statements improve the sentiment score
of the original poster;

2. posts contains negative personal experiences:
users offer support, reassurance and sugges-
tion when facing a negative personal experi-
ence of the original poster;

3. comments containing positive statements: ei-
ther supportive or reassuring statements show
by definition a positive intended emotional
communication. Thus comments to the post
should consist of positive sentiment state-
ments.

Consequently, a conversation containing the
aforementioned therapeutic factors should satisfy
the following conditions in terms of NLP: Senti-
ment Analysis and Dialogue Acts.
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1. original posters have a higher sentiment score
at the end of the thread than at the beginning;

2. the original post consists mostly of polarised
statements;

3. the presence of a significant amount of state-
ments in comments, since both support and
sharing similar negative experiences can be
represented as statements;

4. both negative and positive statements in com-
ments lead to higher final sentiment score of
the original poster.

4 Datasets

We verify the presence of therapeutic factors in
two social media datasets: OSG and Twitter. The
first dataset is crawled from an on-line support
groups website, and the second dataset consists
of a small sample of Twitter conversation threads.
Since the former consists of multi-threaded con-
versations, we apply a pre-processing to extract
conversation threads to provide a fair comparison
with the Twitter dataset. An example conversation
from each data source is presented in Figure 1.

4.1 Twitter
We have downloaded 1,873 Twitter conversation
threads, roughly 14k tweets, from a publicly avail-
able resource3 that were previously pre-processed
and have conversation threads extracted. A con-
versation in the dataset consists of at least 4
tweets. Even though, according to Paul and
Dredze (2011), Twitter is broadly applicable to
public health research, our expectation is that it
contains less therapeutic conversations in compar-
ison to specialized on-line support forums.

4.2 OSG
Our data has been developed by crawling and pre-
processing an OSG web forum. The forum has a
great variety of different groups such as depres-
sion, anxiety, stress, relationship, cancer, sexually
transmitted diseases, etc. Each conversation starts
with one post and can contain multiple comments.
Each post or comment is represented by a poster,
a timestamp, a list of users it is referencing to,
thread id, a comment id and a conversation id.
The thread id is the same for comments replying to
each other, otherwise it is different. The thread id
is increasing with time. Thus, it provides ordering

3https://github.com/Phylliida/Dialogue-Datasets

among threads; whereas the timestamp provides
ordering in the thread.

Each conversation can belong to multiple
groups. Consequently, the dataset needs to be pro-
cessed to remove duplicates. The dataset resulting
after de-duplication contains 295 thousand conver-
sations, each conversation contains on average 6
comments. In total, there are 1.5 million com-
ments. Since the created dataset is multi-threaded,
we need to extract conversation threads, to elimi-
nate paths not relevant to the original post.

4.2.1 Conversation Thread Extraction
The thread extraction algorithm is heuristic-based
and consists of two steps: (1) creation of a tree,
based on a post written by a user and the related
comments and (2) transformation of the tree into a
list of threads.

The tree creation is an extension of the approach
of Gómez et al. (2008), where first a graph of con-
versation is constructed. In the approach, direct
replies to a post are attached to the first nesting
level and subsequent comments to increasing nest-
ing levels. In our approach, we also exploit com-
ments’ features.

The tree creation is performed without process-
ing the content of comments, which allows us to
process posts and comments of any length effi-
ciently. The heuristic used in the process is based
on three simplifying assumptions:

1. Unless there is a specific reference to another
comment or a user, comments are attached to
the original post.

2. When replying, the commenting poster is al-
ways replying to the original post or some
other comment. Unless specified otherwise,
it is assumed that it is a response to the previ-
ous (in time) post/comment.

3. Subsequent comments by the same poster are
part of the same thread.

To evaluate the performance of the thread ex-
traction algorithm, 2 annotators have manually
constructed the trees for 100 conversations. The
performance of the algorithm on this set of 100
conversations is evaluated using accuracy and
standard Information Retrieval evaluation metrics
of precision, recall, and F1 measure. The results
are reported in Table 1 together with random and
majority baselines. The turn-level percent agree-
ment between the 2 annotators is 97.99% and Co-
hen’s Kappa Coefficient is 83.80%.
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SCENE – I OSG

ALICE : I want to tell him that if he can’t have a real conversation with me then don’t talk to me, because
it hurts more to feel like I’m an obligation.... I don’t want anyone to ever get close to me but I don’t
want to be alone.

BOB to feel like an obligation is really disheartening and takes a stab at the self esteem. What about the
conversations make you feel like a an obligation? Have you talked to him about this?

ALICE He doesn’t have a conversation, I know he doesn’t mean to, he’s just always busy now... I don’t
want to make him feel bad.

BOB Just remember that your needs matter too!
...

ALICE @Bob Thank you :)
SCENE – II TWITTER

CAROL : lol my best friend at the time got cheated on, we wrote on the guys truck..he started chasing
us, i tripped and broke my ankle #justmyluck

DAVE wtf
CAROL it was ridiculous and i drove with my foot hanging out the window all f***ed up
DAVE when was this i’m so confused

Figure 1: Two example conversation threads extracted from an OSG and Twitter.

Approach Acc P R F1

Majority Baseline 0.92 0.46 0.46 0.46
Random Baseline 0.87 0.14 0.14 0.14
Our Approach 0.97 0.79 0.80 0.80

Table 1: Performance of the thread extraction algo-
rithm on a set of 100 manually constructed trees.

4.3 Data Representation

For both data sources, Twitter and OSG with
extracted threads, posts and comments are to-
kenized4 and sentence split. Each sentence is
passed through Sentiment Analysis and Dialogue
Act tagging. Since a post or a comment can con-
tain multiple sentences, therefore multiple Dia-
logue Acts, it is represented as as a one-hot en-
coding, where each position represents a Dialogue
Act.

For Sentiment Analysis we use a lexicon-based
sentiment analyser introduced by Alistair and Di-
ana (2005). For Dialogue Act tagging, on the other
hand, we make use of a model trained on NPSChat
corpus (Forsythand and Martell, 2007) following
the approach of Lan et al. (2008).5

4NLTK sentence tokenizer
5The model achieves 80.21% accuracy.

5 Analysis

As we mentioned in Section 3, the presence of
each of the therapeutic conditions under analysis is
a necessary for a conversation to be considered to
have therapeutic factors. In this section we present
the results of our analysis with respect to these
conditions.

5.1 Change in Sentiment score of Original
Posters

The first condition which we test is the sentiment
change in conversation threads, comparing the ini-
tial and final sentiment scores (i.e. posts’ scores)
of the original poster. The results of the analysis
are presented in Figure 2. In the figure we can ob-
serve that the distribution of the sentiment change
in the two datasets is different. While in Twitter
the amount of conversations that lead to the in-
crease of sentiment score is roughly equal to the
amount of conversations that lead to the decrease
of sentiment score; the situation is different for
OSG. In OSG, the amount of conversations that
lead to the increase of sentiment score is consider-
ably higher.

Figure 3 provides a more fine grained anal-
ysis, where we additionally analyse the senti-
ment change in nominal polarity terms – negative
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Figure 2: The percentages of threads in OSG and Twit-
ter leading to the increase or decrease of the sentiment
score of the original poster.

and positive. In OSG, the number of users that
changed polarity from negative to positive is more
than the double of the users that have changed the
polarity from positive to negative. In Twitter, on
the other hand, the users mostly changed polarity
from positive to negative. Results of the analy-
sis suggest that in OSG , sentiment increases and
users tend to change polarity from negative to pos-
itive, whereas in Twitter sentiment tends to de-
crease. Verification of this condition alone indi-
cates that the ratio of potentially therapeutic con-
versations in Twitter is lower.

5.2 Structure of Posts and Comments

Table 2 presents the distribution of automati-
cally predicted per-sentence Dialogue Acts in the
datasets. The most frequent tag is statement in
both. In Table 3, on the other hand, we present
the distribution of post and comment structures
in terms of automatically predicted Dialogue Act
tags. The structure is an unordered set of tags
in the post or comment. From the table we can
observe that the distribution of tag sets is simi-
lar between posts and comments. In both cases
the most common set is statement only. However,
conversations containing only statement, empha-
sis or question posts and comments predominantly
appear in Twitter. Which is expected due to the

Figure 3: The sentiment polarity change in the two
datasets - Twitter and OSG. Stable segments are labeled
either as an increase (+), decrease (-) or no change in
polarity, including neutral comments. Pos2Neg and
Neg2Pos denote a nominal polarity change.

shorter length of Twitter posts and comments.

We can also observe that the original posters
tend to ask more questions than the commenting
posters – 19.83% for posts vs. 11.21% for com-
ments (summed). This suggests that the original
posters frequently ask either for suggestion or con-
firmation of their points of view or their disconfir-
mation. However, the high presence of personal
experiences is supported by the high number of
posts containing only statements.

High number of statement tags in comments
suggests that users reply either with supporting
or empathic statements or personal experience.
However, 6.39% of comments contain accept and
reject tags, which mark the degree to which a
speaker accepts some previous proposal, plan,
opinion, or statement (Stolcke et al., 2000). The
described Dialogue Act tags are often used when
commenting posters discuss original poster’s point
of view. For instance, “It’s true. I felt the same.”
– {Accept, Statement} or “Well no. You’re not
alone” – {Reject, Statement}. The datasets differ
with respect to the distribution of these Dialogue
Acts tags, they appear more frequently in OSG.

84



Class Twitter OSG
Statement 62.9 73.0
Emphasis 9.6 6.3
ynQuestion 7.5 4.7
Continuer 2.5 4.3
whQuestion 6.1 3.7
Reject 2.6 2.9
Emotion 2.9 1.5
Accept 2.4 1.3
Greet 0.6 0.8
nAnswer 1.1 0.4
yAnswer 0.8 0.3
Bye 0.4 0.2
Clarify 0.1 < 0.1
Other < 0.1 < 0.1

Table 2: The distribution (in percentages) of automat-
ically predicted per-sentence Dialogue Act tags. Tags
are counted separately for each sentence in the multi-
sentence posts and comments.

5.3 Sentiment of Posts and Comments

Table 4 presents the distribution of sentiment po-
larity in post and comment statements (i.e. sen-
tences tagged as statement). For OSG, the pre-
dominant sentiment label of statements is positive
and it is the highest for both posts and comments.
However, the difference between the amounts of
positive and negative statements is higher for the
replying comments (34.5% vs. 42.5%). For Twit-
ter, on the other hand, the predominant senti-
ment label of statements is neutral and the polarity
distribution between posts and comments is very
close. One particular observation is that the ratio
of negative statements is higher in OSG for both
posts and comments than in Twitter, which sup-
ports the idea of sharing negative experiences.

Further we analyze whether the sentiment of a
comment (i.e. the replying user) is affected by the
sentiment of the original post (i.e. the user being
replied to), which will imply that the users adapt
their behaviour with respect to the post’s senti-
ment. For the analysis, we split the datasets into
three buckets according to the posts’ sentiment
score – negative, neutral, or positive, and repre-
sent each conversation in terms of percentages of
comments (replies) with each sentiment label. The
buckets are then compared using t-test for statisti-
cally significant differences.

Table 5 presents the distribution of sentiment
labels with respect to the post’s sentiment score.

Tag Set Posts Comments
Twitter OSG Twitter OSG

Statement 64.12 38.79 57.14 41.45
Emphasis 3.01 1.31 4.42 3.96
ynQuestion 4.79 2.94 4.80 2.14
whQuestion 4.00 1.43 4.86 2.07

Statement +
Emphasis 2.17 3.96 3.65 5.57
Continuer 0.99 6.29 0.92 4.59
ynQuestion 2.86 7.04 1.92 4.05
whQuestion 4.00 3.98 1.56 2.95
Accept 0.44 0.81 0.19 1.92
Reject 1.28 3.00 0.95 3.38

Table 3: The distribution (in percentages) of post and
comment structures represented as unordered set of Di-
alogue Act tags.

Sentiment Polarity
Negative Neutral Positive

OSG
Posts 32.1 33.5 34.5
Comments 25.8 31.7 42.5

Twitter
Posts 20.5 44.0 35.5
Comments 21.1 45.9 33.0

Table 4: The distribution (in percentages) of sentiment
in statement sentences of posts and comments.

The patterns of distribution are similar across the
datasets. We can observe that overall, replies tend
to have a positive sentiment, which suggests that
replying posters tend to have a positive attitude.
However, the ratio of positive comments is higher
for OSG than for Twitter.

The results of the Welch’s t-test on OSG data
reveal that there are statistically significant differ-
ences in the distribution of replying comments’
sentiment between conversations with positive and
negative starting posts. A positive post tends to
get significantly more positive replies. Similarly,
a negative post tends to get significantly more neg-
ative replies (both with p < 0.01).

Table 6 presents the distribution of the senti-
ment labels of the final text provided by the orig-
inal poster with respect to the sentiment polarity
of the comments. The results indicate that OSG
participants are more supportive, as the majority
of conversations end in a positive final sentiment
regardless of the sentiment of comments. We can
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Posts Comments
Negative Neutral Positive

OSG
Negative 27.25 14.87 57.88
Neutral 21.37 23.49 55.14
Positive 22.79 19.62 65.17

Twitter
Negative 32.92 22.85 44.23
Neutral 26.48 25.00 48.52
Positive 18.79 16.04 57.60

Table 5: The distribution (in percentages) of reply sen-
timent labels with respect to the post’s sentiment label.

Comments Final Sentiment of OP
Negative Neutral Positive

OSG
Negative 28.98 18.27 52.75
Neutral 25.20 25.70 49.10
Positive 22.60 18.01 59.38

Twitter
Negative 24.14 41.78 34.08
Neutral 21.34 49.16 29.50
Positive 20.25 35.20 44.55

Table 6: The distribution (in percentages) of sentiment
labels of the final text of the original poster (OP) with
respect to the comment’s sentiment label.

also observe that negative comments in OSG lead
to positive sentiment, which supports the idea of
sharing the negative experiences, thus presence of
therapeutic factors. For Twitter, on the other hand,
only positive comments lead to the positive final
sentiments, whereas other comments lead predom-
inantly to neutral final sentiments.

Our analysis in terms of sentiment and Dialogue
Acts supports the presence of the three selected
therapeutic factors – Universality, Altruism and
Instillation of Hope – in OSG more than in Twit-
ter. The main contributors to this conclusion are
the facts that there is more positive change in the
sentiment of the original posters in OSG (people
seeking support) and that in OSG even negative
and neutral comments are likely to lead to positive
changes.

6 Conclusion

In this work, we propose a methodology to auto-
matically analyse online social platforms for the
presence of therapeutic factors (i.e. Universality,

Altruism and Instillation of Hope). We evaluate
our approach on two on-line platforms, Twitter
and an OSG web forum. We apply NLP tech-
niques of Sentiment Analysis and Dialogue Act
tagging to automatically verify the presence of
therapeutic factors, which allows us to analyse
larger amounts of conversational data (as com-
pared to previous studies).

Our analysis indicates that OSG conversations
satisfy higher number of conditions approximat-
ing therapeutic factors than Twitter conversations.
Given this outcome, we postulate that users who
join support group websites spontaneously seem
to benefit from it. Indeed, as shown in Section
5, the original posters who interact with others by
replying to comments, have benefited from an im-
provement of their emotional state.

We would like to reemphasise that the condi-
tions for the therapeutic factors are necessary but
not sufficient; since our analysis focuses on the
structure of conversations, being agnostic to the
content. NLP, however, allows us to strengthen
our approximations even further. Thus, the fur-
ther extension of our work is also augmentation of
our study with other language analysis metrics and
their correlation with human annotation.

It should be noted that the proposed approach
is an approximation of the tedious tasks of anno-
tation of conversations by experts versed in the
therapeutic factors and their associated theories.
Even though we can use Sentiment Analysis to de-
tect the existence of therapeutic factors, we can-
not differentiate between Altruism and Instillation
of Hope, as this requires differentiation between
emotional state of the user and the intended emo-
tional communication. Thus, the natural exten-
sions of this work are differentiation between dif-
ferent therapeutic factors and comparison of the
proposed analysis to the human evaluation.

Although we acknowledge that the proposed
methodology does not serve as a replacement of
manual analysis of OSG for the presence of ther-
apeutic factors, we believe that it could facilitate
and supplement this process. The method can
serve as a tool for general practitioners and psy-
chologists who can use it as an additional source
of information regarding their patients condition
and, in turn, offer a more personalised support that
is better tailored to individual therapeutic needs.
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Abstract
Transfer learning is promising for many NLP
applications, especially in tasks with limited
labeled data. This paper describes the meth-
ods developed by team TMRLeiden for the
2019 Social Media Mining for Health Appli-
cations (SMM4H) Shared Task. Our methods
use state-of-the-art transfer learning methods
to classify, extract and normalise adverse drug
effects (ADRs) and to classify personal health
mentions from health-related tweets. The code
and fine-tuned models are publicly available.1

1 Introduction

Transfer learning is promising for NLP applica-
tions, as it enables the use of universal pre-trained
language models (LMs) for domains that suffer
from a shortage of annotated data or resources,
such as health-related social media. Universal
LMs have recently achieved state-of-the-art re-
sults on a range of NLP tasks, such as classifi-
cation (Howard and Ruder, 2018) and named en-
tity recognition (NER) (Akbik et al., 2018). For
the Shared Task of the 2019 Social Media Min-
ing for Health Applications (SMM4H) workshop
team TMRLeiden focused on employing state-of-
the-art transfer learning from universal LMs to in-
vestigate its potential in this domain.

2 Task descriptions

ADR extraction The purpose of Subtask 1 (S1)
is to classify tweets as containing an adverse drug
response (ADR) or not. Subsequently, these ADR
mentions are extracted in Subtask 2 (S2) and nor-
malized to MedDRA concept IDs in Subtask 3
(S3). MedDRA (Medical Dictionary for Regu-
latory Activities) is an international, standardized
medical terminology.2

1https://github.com/AnneDirkson/
SharedTaskSMM4H2019

2https://www.meddra.org/

Personal Health Mention Extraction The goal
of Subtask 4 (S4) is to identify tweets that are
personal health mentions, i.e. posts that mention
a person who is affected as well as their specific
condition (Karisani and Agichtein, 2018), as op-
posed to posts discussing health issues in general.
Generalisability to both future data and different
health domains is evaluated by including data from
the same domain collected years after the training
data, as well as data from entirely different disease
domain.

3 Our approach

3.1 Preprocessing

We preprocessed all Twitter data using the lexical
normalization pipeline by Sarker (2017). We also
employed an in-house spelling correction method
(Dirkson et al., 2019). Additionally, punctuation
and non-UTF-8 characters were removed using
regular expressions.

3.2 Additional Data

Personal Health Mentions For S4, the training
data consists of data from one disease domain,
namely influenza, in two contexts: having a flu in-
fection and getting a flu vaccination. To improve
generalisability, we supplemented this data with
six labelled data sets from different disease do-
mains (Karisani and Agichtein, 2018). We refer
to this combined data set as S4+. For each subset,
10% was used for a combined validation set. For
fine-tuning the ULMfit universal language model
based on 28,595 Wikipedia articles (Wikitext-103)
(Merity et al., 2017b), the DIEGO Drug Chat-
ter corpus (Sarker and Gonzalez, 2017) was com-
bined with the data from S1 and S4+ to form a
larger unsupervised corpus of health-related Twit-
ter data (‘TwitterHealth’). For S4, fine-tuning was
also attempted with only the S4+ data.
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S1 S2* S3 S4 S4+
Dev - 130 76 - -
Train 14,634 910 1,756 6,996 11,832
Validation 1,626 130 76 777 1,314
Test 5000 1000 1000 TBA TBA

Table 1: Data sets. *Only tweets containing ADRs
were used for developing the system. TBA: To be an-
nounced

Concept Normalization The MedDRA concept
names and their aliases in both MedDRA and the
Consumer Health Vocabulary3 were used to sup-
plement the data from S3. This data set is hereafter
called S3+.

3.3 Text Classification

Text classification was performed with fast.ai
ULMfit (Howard and Ruder, 2018). As recom-
mended, the initial learning rate (LR) of 0.01 was
determined manually by inspecting the log LR
compared to the loss. Default language models
were fine-tuned using AWD LSTM (Merity et al.,
2017a) with (1) 1 cycle (LR = 0.01) for the last
layer and then (2) 10 cycles (LR = 0.001) for all
layers.

Subsequently, this model is used to train a clas-
sifier with F1 as the metric, a dropout of 0.5 and
a momentum of (0.8,0.7), in line with the recom-
mendations. Training is done with (1) 1 cycle
(LR = 0.02) on the last layer; (2) unfreezing of
the second-to-last layer; (3) another cycle running
from a 10-fold decrease of the previous LR to this
LR divided by 2.64 (as recommended in the fast.ai
MOOC).4 This is repeated for the next layer and
then for all layers. The last step consists of multi-
ple cycles until F1 starts to drop.

As an alternative classifier for S1, we used the
absence of ADRs (noADE) according to the Bert
embeddings NER method (see below) which was
developed for the subsequent sub-task (S2) and
aims to extract these ADR mentions. As a base-
line for text classification, we used a Linear SVC
with unigrams as features. The C parameter was
tuned with a grid of 0.0001 to 1000 (steps of x10).

3.4 Named Entity Recognition

For S2, we experimented with different combi-
nations of state-of-the-art Flair embeddings (Ak-
bik et al., 2018), classical Glove embeddings and

3https://www.nlm.nih.gov/research/
umls/sourcereleasedocs/current/CHV/

4 https://course.fast.ai/

Bert embeddings (Devlin et al., 2018) using the
Flair package. We used pre-trained Flair embed-
dings based on a mix of Web data, Wikipedia
and subtitles; and the ‘bert-base-uncased’ variant
of Bert embeddings. We also experimented with
Flair embeddings combined with Glove embed-
dings (dimensionality of 100) based on FastText
embeddings trained on Wikipedia (GloveWiki) or
on Twitter data (GloveTwitter). Training for all
embeddings was done with initial LR of 0.1, batch
size of 32 and max epochs set to 150.

As a baseline for NER, we used a CRF with
the default L-BFGS training algorithm with Elas-
tic Net regularization. As features for the CRF,
we used the lowercased word, its suffix, the word
shape and its POS tag.5

3.5 Concept normalization

For S3, pre-trained Glove embeddings were used
to train document embeddings on the extracted
ADR entities in the S3 data including or exclud-
ing the aliases from CHV (S3+) with concept IDs
as labels. We used the default RNN in Flair
with a hidden size of 512. Glove embeddings
(dim = 100) were based on FastText embeddings
trained on Wikipedia. Token embeddings were
re-projected (dim = 256) before inputting to the
RNN.

4 Results

Method F1 (range) P R
Average* 0.502

(0.331)
0.535 0.505

Run1 ULMfit1 0.533 0.642 0.455
Run2 noADE 0.418 0.284 0.792

Table 2: Results for ADR Classification (S1). *over all runs
submitted 1TwitterHealth data

For all four subtasks, our best transfer learning
system consistently performs better than the aver-
age over all runs submitted to SMM4H. For classi-
fying ADR mentions, our overall best performing
system is a ULMfit model trained on the Twitter-
Health corpus (see Table 2). Yet, the highest re-
call is attained by using the absence of named en-
tities (noADE) as a classifier. This is in line with
our validation results (see Table 6). For extracting
ADRs, our best system is a combination of Bert
with Flair embeddings without a separate classifier

5https://sklearn-crfsuite.readthedocs.
io/en/latest/tutorial.html
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Method relaxed F1 (range) relaxed P relaxed R strict F1 (range) strict P strict R
Average* 0.538 (0.486) 0.513 0.615 0.317 (0.422) 0.303 0.358
Run1 Bert+Flair+ 0.625 0.555 0.715 0.431 0.381 0.495
Run2 Bert+ 0.622 0.560 0.701 0.427 0.382 0.484
Run3 Bert+ADRClassifier 0.604 0.718 0.521 0.417 0.494 0.360

Table 3: Results for ADR Extraction(S2). *over all runs submitted +No separate classifier for sentences containing ADRs

Method relaxed F1 (range) relaxed P relaxed R strict F1 (range) strict P strict R
Average* 0.297 (0.242) 0.291 0.312 0.212 (0.247) 0.205 0.224
Run1+ RNN Docembeddings 0.312 0.370 0.270 0.250 0.296 0.216
Run2+ RNN Docembeddings 0.303 0.272 0.343 0.244 0.218 0.277
Run3+ RNN Docembeddings 0.302 0.267 0.347 0.246 0.218 0.283

Table 4: Results for concept normalization (S3). *over all runs submitted +Runs same as S2 prior to concept normalization

Method Acc. (range) F1 (range) P R
Average* 0.781 (0.263) 0.701 (0.464) 0.902 0.585

Run1 ULMfit with S4+ data

Domain1 0.869 0.859 0.952 0.781
Domain2 0.638 0.419 0.750 0.290
Domain3 0.786 0.539 1.000 0.368
Mean 0.793 0.726 0.940 0.591

Run2 ULMfit with TwitterHealth data

Domain1 0.863 0.849 0.969 0.756
Domain2 0.609 0.342 0.700 0.226
Domain3 0.768 0.480 1.000 0.316
Mean 0.786 0.716 0.928 0.583

Table 5: Results for personal health mention classification (S4). *over all runs submitted

for sentences containing ADR mentions (see Table
3). However, using Bert embeddings alone with
the ULMfit classifier from S1 appears to be more
precise. During validation, we found that com-
binations of Glove embeddings (based on Twit-
ter or Wikipedia) and Flair embeddings performed
poorly compared to the submitted systems (see Ta-
ble 7). For mapping the ADRs to MedDRA con-
cepts, we only submitted one system with different
preceding NER models (see Table 4), since adding
the alias information (S3+) decreased both preci-
sion and recall (see Table 8). Our RNN document
embeddings with only the S3 data, however, per-
formed better than average. Lastly, for the classi-
fication of personal health mentions, our best clas-
sifier was a ULMfit model fine-tuned on the S4+
data (see Table 5), which outperformed the aver-
age result and the ULMfit model trained on the
larger TwitterHealth corpus on all metrics. This
system similarly outperformed the other ULMfit
model on the validation data (see Table 9).

Method F1 P R
Baseline: Linear SVC (C=1.0) 0.475 0.526 0.433
ULMfit1 0.574 0.574 0.574
noADE 0.330 0.207 0.823

Table 6: Validation results for ADR classification (S1)
1TwitterHealth data

Method Micro-F1 P R
Baseline: CRF 0.235 0.560 0.149
Flair+ GloveWiki 0.596 0.666 0.540
Flair+ GloveTwitter 0.577 0.655 0.515
Bert 0.640 0.699 0.590
Bert+Flair 0.649 0.699 0.606

Table 7: Validation results for ADR extraction (S2)

Method F1 P R
RNNDocembeddings with S3 0.623 0.566 0.694
RNNDocembeddings with S3+ 0.253 0.171 0.482

Table 8: Validation results for concept normalization (S3)

Method F1 P R
Baseline: Linear SVC (C=0.1) 0.615 0.678 0.572
ULMfit with S4+ data 0.712 0.743 0.701
ULMfit with TwitterHealth data 0.692 0.738 0.676

Table 9: Mean validation results for personal health mention
classification (S4) averaged over eight data sets of S4+

5 Conclusions

Transfer learning using default and recommended
settings offers above average results for various
NLP tasks using health-related Twitter data. More
research is necessary to investigate whether state-
of-the-art performance may be possible with fur-
ther domain-specific adaptation, for instance by
tuning hyper-parameters, training embeddings on
medical data or by dealing with domain-specific
vocabulary absent in the language model.
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Abstract

This paper describes a system for automati-
cally classifying adverse effects mentions in
tweets developed for the task 1 at Social Me-
dia Mining for Health Applications (SMM4H)
Shared Task 2019. We have developed a sys-
tem based on LSTM neural networks inspired
by the excellent results obtained by deep learn-
ing classifiers in the last edition of this task.
The network is trained along with Twitter
GloVe pre-trained word embeddings.

1 Introduction

The Shared Task (Weissenbacher et al., 2019) of
the 2019 Social Media Mining for Health Applica-
tions (SMM4H) Workshop proposed several Nat-
ural Language Processing (NLP) tasks using so-
cial media mining for health monitoring. Since
these tasks involve NLP techniques, they are as
interesting as difficult to solve because these sys-
tems should be able to work with many linguis-
tics variations and model the different ways peo-
ple express medical-related concepts in social me-
dia. In addition, we must take into account the
level of noise caused by creative sentences, mis-
spellings or ambiguous and sarcastic expressions
which makes hard to tackle these tasks.

For this shared task we decided to participate
in the first task. This task proposes to find tweets
mentioning Adverse Drug Reactions (ADR), tak-
ing into account the linguistic variations between
ADRs and indications (the reason to use the med-
ication). We have developed a system based on
LSTM networks due to their latest achievements
in the last edition of this task (Xherija, 2018).

2 Dataset

In this section we describe the dataset of the task
1 and the applied pre-processing. This task pro-
poses to find tweets mentioning ADRs, therefore

we have to deal with raw text extracted from Twit-
ter.

The publicly available dataset contains for each
tweet: (i) the user ID, (ii) the tweet ID, and (iii)
the binary annotation indicating the presence or
absence of ADRs. The dataset contains 24606
tweets manually tagged, being around 10% (2358)
of tweets mentioning ADRs, and around the re-
maining 90% (22248) are tweets without ADRs.

2.1 Pre-processing

Regarding the dataset we normalized typical Twit-
ter strings such as @user by <USER>, #hashtag
by <HASHTAG> or https://... by <URL> to de-
crease the vocabulary size and reduce the dataset
variability by grouping several tokens under the
same meaning.

We also handle several elongated words such
as “my goooood”. In these cases we replaced
each token by a unique representation, for exam-
ple “aaargh” and “arrggggh” by “argh”.

Finally the last step was to replace several con-
structions like “it’s” by “it is” or “OMG” by “Oh
my god” and tokenize the text. For this step we
used regular expressions and NLTK (Loper and
Bird, 2002) to tokenize the text. We used specifi-
cally the class TweetTokenizer which is especially
useful processing tweets since it splits the text into
tokens, as others tokenizers, but also it takes into
account some text elements like emojis or exclam-
atory particles, which are correctly separated into
new tokens.

We didn’t remove any stop-word or convert to
lowercase the text because that might change the
meaning of a tweet drastically.

3 System architecture

We used a model based on a Bi-LSTM network
due to its high performance in NLP tasks being
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used along with Twitter GloVe (Pennington et al.,
2014) embeddings. The input of the system is a
tweet (a sequence of words) which is used by the
Embedding Layer with a fixed input size, while
the weights of this layer are given by the GloVe
word embeddings trained with 2 billion tweets.
We have chosen these embeddings instead of oth-
ers like word2vec (Mikolov et al., 2013), godin
(Godin et al., 2015) or shin (Shin et al., 2016) be-
cause Twitter GloVe is trained with tweets, what is
very useful since it allows us to have a greater vo-
cabulary and also more similar to the text provided
by the task.

Figure 1: System architecture based on Twitter GloVe
embeddings and a Bi-LSTM network.

As it can be seen in Figure 1, the next layer of
our system is a Bi-LSTM layer. We decided to use
it because a single LSTM network have not access
to further tokens as they have not been seen. A Bi-
LSTM has access to past tokens and future tokens,
so this layer will give us a complete knowledge
about the tweet; one LSTM will scan the sentence
in one direction and the other will scan in the re-
verse direction. After these two layers we set a
Dropout layer to prevent overfitting (Peng et al.,
2015) with a rate of 0.3 for the Embedding layer
and 0.5 for the Bi-LSTM layer. Finally we added
a Dense layer with a sigmoid activation function
at the end of the network to get the final results.

Regarding hyper parameters we used some con-
figurations before we submitted the runs. For these
tests we have tuned the epochs, the size of the
batch (32, 64 and 128), the size of the embedding
(vector of 50 and 100 dimensions in both embed-

dings), and the optimizer by considering a couple
of them as Adam (Kingma and Ba, 2014) and Ada-
Grad (Duchi et al., 2011). We also handle the vo-
cabulary tokens by adding pad right. At the end we
chose the 3 configurations that reported the best
results, whose hyper parameters are shown in Ta-
ble 1.

4 Experiments and Results

For the implementation of the system we chose
Keras and Tensorflow (Abadi et al., 2016) while
for the pre-processing of the data we used Scikit-
learn (Pedregosa et al., 2011), in particular for
padding and split the dataset into validation, train
and test sets.

In order to test the functioning of our system
we used the evaluation script provided by the or-
ganizers. Several experiments are shown in Ta-
ble 2. In these experiments we used a network
without embeddings (Base) and with two types of
embeddings, one pre-trained on Wikipedia pages
(Wikipedia GloVe) and the other one based on
tweets (Twitter GloVe). Due to the better perfor-
mance shown by the configuration that used Twit-
ter GloVe pre-trained embeddings, we decided to
use it for the runs that we submitted to the task.

Table 3 shows the official results for the three
runs that we submitted to the task 1 and the task
average score provided by the organizers. Accord-
ing to the results obtained, it could be said that a
greater number of epochs provides better results
although the recall begins to fall.

5 Conclusions

Taking into account the experiments carried out
on the training set and the results obtained, we
can say that the use of embeddings pre-trained on
tweets has been positive, that a greater number of
epochs has provide us a better performance and
that the best feature of our system is the recall as
it obtains a value above the average.

In the future, we will try to create a more com-
plex system to improve its performance. For this
task we will add new features such as POS tag-
ging and char embeddings as well as an attention
mechanism.
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Run 1 Run 2 Run 3
Epochs 40 30 20
Embedding Twitter Glove
Batch size 64 64 32
Embedding size 100 100 50
Optimizer AdaGrad AdaGrad Adam

Table 1: Hyper parameter tunning used in the 3 runs
submitted for task 1.

System P R F1
Base 0.408 0.430 0.419
Base + Wikipedia G 0.450 0.512 0.483
Base + Twitter G 0.458 0.590 0.510

Table 2: System results according the Precision (P),
Recall (R) and F-Measure (F1) scores.
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Abstract

This paper describes our system for the first
and second shared tasks of the fourth So-
cial Media Mining for Health Applications
(SMM4H) workshop. We enhance tweet rep-
resentation with a language model and distin-
guish the importance of different words with
Multi-Head Self-Attention. In addition, trans-
fer learning is exploited to make up for the data
shortage. Our system achieved competitive re-
sults on both tasks with an F1-score of 0.5718
for task 1 and 0.653 (overlap) / 0.357 (strict)
for task 2.

1 Introduction

Automatic adverse drug reaction (ADR) detection
and extraction are of great social benefits to public
health, with which pharmacovigilance (Sarker and
Gonzalez, 2015) can be performed at a broader
and more automatic level. Recent research fo-
cus their attention on online public sources such
as tweets due to their availability and authen-
ticity (Onishi et al., 2018; Adrover et al., 2015;
Salathé and Khandelwal, 2011).

The SMM4H shared task is proposed (Weis-
senbacher et al., 2019) to enhance ADR recog-
nition. Task 1 is a binary classification task be-
tween ADR mentioned tweets and drug name only
tweets, followed by task 2 to extract the particu-
lar position of ADR entities. Based on the work
we did last year (Wu et al., 2018), we extend our
previous model with hierarchical tweet representa-
tion and multi-head self-attention (HTR-MSA) to
a model using both hierarchical tweet representa-
tion and attention (HTA) to jointly participate both
tasks. Moreover, additional features and a lan-
guage model are incorporated to enhance the se-
mantic representations. In task 1, transfer learning

†Equal contribution.

on a smaller dataset is exploited. In task 2, we add
a CRF layer for the named entity recognition task.

2 Our Approach

Our HTA model can be divided into the follow-
ing three parts: hierarchical word representation,
hierarchical tweet representation and tweet classi-
fication, which are introduced as follows.

2.1 Hierarchical Word Representation
In order to combat out-of-vocabulary medical ter-
minology, misspellings and user created abbrevia-
tions, we propose a character modeling at a lower
level before traditional word representation. We
denote the character sequence of ith word as wi =
[Ci,1,Ci,2, ...,Ci,N ], where N is the word length.
A character embedding matrix Mc ∈ RV×D is
utilized to convert wi into vector sequence Ec

i =
[ei,1, ei,2, ..., ei,N ], where V denotes the character
vocabulary size and D denotes the dimension of
character embedding.

After a character embedding is generalized,
character-level convolutional neural network is
employed to capture local combined character fea-
ture. Assuming the window size of CNN filters is
2w + 1 and Uc, bc are kernel and bias parameters
respectively, a convolutional representation hi,j of
character embedding vectors from position j − w
to j + w is formed as follows:

hi,j = ReLU(Uc × ei,(j−w):(j+w) + bc) (1)

To remove unnecessary information, we apply the
max pooling to pertain only the most salient fea-
ture of the ith word.

Other features are added at a word level, such
as word2vec-twitter (Godin et al., 2015) word em-
bedding, pos-tag from NLTK library (Bird et al.,
2009) and sentiment lexicon1. To strengthen the

1http://sentiwordnet.isti.cnr.it/
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medical meaning of word representation, word ap-
pearance in SIDER 4.1 medical lexicon2 is trans-
formed to one-hot vector as additional feature. Be-
sides, the language model ELMo embedding (Pe-
ters et al., 2018) is incorporated to overcome the
shortage of limited data and get better semantic
meaning. Since ELMo contains character level in-
formation in their model, it fits better to our task
goal than other language model that utilizes a fixed
word look-up dictionary.

The final output of our hierarchical word rep-
resentation is the concatenation of character rep-
resentation, word embedding, pos-tag, sentiment
lexicon, medical lexicon feature and language
model output.

2.2 Hierarchical Tweet Representation
We first send word representation obtained in the
previous module to a Bi-LSTM layer to encode
long-distance information. The Bi-LSTM output
of a sentence of length M is denoted as H =
[h1,h2, ...,hM ].

The second layer takes advantage of multi-head
self-attention (Vaswani et al., 2017) to mine inter-
nal relation between words in the same sentence.
In our layout, the representation vector mi,j of the
jth word learned by the ith attention head is com-
puted by weighted summation of H:

α̂i
j,k = hj

TUihk, (2)

αi
j,k =

exp(α̂i
j,k)

ΣM
m=1 exp(α̂

i
j,m)

, (3)

mi,j = Wi(Σ
M
m=1α

i
j,mhm), (4)

Ui and Wi are the parameters of the ith
self-attention head, and αi

j,k represents the re-
lated weight between jth and kth words. Af-
ter concatenating outputs from h different self-
attention heads, we get the representation mj =
[m1,j ;m2,j ; ...;mh,j ] of the jth word.

2.3 Tweet Classification
For task 1, we use an additive attention mechanism
to selectively combine word representations. The
model is trained with a cost-sensitive weighted
loss function (Santos-Rodrguez et al., 2009). Sen-
tence level binary labels are then generated for
task 1. However, in task 2 word level labels are
needed, so we use a CRF layer to predict word
level entity tags after self-attention vectors pro-
duced in the lower level.

2http://sideeffects.embl.de/

3 Experiments

3.1 Experiment Settings

In our experiments,the word embedding we use is
400 dimension and Bi-LSTM network has 2×200
units. The CNN network has 400 filters with win-
dow size of 3. There are 16 heads in the multi-head
self-attention network, and the output dimension
of each head is 16. Adam is selected as the opti-
mizer.

Transfer learning is conducted on the CADEC
medical ADR dataset (Karimi et al., 2015) first in
task 1. However, we do not adopt this method in
task 2 due to the relative small training dataset of
this task. For the word classification, we train for
this task a marginal CRF with probabilities as out-
put.

3.2 Experiment Results

Detailed evaluation score is illustrated in table 1,
which illustrated the effectiveness of our ap-
proach. In task 1, our model outperforms the av-
erage score among all participants by 0.070. In
task 2, the improvement on relax F1 is also sig-
nificant, we improve 0.115 on relax F1 and 0.040
on strict F1. Besides, compared to the best model
we submitted for task 1 last year (Wu et al., 2018),
which reached a 0.522 F1 score, our method with
the language model and transfer learning improves
the original model by 0.050.

4 Conclusion

We design HTA, a hierarchical tweet representa-
tion and attention model for SMM4H shared task
1 and 2, our model attains high evaluation scores
on both tasks and generates promising application
value.
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Abstract 

Social Media Mining for Health 

Applications (SMM4H) Adverse Effect 

Mentions Shared Task challenges 

participants to accurately identify spans of 

text within a tweet that correspond to 

Adverse Effects (AEs) resulting from 

medication usage (Weissenbacher et al., 

2019). This task features a training data set 

of 2,367 tweets, in addition to a 1,000 tweet 

evaluation data set. The solution presented 

here features a bidirectional Long Short-

term Memory Network (bi-LSTM) for the 

generation of character-level embeddings. 

It uses a second bi-LSTM trained on both 

character and token level embeddings to 

feed a Conditional Random Field (CRF) 

which provides the final classification. This 

paper further discusses the deep learning 

algorithms used in our solution. 

1 Data 

The training data consists of 2,367 unique tweets 

of which 1,212 are positive examples and 1,155 are 

negative while the evaluation data consists of 1,000 

tweets with 500 positive examples and 500 

negatives. Of the 1,212 positive examples in the 

training set, 345 examples present two or more 

spans within the tweet that are AEs experienced by 

the individual. The remaining positive examples 

contain only one AE span. Spans of AEs are not 

limited to singular words nor are they required to 

be whitespace delimited. Because of this, many 

AEs within the data set consist of multiple words. 

Spans are not limited to English words or whole 

words, so abbreviations, portions of words, and 

concatenations of multiple words are expected. 

Tweets provided to participants had all alphabetical 

characters converted to their lowercase form. No 

other preprocessing steps were performed prior to 

dataset distribution. We divided the training dataset 

into subsets with 1,657 tweets used for training, 

355 for validation, and 355 for testing.  We tuned 

our parameters on the training set and report final 

results on the shared task evaluation set. 

2 Preprocessing 

We preprocessed AEs to consolidate overlapping 

spans and remove AEs that are a subset of others. 

Subsequently, we replaced twitter handles with 

“@person” to reduce the noise inherent to multiple 

tokens sharing the same meaning and to reduce 

dimensionality. To further reduce dimensionality, 

we removed the URLs within tweets as they do not 

provide contextual value. The hashtag character, 

“#”, was removed so hashtag words could be 

treated like regular words rather than as separate, 

unique tokens. Tokenization was performed and 

tested using several tokenizers to include the 

Natural Language Toolkit’s (NTLK) Word 

Tokenizer, NLTK’s Word Punct Tokenizer, 

NLTK’s Whitespace Tokenizer, and the Stanford 

Tokenizer (Manning et al., 2014; Bird et al., 2009). 

Lastly, the removal of all special characters was 

evaluated in conjunction with each of the above 

methods. 

3 System Structure 

The system used in this study is based around a 

Recurrent Neural Network (RNN) variant known 

as a bi-LSTM which features the Long Short-term 

Memory (LSTM) unit (Hochreiter and 

Schmidhuber, 1997). The system consists of four 

layers: a character embedding layer, a token 

embedding layer, a label prediction layer, and a 

label sequence optimization layer (Dernoncourt et 

al., 2017). As input, it uses three portions of the 

dataset for training, validation, and testing. Input to 

the bi-LSTM consists of word embeddings. We 

initialized word embeddings based on pretrained 

GloVe embeddings (Pennington et al., 2014). We 

then used ELMo to continue training embeddings 
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so they better represent each word’s usage within 

the corpus (Peters et al., 2018). The trained word 

embeddings are augmented by training a bi-LSTM 

model on individual characters within a word and 

concatenating the character embeddings onto the 

word embedding vector. These character-enhanced 

token-embeddings are then passed as input into a 

second bi-LSTM layer in which both directions 

predict the label. The output from both directions 

is concatenated and passed to a CRF which 

provides the model’s final prediction (Dernoncourt 

et al., 2017). 

  

4 Training 

The hyperparameters that yield the best results 

were identified as: character embeddings with 25 

dimensions, character level LSTM hidden states 

that use 25 dimensions, token embeddings with 

100 dimensions, token level context embeddings 

with 1,024 dimensions, and a token level hidden 

state that uses 100 dimensions. We limited the 

model to 100 epochs with early stopping when the 

validation set’s F1 score did not improve after 10 

epochs. Early stopping was triggered when the 

model’s F1 score on the validation set peaked then 

failed to achieve a better score within ten more 

epochs. We used a learning rate of 0.005.  We 

clipped gradients at 5.0 and applied a dropout rate 

of 0.5. We tested several other hyperparameters 

with the model to include 200 dimension token 

embeddings, 2,048 context embeddings, 0.001 

learning rate, 0.4 and 0.6 dropout rates. None of 

these provided significant increases in 

performance, however, some did cause large 

increases in training and inference times. Using a 

16 core CPU, word embeddings are trained in 8 

minutes and 43 seconds and training the model 

takes 19 minutes and 22 seconds. Due to the small 

data set size, only 3GB of free RAM is necessary 

to train the system.  

5 Evaluation and Results 

We measured performance of the system based on 

provided gold label AEs.  We used Precision, 

Recall, and F1 Score to monitor a model’s 

performance as it trained and to check that the 

reported values were reflective of the model’s 

ability to generalize to the test set.  Due to the 

inherently noisy nature of user generated social 

media text, we found that noise reduction 

techniques performed during the preprocessing 

stage had a much higher impact on model 

performance than hyperparameter tuning. 

Swapping tokenizers netted performance increases 

in F1 Score as big as 9.73, when keeping special 

characters, and 8.07, when not. Table 1 shows that 

best results on the test set are achieved with 

NLTK’s Word Punct tokenizer and when special 

characters are kept. 

Figure 1: The character-enhanced bi-LSTM CRF 

system architecture. Where Te is the token 

embedding, Ce are the character embeddings, and P is 

the bi-LSTM’s predicted class. 

Table 1: System performance on test set with 

different tokenizers. 

Tokenizers Special 

Characters 
P R F1 

Stanford Yes 35.12% 47.19% 40.27 

Stanford No 33.13% 52.27% 40.55 

NLTK Word  Yes 42.08% 58.17% 48.83 

NLTK Word  No 46.09% 51.46% 48.62 

Word Punct Yes 42.79% 60.13% 50.00 

Word Punct No 39.52% 53.25% 45.27 

Whitespace Yes 32.90% 58.22% 42.04 

Whitespace No 44.29% 52.92% 48.22 

100



 

 

The shared task was evaluated using a total of six 

performance metrics including both strict and 

relaxed variants of Precision, Recall, and F1 Score. 

Table 2 shows that our final system provided a 59.7 

Relaxed F1 Score and a 40.7 Strict F1 Score on the 

evaluation set, beating shared task averages by 5.9 

and 9.0, respectively. 

Error analysis shows that words heavily associated 

with AEs, such as “withdrawal”, are almost always 

accurately identified as being AEs. Alternatively, 

words with neither positive nor negative 

connotations are frequently missed as being AEs, 

such as “sleep” in “it could be two months before i 

sleep well again”. Errors also occurred when 

tokens frequently associated with AEs were 

present but not in relation to medication usage. An 

example would be the identification of “rejection  

hurts” in “rejection hurts, cymbalta can help”. The 

model appears to give excessive weight to the 

specific word being used while not giving enough  

weight to the word’s context. Future work would 

explore the use of a larger corpus that includes 

more negative examples of those words, additional 

LSTM layers in the label prediction layer, and the 

use of more recent word embedding algorithms. 
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Metric Our System Task Average 

Relaxed Precision 59.6% 51.3% 

Relaxed Recall 59.9% 61.7% 

Relaxed F1 Score 59.7 53.8 

Strict Precision 40.6% 30.3% 

Strict Recall 40.7% 35.8% 

Strict F1 Score 40.7 31.7 

Table 2: System Performance on evaluation set. 
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Abstract

Today social networks play an important role,
where people can share information related to
health. This information can be used for pub-
lic health monitoring tasks through the use
of Natural Language Processing (NLP) tech-
niques. Social Media Mining for Health Ap-
plications (SMM4H) provides tasks such as
those described in this document to help man-
age information in the health domain.

This document shows the first participation of
the SINAI group in SMM4H. We study ap-
proaches based on machine learning and deep
learning to extract adverse drug reaction men-
tions from highly informal texts in Twitter.

The results obtained in the tasks are encourag-
ing, we are close to the average of all partici-
pants and even above in some cases.

1 Introduction

An Adverse Drug Reaction (ADR) is an injury oc-
curring after a drug (medication) is used at the rec-
ommended dosage, for recommended symptoms.
This is a area that has already been researched in
recent years (Sarker and Gonzalez, 2015; Karimi
et al., 2015), and in which we will contribute with
new systems.

The proposed shared tasks of SMM4H con-
tinue with NLP challenges in social media mining
for health monitoring and surveillance (ws-, 2018;
Weissenbacher et al., 2018).

We have decided to participate in 2 of the 4 tasks
proposed by the organizers: automatic classifica-
tions of adverse effects mentions in tweets and ex-
traction of adverse effect mentions.

In task automatic classifications of adverse ef-
fects the goal is a binary classification problem.
The designed system for this sub-task should be
able to distinguish tweets reporting an Adverse Ef-
fect (AE) from those that do not.

In the second task called Extraction of Adverse
Effect mentions. This task includes identifying the
text span of the reported ADRs and distinguishing
ADRs from similar non-ADR expression. ADRs
are multi-token, descriptive, expressions, so this
subtask requires advanced Named Entity Recog-
nition (NER) approaches.

2 Tweet data

The corpus are composed of tweets extracted from
the famous social network called Twitter. This
social network allows people to freely post short
messages (called tweets) of up to 140 characters.
Twitter has rapidly gained popularity worldwide,
with more than 326 million active users generat-
ing more than 500 million tweets daily.

• Data set for task 1: For each tweet, the pub-
licly available data set contains: (i) the user
ID, (ii) the tweet ID, and (iii) the binary an-
notation indicating the presence or absence of
ADRs.

The training data is composed of 25,672
tweets (2,374 positive and 23,298 negative)
and the test data contains 4,5175 tweets.

• Data set for task 2: This set contains a subset
of the tweets from Task 1 tagged as hasADR
plus an equal number of noADR tweets. The
corpus contains: (i) the tweet ID, (ii) the start
and (iii) end of the span, (iv) the annotation
indicating an ADR or not and (v) the text cov-
ered by the span in the tweet.

The training data is composed of 2,367
tweets (1,212 positive and 1,155 negative)
and the test data contains 1,573 tweets.

3 Taking part in tasks

In this section we will explain the 3 methodologies
applied to each task.
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Before beginning to implement our approaches,
it is necessary to clean the text of some rare char-
acters that we find, these characters can make
noise to our systems, therefore, we must treat them
correctly. This pre-processing has been:

- Convert the text to lowercase.
- Substitution of characters HTML like: &amp;,

&lt;, and &gt; to your representation: &, < and >.

3.1 Task 1: Automatic classifications of
adverse effects mentions in tweets

In addition to the text processing already carried
out and described above, for this task we have also
decided to carry out another pre-processing:

• Expand contractions: the contractions in the
text have been expanded as for example:
you’re to you are

• Remove hashtag: for this task we consider
that the hashtag add noise to the text as we
do not process them.

• Remove @ mentions: mentions of persons
have been removed from the text.

• Remove non-alphanumeric words: we have
only taken into account alphanumeric words.

For Task 1 systems we have used the automatic
learning and deep learning approaches described
below:

3.1.1 SVM
SVM (Vector Support Machines) is one of the best
classifiers for a wide range of situations, so it is
considered one of the references within the field
of statistical learning and machine learning. We
used SVM with linear kernel.

For tweet processing we have applied the
TF-IDF schema with the following parameters:
min df = 3, max df = 0.8, sublinear tf = True,
use idf = True, lowercase = True and ngram range
= (1,3).

This will be our baseline, from which we will
depart for better results.

3.1.2 SVM + features
For this system, we have used the SVM of the pre-
vious baseline adding some relevant features for
this specific task. We believe it is interesting to
use external resources referring to the medical do-
main.

We have used the medical entity recognizer
for English called MetaMap (Aronson, 2001).
MetaMap is a widely available program provid-
ing access to the concepts in the unified medical
language system (UMLS1) Metathesaurus from
biomedical text. In addition, this resource pro-
vides additional information about the medical
concept detected. For example, we can know
the Concept Unique Identifier (CUI), the preferred
name or the semantic type for the concept.

We make use of the semantic type of the con-
cepts detected, and specifically, we use the se-
mantic groups: ”dsyn”, ”fndg”, ”inpo”, ”menp”,
”mobd”, ”neop”, ”patf”, ”phsf”, ”sosy”, ”topp”
creating a vector of 10 positions, we insert 1 in
the case in which it finds a concept in the tweet
with that semantic group, 0 in other cases.

These semantic groups can be understood as:
Disease or Syndrome, Finding, Injury or Poison-
ing, Mental Process, Mental or Behavioral Dys-
function, Neoplastic Process, Pathologic Func-
tion, Physiologic Function, Sign or Symptom and
Therapeutic or Preventive Procedure respectively.

We decided to use these semantic types thanks
to the ADR mentioned in Task 2 corpus, these
ADR were introduced in MetaMap and we chose
to use the 10 most repeated semantic groups.

3.1.3 CNN

For the third system, we implemented a Convo-
lutional Neural Network (CNN). CNN are a cat-
egory of neural networks that have proven very
effective in areas such as image recognition and
classification.

The architecture of the network is as follows:
- Embedding layer.
- 1D convolution layer: filters = 32, convolution
window = 3, activation = relu and the other default
values.
- 1D Max pooling layer: size of the max pooling
windows = 2 and the other default values.
- 1D convolution layer: filters = 32, convolution
window = 3, activation = relu and the other default
values.
- Global max pooling layer with default values.
- Dense layer for output with 1 output unit and
activation = sigmoid.

We have used the Twitter pre-trained word vec-

1https://www.nlm.nih.gov/research/
umls/
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tors of GloVe2. These embeddings are composed
of 2B tweets, 27B tokens, 1.2M vocab and 200 di-
mension.

3.2 Task 2: Extraction of Adverse Effect
mentions

In the second task, our team has focused on the use
of Conditional Random Field (CRF) algorithm,
applying characteristics to it in such a way that
they provide extra information to each word of the
document.

3.2.1 CRF
CRF classifier is a stochastic model commonly
used to label and segment data sequences or ex-
tract information from documents. We used CRF-
suite, the implementation provided by Okazaki, as
it is fast and provides a simple interface for train-
ing/modifying the input features.

The CRF classifier is trained on annotated men-
tions of ADRs and indications, and it attempts to
classify individual tokens in sentences. Therefore,
it learns to distinguish five different labels: ADR
and 0.

Below, we define some characteristics for each
word in the document used in all our models:

- Characteristics of the context: Context is de-
fined by three characteristics that include the cur-
rent word (word), the previous word (word-1) and
the subsequent word in the sentence (word+1).

- POS: Part of speech of the token, which was
generated using the Spacy3 library for Python.

- Lemma: Lemma of the token, which was gen-
erated using the Spacy.

- Other features: we incorporate some basic fea-
tures of each word such as isLower, isUpper, isTi-
tle, isDigit, isAlpha, isBeginOfSentence and isEn-
dIfSentece.

3.2.2 CRF + W2V
We want to use embedded word vectors as fea-
ture in existing conditional random field (CRF)
with gazetteer features for sequence labeling task
in text.

We have again used the Twitter pre-trained word
vectors of GloVe but with 50 dimension.

To make this possible, we added 50 new fea-
tures to each word, to the previous word and to the
next word. These 50 characteristics refer to each

2https://nlp.stanford.edu/projects/
glove/

3https://spacy.io/

Bitchain Word Count
011110100000 unmotivated 754
011110100000 knackered 2407
011110100000 tired 232683
011110100000 exhausted 19368
011110100000 drained 3333

Table 1: Example content of Brown cluster.

of the dimensions of that word. In this way the al-
gorithm will learn where the words are within the
axes in order to improve in context.

3.2.3 CRF + BC + W2V
For the last system developed for this task, the
word representations feature induced by Brown
clustering method was introduced as an additional
feature.

Brown clustering (Brown et al., 1992) is a
greedy, hierarchical, agglomerative hard cluster-
ing algorithm to partition a vocabulary into a set
of clusters with minimal loss in mutual informa-
tion. Intuitively, the Brown clustering method will
merge the tokens with similar contexts into the
same cluster.

The implementation of Brown clustering
method by Liang and described by Owoputi
et al. is adopted in our system. The clustering
used contains 216,846 words, is grouped in 1000
clusters and processed more than 56 million
tweets.

Some examples of Brown clustering are shown
in Table 1. In this table we can see how different
words are in the same cluster (011110100000) and
the number of occurrences found.

The feature that was finally added to the method
was the bitchain to which each word belonged.

4 Results

In this section we show the results obtained by
the group SINAI in the participation of SMM4H
Shared Task 2019.

4.1 Task 1

The average of all participants in Task 1 and the
results obtained by our group in Task 1 are those
shown in Table 2.

As we can see the mean has a low measure,
so we can intuit that it is a difficult task. In our
case, the neural network learns better than ma-
chine learning systems, although we add features
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Approach F1 Prec Recall
Average particp. 0.5019 0.5351 0.5054
SVM 0.4509 0.6393 0.3482
SVM + features 0.4829 0.6222 0.3946
CNN 0.4969 0.5517 0.4521

Table 2: Result obtained for Task 1.

Approach F1 Prec Recall
Average particip. 0.5383 0.5129 0.6174
CRF 0.496 0.633 0.408
CRF + W2V 0.532 0.616 0.468
CRF + BC + W2V 0.542 0.612 0.486

Table 3: Result obtained for Task 2 relaxed matching.

to these models.
Although the use of features added to SVM im-

proves our baseline in F1 and recall, they are not
sufficient and we do not get a substantial increase.
We can observe that systems 2 and 3 worsen the
precision. For future work we can try to choose
some features more related to the task.

4.2 Task 2
In this task two measures of agreement were com-
puted: strict and relaxed matching.

• Relaxed matching

The average scores for this task with relaxed
matching and our results are showing in Table
3.

In different measures such as F1 and preci-
sion we are above average. In terms of pre-
cision, we exceeded it by 20%, although the
average recall does not reach it and that hurts
us.

• Strict matching

Our results and the average scores for all par-
ticipants in this task with strict matching are
presented in Table 4.

In this system, we can see that the same thing
happens as in the case of relaxed matching,
we surpass the F1 and precision measures,
but not in recall. For next participation we
will pay special interest in the exhaustiveness
for relevant instances that we have recovered.

We will be able to analyze the results once the
organizers provide us with the complete test. With

Approach F1 Prec Recall
Average particip. 0.3169 0.3026 0.3581
CRF 0.326 0.419 0.267
CRF + W2V 0.352 0.408 0.31
CRF + BC + W2V 0.36 0.408 0.322

Table 4: Result obtained for Task 2 strict matching.

this, we will be able to carry out an analysis of
errors and see the failures obtained and how to im-
prove them.

5 Conclusions

In this document, we expose the first participa-
tion of the SINAI group in SMM4H, we created
3 strategies for Task 1 and 3 strategies for Task 2.
For Task 1 different approaches of machine learn-
ing and deep learning were implemented, whereas
for Task 2 the effectiveness of several classifica-
tion characteristics was explored in the training
of the CRF model and it was found that context
and cluster integration were the most contributing
characteristics.

In both tasks we managed to overcome our
baseline and improve in each method. In Task 1
we get a F1 of 0.486 being a little below the av-
erage of all participants, in Task 2 we managed to
obtain a measure F1 of 0.322 in the strict system
and 0.486 in relaxed system.

Our future work will involve exploring the ef-
fectiveness of training a deep learning neural net-
work, rather than the CRF, to learn features and
classify labels and improve our neural networks
and add new text features. As well as participate
in all tasks proposed to implement our systems and
expose them to the scientific community.
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Abstract

We participated in Task 1 of the Social Me-
dia Mining for Health Applications (SMM4H)
2019 Shared Tasks on detecting mentions of
adverse drug events (ADEs) in tweets. Our ap-
proach relied on a text processing pipeline for
tweets, and training traditional machine learn-
ing and deep learning models. Our submitted
runs performed above average for the task.

1 Introduction

A growing number of users produce and share in-
formation on the internet, including health infor-
mation. As of 2017, the number of social media
users increased by approximately one million per
day, with approximately half of adults worldwide
using some form of social media (Kemp, 2017).
According to (Domo, 2018), 473,400 tweets were
sent every minute in 2018.

The discussion of health-related information on
social media is becoming increasingly common,
which can be utilized by researchers in a multitude
of ways, including pharmacovigilance and public
health surveillance (Nikfarjam et al., 2015). Nu-
merous works have utilized tweets to analyze pub-
lic health concerns, with many focusing specifi-
cally on the identification of adverse drug reac-
tions (ADRs) (O’Connor et al., 2014). Tweets can
contain important information, including the men-
tion of specific medications, indications for use,
and side effects. Additional information can also
be obtained, such as time of the tweet, location,
and user characteristics (Paul and Dredze, 2011).

The Social Media Mining for Health Applica-
tions (SMM4H) Shared Tasks were organized to
provide labeled social media data sets for nat-
ural language processing (NLP) researchers to
study challenges in health monitoring and surveil-
lance (Weissenbacher et al., 2019). Task 1 focused
on classification of adverse drug event (ADE)

mentions in tweets, where the participating sys-
tems were expected to distinguish tweets report-
ing an ADE from those that do not, taking into ac-
count subtle linguistic variations between adverse
effects and indications, such as the reason to use
the medication.

2 Data cleaning and pre-processing

Our approach was to develop a text processing
pipeline to clean and process tweets and identify
tweets that mention ADEs. We ran the following
pre-processing steps:

(a) Removing UTF-8 characters: All UTF-8
characters in the tweets were removed or replaced
with relevant tags. For example, a pill emoji was
replaced with the tag ‘〈pill〉’, and a dizzy-faced
emoji was replaced with the tag ‘〈dizzy〉’.
(b) Running Ekphrasis: After all UTF-8 char-
acters were removed, the Ekphrasis text process-
ing tool (Baziotis et al., 2017) was run with the
following minor modifications. First, because the
tool was unable to unpack contractions that ap-
peared in uppercase text, regular expressions were
written to capture all uppercase tokens for manual
verification and tagging. After tagging, the tweets
were converted to lowercase, allowing them to be
fully processed by the unpacking feature. New
contractions were added to the Ekphrasis unpack-
ing routine based on a manual review of Ekphrasis
output, when applied to the challenge data set.

(c) NLTK TweetTokenizer and Lemmatizer:
NLTK TweetTokenizer was run to further process
the tweets, and the outputted tweets were then
lemmatized.

(d) MetaMap: Each tweet was run through
MetaMap, and concept and semantic types iden-
tified within the text with a MetaMap score above
800 were extracted as features.
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(e) cTAKES: Tweets were run through cTAKES
to identify concepts from the Systematized
Nomenclature of Medicine (SNOMED). The iden-
tified SNOMED codes were added as features.

(f) Pattern-based features: Additional features
were generated based on pattern-matching rules
using regular expressions.

3 Word representation for neural models

We trained two variations of neural network mod-
els — a bidirectional LSTM (Graves and Schmid-
huber, 2005) model, and a bidirectional LSTM
model with a convolutional neural network (CNN)
layer (Kim, 2014). We also compared the per-
formance of both models using pre-trained GloVe
word embedding (Pennington et al., 2014) and us-
ing pre-trained Word2vec Twitter word embed-
ding (Godin et al., 2015). To evaluate the per-
formance of the models, we randomly split the
training set in a 80-20 ratio while maintaining the
original class proportions. The four models were
trained on 80% of the provided training data and
tested on the remaining 20% (validation data set).
Of the four models, the best model based on val-
idation accuracy was chosen as the final model,
which was the bidirectional LSTM model using
GloVe word embedding.

3.1 Features

To generate the input tweet representation for deep
learning models, we undertook the following addi-
tional steps:

(a) Part-of-speech tag embedding: To create a
part-of-speech (POS) embedding, we used NLTK
to first extract POS labels for each word. We then
converted each tweet into a sequence of POS tags
according to the token order and created the POS
tag embedding.

(b) First-character embedding: Similar to the
part-of-speech tag embedding, we extracted the
first character of each token in a tweet and gener-
ated four binary features depending on whether the
first character was an uppercase letter, a lowercase
letter, an integer, or a symbol / special character.

(c) Medical dictionary: Finally, we obtained a
MedDRA dictionary from Side Effect Resource,
SIDER (Kuhn et al., 2016, 2010) and used it to
create a one-hot vector representation for words
listed in SIDER, in addition to word embedding.

4 Description of runs

Once the pre-processing and input representation
were finalized, we trained the following three
models corresponding to the three submitted runs:

Run 1: As a baseline for our models, we trained
a linear kernel support vector machine classifier
with balanced class weights. The model was
trained over unigram features generated from the
lowercased tweet text. The individual feature
weights were computed using their inverse doc-
ument frequency over the training data set. The
classifier was built using scikit-learn.

Run 2: For the second run, we ran all tweets
through the pre-processing pipeline described in
Sec. 2. The tweet text was cleaned using the
modified Ekphrasis tool, features from MetaMap
and cTAKES were added, and the text was tok-
enized. Unigram and bigram features were instan-
tiated and were weighted by the inverse document
frequency in the training set. A linear kernel sup-
port vector machine classifier was trained with a
balanced class weight configuration.

Run 3: For the third run, we used a bidirectional
LSTM with categorical cross entropy loss func-
tion with RMSprop optimizer. We set the model
dropout layer probability to 0.2 in order to avoid
overfitting. Following (Vaswani et al., 2017), we
added an attention layer. Our output layer for
the classification task was a dense layer followed
by the softmax function. For the input represen-
tation, we employed a concatenation of the pre-
trained GloVe word embedding and the first char-
acter embedding. We padded each tweet to 29 to-
kens, which is the sum of the average tweet length
(` = 16) and two standard deviations of the tweet
lengths (σ = 6.5) in the 80% data set. We set it this
way because the maximum length from the 80%
of the data was too long (` = 130 tokens) to use
and the average length was too short to cover sub-
stantial amount of tweets. The model was trained
on the 100% of the provided data (both training
and validation sets) and run for 100 epochs.

5 Results

In all, 16 teams participated in Task 1 for a total of
43 runs. Table 1 summarizes the performance of
our three runs and the average over all runs sub-
mitted to the task. Runs 1 and 2 were better than
the average performance over recall and F1 mea-
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Run ID Pred pos (%) Prec Rec F1
Run 1 865 (18.9%) 0.452 0.625 0.525
Run 2 566 (12.4%) 0.565 0.511 0.537
Run 3 492 (10.8%) 0.555 0.436 0.488
Avg. task performance 0.535 0.505 0.502

Table 1: Performance of the submitted runs in terms of
count (and percentage) of predicted positive instances,
precision, recall, and F1 over the test set (n = 4,575).

sures, while runs 2 and 3 were better than the av-
erage run on precision. Run 2 was the best among
the three submitted runs. It identified 566 (12.4%)
tweets as positive with a precision of 0.565, re-
call of 0.511, and F1 measure of 0.537. All these
measures were better than the average measures
among runs submitted for Task 1.

6 Conclusion

Our approach for participating in the 2019
SMM4H Shared Task 1 was to develop a text
processing pipeline for tweets, focusing on pre-
processing, feature weighting, and training tra-
ditional feature-based and deep learning models.
Our runs performed above the average shared task
performance, and the best run achieved an F1 mea-
sure of 0.537. Additional runs are planned to
further analyze the performance of deep learning
models on this task.
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Abstract

This paper describes the system developed by
team ASU-NLP for the Social Media Mining
for Health Applications(SMM4H) shared task
4. We extract feature embeddings from the
BioBERT (Lee et al., 2019) model which has
been fine-tuned on the training dataset and use
that as inputs to a dense fully connected neu-
ral network. We achieve above average scores
among the participant systems with the overall
F1-score, accuracy, precision, recall as 0.8036,
0.8456, 0.9783, 0.6818 respectively.

1 Introduction

There has been an increase in the use of social me-
dia worldwide in recent years, which provides an
abundance of data available and an exciting oppor-
tunity to build and improve biomedical and pub-
lic health applications. The Social Media Min-
ing for Health Applications (SMM4H) Workshop
2019 (Weissenbacher et al., 2019) proposed four
tasks. We have focused on task 4, which was the
most interesting. The task is to classify whether
the tweet contains personal health mention as op-
posed to a general discussion of the topic. The
training data consisted of tweets related to the flu.
The system is evaluated on tweets related to flu
and a second health domain across two contexts.

1.1 Data Description

The organizers provided two datasets across dif-
ferent contexts, but both in the flu domain. The
first dataset had 1046 records of flu infection,
but around 1023 tweets were available for down-
load. The flu vaccination dataset had around 9800
records out of which only 6659 were available for
download. The combined dataset had 7682 tweets
in total.

∗ The author is advised by Dr. Chitta Baral at Arizona
State University.

1.2 Related Work

Much previous work has focused on tracking and
monitoring diseases on social media. Identify-
ing various health ailments in social media by
(Paul and Dredze, 2011) introduced a topic model
based system using LDA to discover health men-
tions. Previous work done on creating general-
izable classifiers have used traditional machine
learning based approaches. (Yin et al., 2015) have
developed a scalable system by training classifiers
on a dataset of 34 health topics. They created
a general health classifier using standard SVM
with an accuracy of 77 percent. More recently,
(Karisani and Agichtein, 2018) developed a sys-
tem called as WESPAD that combines lexical,
syntactic, word embedding-based, and context-
based features. The authors report that the system
can generalize from a few examples by automati-
cally distorting the word embedding space to de-
tect the accurate health mentions most effectively.

1.3 Preprocessing

The challenge in this task is to train a model on
one disease domain and test on another, so it is
important to make sure the model does not learn
disease-specific characteristics. One way to en-
sure this is to mask specific terms like flu or in-
fluenza mentions with an AILMENT tag. A list
of all flu-related terms was created using a pre-
trained Word2Vec model for Twitter (Godin et al.,
2015) to find similar terms to flu. The list was ex-
panded using human knowledge and ConceptNet1

(Speer et al., 2017). This list of terms was used to
mask all the flu mentions in the dataset.

Additionally we use the preprocessing library
Ekphrasis to clean the tweets. (Baziotis et al.,
2017).

1www.conceptnet.io
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• All @user mentions were replaced by @user
tag.

• All HTTP URLs were replaced by URL tag.

• Hashtags were preprocessed by removing the
# symbol and keeping the words.

• Emojis, dates, numbers, etc. are removed.

2 Experiments

Language models like BERT (Devlin et al., 2018)
and OpenAI GPT-2 (Radford et al., 2019) have
achieved state of the art performances in vari-
ous NLP tasks. Such models that are trained
on large datasets can be fine-tuned on smaller
datasets to achieve good scores on various NLP
tasks. BioBERT (Lee et al., 2019), a domain-
specific language representation model designed
for biomedical text, is built using BERT architec-
ture. Our system is built using transfer learning
approach by fine tuning on the given dataset using
the BioBERT model.

2.1 Fine-tuning

The fine-tuning process involves creating a train
and dev set in the format provided by the data pro-
cessor in the BERT/ BioBERT model. The BERT-
base uncased model is used for the experiments
2. The model is then trained on a sentence classi-
fication task end to end using the default param-
eter values provided by the authors. Fine-tuning
on smaller dataset results in a high variance in the
dev set accuracy. So the model with the best re-
sult on the dev set is selected after five iterations
of the fine-tuning process. This process is ap-
plied for fine-tuning both the BERT and BioBERT
v1.0 models. BioBERT produced a slightly better
model with the difference in dev set accuracies of
the final BERT and BioBERT fine-tuned models
was less than 2 percent.

We also experimented with fine-tuning with-
out doing any preprocessing on the tweets. As
expected, the performance decreased quite sig-
nificantly because BERT does token level mask-
ing and presence of URLs, hashtags, and @user-
mentions makes this token level prediction more
difficult.

2The BioBERT model v1.0 used in this system is also
based on the BERT-base model.

2.2 Dense Neural Network Model

The BERT model can also be used for extracting
features by fine-tuning the model and extracting
the fixed contextual representations of each token.
These features can be used in conjunction with
other features in a different model. Fine-tuning is
essential because the training set for these models
is quite different from the dataset for this task. It
helps to adjust the model weights that are closer to
the target domain.

The BERT/BioBERT model adds two tokens in
each input line - a CLS token in the beginning and
SEP token at the end. Two feature embeddings are
extracted in the following manner. In one case,
we mask the flu-mentions, and in the other, the
flu-mentions are kept as it is. The embedding for
the CLS token is extracted by concatenating the
weights of the last four layers of the BioBERT
model. In their paper (Devlin et al., 2018), the au-
thors state that concatenating last four layers gives
the best result.

These embeddings are used as the input layer
to a dense neural network with two hidden layers.
We tried using these embeddings separately and
also concatenated the two. The concatenated em-
bedding performed slightly better than just using
either of them separately. The final network has
a 6144-dimensional input layer followed by two
hidden layers of 512 and 128 dimensions, respec-
tively. A dropout layer is added between the two
hidden layers, and the hyperparameters are tuned
accordingly.

3 Results and Discussion

Since the test set contained tweets related to undis-
closed context we created a list of health concerns
discussed on Twitter from previous research work
(Daughton et al., 2018) (Paul and Dredze, 2014)
(Dalrymple et al., 2016) (Khatua et al., 2019) done
on exploring health-related tweets for analysis.
This extensive list was used to mask the tweets of
test set so that the masked embeddings make some
contribution to the classification.

The system we used for this task shows that
language models like BERT and BioBERT can
be fine-tuned on a small dataset of tweets and
still achieve promising results on test set where
the health concern was similar to the training set.
Transfer learning across different domains is still
a challenging task as it is evident from the results.

It is interesting given that these models are
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Model Acc F1 P R
BERT fine-tuned
without preproces-
sing

0.82 0.8 0.79 0.82

BERT fine-tuned 0.86 0.85 0.86 085
BioBERT fine-
tuned

0.87 0.85 0.87 0.85

BioBERT unm-
asked embeddings

0.90 0.89 0.94 0.86

BioBERT mas-
ked embedd-
ings

0.91 0.91 0.97 0.85

BioBERT mas-
ked and unmas-
ked embeddings

0.93 0.92 0.97 0.88

Table 1: Accuracy, F1 score, Precision and Recall re-
sults on training data using different models and em-
beddings.

Test set Acc F1 P R
health concern
overall

0.84 0.80 0.97 0.68

health concern
condition 1

0.92 0.92 0.98 0.86

health concern
condition 2

0.69 0.51 0.91 0.35

health concern
condition 3

0.80 0.59 1 0.42

Table 2: Final Accuracy, F1 score, Precision and Re-
call scores on the test set for the best performing run
submitted.

trained on Wikipedia or biomedical text that how
well they perform on tweets as tweets often con-
tain misspellings, sarcasm, and slangs. It would
also be interesting to see if the model can perform
better if we had a BERT model trained on tweets
or if we had a larger training dataset. This model
could possibly be further improved by using addi-
tional data and the use of other textual and seman-
tic features combined with the embeddings from
the BioBERT model or trying different architec-
tures.
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Abstract
This paper describes the system that team
MYTOMORROWS-TU DELFT developed for
the 2019 Social Media Mining for Health Ap-
plications (SMM4H) Shared Task 3, for the
end-to-end normalization of ADR tweet men-
tions to their corresponding MEDDRA codes.
For the first two steps, we reuse a state-of-the-
art approach, focusing our contribution on the
final entity-linking step. For that we propose
a simple Few-Shot learning approach, based
on pre-trained word embeddings and data from
the UMLS, combined with the provided train-
ing data. Our system (relaxed F1: 0.337-
0.345) outperforms the average (relaxed F1
0.2972) of the participants in this task, demon-
strating the potential feasibility of few-shot
learning in the context of medical text normal-
ization.

1 Introduction

Team MYTOMORROWS-TU DELFT participated
in subtask 3 of the 2019 Social Media Mining
for Health Applications (SMM4H) (Davy Weis-
senbacher, 2019) workshop, which is an end-to-
end task. The goal is, given a tweet, to 1) au-
tomatically classify tweets containing an adverse
drug reaction mention; 2) extract the exact ADR
mention; 3) normalize the extracted ADR to its
corresponding Medical Dictionary for Regulatory
Activities (MEDDRA) code. The task is evaluated
based on strict and relaxed F-score, precision and
recall.

From an NLP perspective, this task poses a sig-
nificant challenge as there is a large gap between
the informal language used in social media and the
formal medical language. Moreover, there is an
absence of large annotated datasets, and datasets
which are available often suffer from class im-
balance. Illustrating this, Figure 1 provides an
overview of the number of samples per class in the
SMM4H task 3 dataset.

Figure 1: Available training samples per the medical
concept present in the training data

Our end-to-end system consists of existing
state-of-the-art for the first two steps. We fo-
cus our efforts on the third -normalization- step,
which we formulate as a Few-Shot Learning prob-
lem (FSL), following the definition by Wang and
Yao (Wang and Yao, 2019). In the following sec-
tions, we describe (1) the datasets that we worked
on, (2) our approach in more detail and finally (3)
our results and conclusions.

2 Data

2.1 Datasets
With the three subtasks, three manually anno-
tated datasets were provided. All datasets contain
tweets containing an ADR (positive) and without
an ADR (negative). A brief overview of these
datasets is provided in Table 1, but for more con-
text we refer to (Davy Weissenbacher, 2019).

2.2 Preprocessing
The provided dataset for subtask 3 consists of
ADR mentions, annotated with their correspond-
ing MEDDRA code. In the hierarchy1 of MEDDRA,

1https://www.meddra.org/how-to-use/
basics/hierarchy
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Task Training data
#Positives #Negatives

1 2374 23298
2 1212 1155
3 1212 1155

Table 1: Statistics of the training data used for task 1, 2
and 3

one Preferred Term (PT) is linked to one or more
Lower Level Terms (LLTs) which are more spe-
cific descriptions of the related concept.

The provided dataset contains a mix of PTs and
LLTs, mapping the 1212 ADR mentions to more
than 500 different codes. Observing that the eval-
uation of the workshop task is performed on PT
level, we map all annotations to the correspond-
ing PT, as a preprocessing step. After this pre-
processing step, the 1212 training mentions are
mapped to 319 MEDDRA codes. Figure 1 provides
an overview of the class distribution before and af-
ter preprocessing.

2.3 Prior Knowledge

In the training set for subtask 3, 149 out of the
319 MEDDRA codes that are present in the dataset
(46.7%) have just one available training sample,
while 254 (79.6%) have less than five training
samples. To deal with the scarcity of samples,
we create a prior knowledge dataset considering
the 319 MEDDRA PTs in the training data. This
dataset consists of the preferred names provided
by the MEDDRA vocabulary and their correspond-
ing preferred names in the Consumer Health Vo-
cabulary (CHV), as mapped by the UMLS. The
resulting dataset cointains 1,854 preferred names
for the 319 MEDDRA codes.

3 Method

Our contributions focus on the normalization step,
linking ADRs to their corresponding MEDDRA

code. However, to be able to perform an end-
to-end evaluation, we use existing state-of-the art
techniques for subtask 1 (Sarker and Gonzalez,
2015) and 2 (Cocos et al., 2017), which we train
on the workshop datasets 2.

The state-of-the-art approach for medical con-
cept normalization in user-generated text is deep-

2For task 1, we trained using the suggested settings, as-
signing 3:1 class weight favouring the ADR class. For task 2,
we trained using the pre-trained-fixed setting.

Figure 2: Accuracy per number of training samples.

neural networks (Limsopatham and Collier, 2016)
which outperform traditional methods, when suf-
ficient training data are available.

We trained both the CNN and RNN described
by (Limsopatham and Collier, 2016) on the dataset
for task 3, finding that the RNN has the best per-
formance. On closer observation (and not surpris-
ingly), we found that the accuracy of the RNN
drops when fewer samples are available in the
training data, as depicted in figure 2.

To deal with this drop in performance, we pro-
pose an embedding-based classifier that compares
the ADR extracted mention to its 1-Nearest Neigh-
bour on a vector space containing a) representa-
tions of the ADR mentions in the training data and
b) representations of the prior knowledge dataset.
Our intuition is that the embedding-based binary
classifier would perform better on classes with a
low number of samples, whereas an RNN would
perform well on classes with higher sample num-
bers.

To create our embedding-based classifier we
employ the pretrained Google News Word2Vec
model (Mikolov et al., 2013). Using this model,
we create vector representations for the ADR men-
tions in our training data3. Similarly we create
vector representations for the mentions gathered in
our prior knowledge dataset. At test time, we em-
ploy the same Word2Vec model to create a vector
representation of the unseen ADR mention. Us-
ing a 1-Nearest Neighbour (with cosine similarity
as distance metric), we then select the correspond-
ing MEDDRA concept. Figure 2 shows that this
model indeed seems less sensitive to low sample
numbers.

3for mentions of more than one token we added the vec-
tors
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Technique Relaxed Strict
Precision Recall F-score Precision Recall F-score

RNN 0.318 0.337 0.327 0.232 0.246 0.239
FSL 0.336 0.355 0.345 0.237 0.252 0.244

RNN+FSL (1) 0.328 0.347 0.337 0.23 0.244 0.237
RNN+FSL (2) 0.331 0.35 0.34 0.235 0.249 0.242
Task 3 AVG 0.29 0.311 0.297 0.205 0.224 0.211

Table 2: Relaxed and strict Precision/Recall/F-score for RNN, FSL, RNN+FSL (1) and (2) and the average score
of all the participated team in task 3 (Task 3 AVG)

For our experiments, we use 4 systems: (1)
RNN: the RNN proposed by (Limsopatham and
Collier, 2016), trained on the both prior knowl-
edge and the training set (which provides the best
performance), (2) FSL: our 1-NN based on a com-
bination of prior knowledge and the training set,
(3) RNN+FSL (1): an ensemble of the RNN
trained on only the training set and the FSL based
on training + prior knowledge, and (4) RNN+FSL
(2): an ensemble of the RNN trained on the train-
ing set and prior knowledge and the FSL based on
training + prior knowledge. For our ensembles, we
trust the model with the highest confidence (we
used the cosine similarity for the 1-NN model to
represent confidence) in case of disagreement.

4 Results

Our results are summarized in Table 2. Despite the
fact that the RNN+FSL performed better in our de-
velopment set, it did not generalize in the test data.
On the test and evaluation data, FSL outperformed
all the other techniques and achieved a 0.345 re-
laxed F-score and a 0.244 strict F-score which are
above the average performance achieved in this
task by all participants (i.e. Task 3 AVG).

5 Conclusions

In this paper, we describe our approach in sub-
task 3 of the SMM4H shared task for normaliza-
tion of Adverse drug reaction mentions in Twitter
posts. Our few-shot learning approach performs
above the average in this task and hence we be-
lieve it to be a promising approach in cases where
the amount of training data is limited.

As future work, we will focus on the discrim-
ination between the ADRs that belong to one of
the ’commonly seen cases’ (classes with sufficient
training data) from the ’rare cases’ (classes with

insufficient training data). This will allow us to
efficiently combine a deep neural network with a
few-shot learning approach into a more robust sys-
tem that successfully links ADR tweet mentions
into its MEDDRA codes.
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Abstract 

In this study, we describe our methods to 

automatically classify Twitter posts 

conveying events of adverse drug reaction 

(ADR). Based on our previous experience 

in tackling the ADR classification task, we 

empirically applied the vote-based under-

sampling ensemble approach along with 

linear support vector machine (SVM) to 

develop our classifiers as part of our 

participation in ACL 2019 Social Media 

Mining for Health Applications (SMM4H) 

shared task 1. The best-performed model 

on the test sets were trained on a merged 

corpus consisting of the datasets released 

by SMM4H 2017 and 2019. By using VUE, 

the corpus was randomly under-sampled 

with 2:1 ratio between the negative and 

positive classes to create an ensemble using 

the linear kernel trained with features 

including bag-of-word, domain knowledge, 

negation and word embedding. The best 

performing model achieved an F-measure 

of 0.551 which is about 5% higher than the 

average F-scores of 16 teams. 

1 Introduction 

Our team participated in the Social Media Mining 

for Health Applications (SMM4H) shared Task 1, 

which focus on the task of automatic classification 

of adverse effects mentions in tweets to 

distinguish tweets mentioned adverse effect (AE) 

from others(Weissenbacher et al., 2019). 

2 Methods 

AEC (Adverse Effect Classification) task is a 

typical classification problem. We used support 

vector machine (SVM) with the linear kernel to 

develop our classifiers. The training and validation 

sets released by the SMM4H 2019 organizers 

include 24,861 and 5,000 tweets, respectively. The 

organizers provided the entire training set but the 

validation set was downloaded by ourselves using 

the Twitter API. Unfortunately, only 2,887 tweets 

in the validation set can be downloaded from the 

Twitter website. In addition, we included the 

corpus released in AMIA-SMM4H 2017 for the 

same purpose, which contains 11,564 tweets 

(SarkerandGonzalez-Hernandez, 2017). We 

merged the two datasets and filtered out duplicate 

tweets to create a merged corpus for our model. 

The merged corpus contains 3,423 positive tweets 

and 31,858 negative tweets.  

The imbalance ratio for the compiled corpus is 9.3, 

which is highly imbalanced. In order to develop 

classifiers with reliable performance, we 

implemented a vote-based under-sampling 

ensemble (VUE) technique Wang et al. (2018). 

VUE exploits all training examples in majority 

(negative) cases with under-sampling for creating 

an ensemble of SVM classifiers. It samples several 

subsets from the negative tweets without 

replacement and then create an ensemble by using 

each subset along with the minority cases 

(positive). The prediction can be determined by 

taking a majority vote among the separately 

created classifiers. 

BIGODM System in the Social Media Mining for  

Health Applications Shared Task 2019 
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In order to extract features for training our 

classifiers, we first pre-processed tweets to replace 

URLs, dosages and Twitter specific characters with 

the corresponding symbols, and modified the 

numeral parts in each token to one as proposed in 

our previous work Dai et al. (2016). The 

preprocessed tweet was then processed by a tweet 

tokenizer (Owoputi et al., 2013) to generate tokens. 

Follow by the above step, each token was 

processed by Hunspell to detect spelling errors. If 

a token is considered to be misspelled, the first 

recommended correction is included as an 

alternative term for the token. Finally, we 

lowercased all tokens and used the Snowball 

stemmer(Porter, 2001) to perform stemming 

without removing any stop words. 

After the above steps, we extracted the following 

features to train our SVM models:  

 
 Bag-of-word features: we extracted unigram and 

bigram with TF-IDF (Term Frequency-Inverse 

Document Frequency) as the weighting scheme. 

 Domain knowledge features: The presence of 
adverse drug reaction (ADR) or drug mentions 

were engineered as two binary features with the 

value of either 0 or 1. The occurrences of ADR 

and drug names were recognized by using the 

ADR mention recognizer developed in our 

previous work Dai et al. (2016) and Wang et al. 

(2018). 

 Negation features: The feature set uses three flags 

to indicate the occurrence of an ADR mention is 

missing, positive or negated. If a tweet contains 

ADRs, the NegEx algorithm (Chapman et al., 

2001) is employed to determine whether the 

occurrence is negated. 

 Word embedding features: The word embedding 

features proposed in our previous work Wang et 

al. (2018) was developed. The features were 
generated by taking the mean across all tokens’ 

embedding represented as a 400-dimensional 

vector based on the pre-trained tweet WE model 

released by (Godin et al., 2015). 

3 Results 

Figure 1 show the results of the 10-fold cross 

validation (CV) on the training set of the AEC task. 

The standard precision (P), recall (R) and F-

measure (F) are used to report the performance. 

Configuration 1 is the VUE model trained with the 

developed features. After submitting the results, 

we developed configuration 2, which was a 

baseline model with the same features but didn’t 

apply any imbalanced techniques. The above two 

configurations of the developed classifiers were 

trained on the following three corpora: 

1. SMM4H 2017 corpus 

2. SMM4H 2019 corpus 

3. SMM4H 2017+SMM4H 2019 corpus 

During the participating the AEC task, we used 

configuration 1 with the above three corpora to 

conduct ablation experiments and submitted three 

runs corresponding to the first three configurations 

shown in Figure 1. The experimental results show 

that the VUE method has better recall but lower 

precision. The F-scores of VUE are better than 

baseline on the first two corpora. It is interesting to 

see that the baseline configuration performs better 

than VUE on the merged corpus. 

4 Conclusion 

In this paper, we briefly describe our systems 

developed for the SMM4H 2019 AEC task. Our 

best submitted run was based on the VUE model 

trained on a merged corpus. However, we noticed 

that by using the merged corpus, the baseline 

model which didn’t exploit imbalanced technique 

performs better than that of VUE on the 10 fold CV. 

We will conduct error analysis to investigate the 

interesting results and compare the performance of 

other advanced imbalance techniques developed in 

our previous work Dai and Wang (2019). 

 
Figure 1: 10 fold CV on the training set of the AEC 
task. 
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Abstract 

 
This paper describes the models used by 
our team in SMM4H 2019 shared task 
(Weissenbacher et al., 2019). We submitted 
results for subtasks 1 and 2. For task 1 
which aims to detect tweets with Adverse 
Drug Reaction (ADR) mentions we used 
ELMo embeddings which is a deep 
contextualized word representation able to 
capture both syntactic and semantic 
characteristics. For task 2, which focuses on 
extraction of ADR mentions, first the same 
architecture as task 1 was used to identify 
whether or not a tweet contains ADR. Then, 
for tweets positively classified as 
mentioning ADR, the relevant text span 
was identified by similarity matching with 
3 different lexicon sets.  

1 Introduction and task description 

Twitter is an ever-growing store of daily 
generated data. Given the huge number of tweets 
talking about drug-related issues, social media 
mining is applicable to areas such as 
pharmacovigilance (Lee et al., 2017; Nikfarjam et 
al., 2015;  Ginn et al., 2014; Freifeld et al., 2014; 
Bian et al., 2012). 

Tasks 1 and 2 focuses on detecting tweets with 
ADR and identifying location of mentions. We are 
provided with 25,672 tweets (2,374 positive and 
23,298 negative) and approximately 5,000 
unlabeled tweets as a validation set. For the second 
task, a subset of 2,367 tweets from the first task was 
provided (1,212 positive and 1,155 negative). The 
evaluation data comprises 1,000 tweets (~500 
positive, ~500 negative).  

                                                
1 https://www.fda.gov/drugs/drug-approvals-and-
databases/drugsfda-data-files 

 

 

2 Preprocessing 

Stop words and punctuations were removed 
from tweets and all drug names found in the FDA’s 
Approved Drug Products list1 were replaced by the 
word “drug”. Word stemming and tokenization 
were performed using nltk python library. 

3 Methods  

3.1 task 1 

For this task, we used 4 deep learning models. 
The architecture of the first 3 models were 
relatively similar, differing in the embedding layer.  

The first model involves character embedding 
with dimension equal to the total number of unique 
characters in training set including emojis. The 
output of this layer is fed to a series of 6 
convolutional neural network layers (CNNs) with 
ReLU activation. Each CNN used 256 filters, with 
a filter size of 7 for the first two layers and 3 for the 
rest. Max pooling with size 3 was used for the first 
two and last CNNs. The CNNs’ output was fed into 
a bidirectional LSTM (Bi-LSTM) with 2*200 
units, whose output was flattened to feed into two 
dense layers. We used two fully connected layers 
with 1024 units each, ReLU activation, and 
dropout of 0.5. Finally, we used a dense layer with 
size two and softmax activation. We used Adam as 
the optimizer and binary cross-entropy as the loss 
function. The model was trained with 10 epochs 
and batch size of 128.  

The second architecture was identical to the first, 
except the first layer was a word embedding using 
GloVe2 pre-trained on Twitter data with embedding 
dimension of 100.  

 
2 https://nlp.stanford.edu/projects/glove/ 
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The third model was a concatenation of word 
and character embeddings. We combined the Bi-
LSTM output of the first and second models and 
then applied dense layers as before.  

After building the above models, we tried to 
improve the outcomes by adding layers and 
features. We used a multi-head self-attention with 
an attention width of 15 and ReLU activation. We 
also explored the effect of sentiment features. Since 
the data classes were imbalanced, we tried to make 
class sizes equal by downsampling and 
upsampling. In downsampling, samples from the 
majority class (tweets without ADR mentions) 
were randomly sampled without replacement. In 
upsampling we did the opposite, adding samples 
from the minority class with replacement. None of 
these strategies substantially altered our baseline 
results.  

In our final model, we used ELMo (Peters et al., 
2018) (Embeddings from Language Models) with 
1024 dimensions. In contrast to traditional word 
embeddings such as GloVe and word2vec, ELMo 
assigns each word to a vector as a function of the 
entire sentence containing that word. Therefore, the 
same word can have different embeddings 
depending on its context. Since ELMo already 
captures character-level information under the 
hood, we decided to encircle the complexity inside 
the embedding layer and used only two additional 
dense layers with 256 and 2 units, using ReLU and 
softmax activations, respectively. 

3.2 Methods for task 2  
To identify the text spans of ADR mentions, first 

the model developed for task 1 was used to 
determine whether each tweet mentions an ADR. 
Then the similarity between each tweet and 3 
different lexicon sets (Nikfarjam et al.3, MedDRA 
(Medical Dictionary for Regulatory Activities)4, 
and CHV (Consumer Health Vocabulary) 5 ) was 
measured. 

To calculate similarity, each tweet and lexicon 
was converted to a set of word stems. Since 
similarity measures such as cosine or Jaccard are 
highly affected by other non-ADR words, we 
defined similarity as the percent of word stems of a 
lexicon that exist in a tweet. For each tweet, only 
lexicons with a 100% match were kept.  

                                                
3  http://diego.asu.edu/Publications/ADRMine.html 
4 https://www.meddra.org/how-to-use/support-
documentation/english 
 

4 Results, discussion, and next steps 

Among all architectures, the best results came 
from ELMo embedding (F1 = 0.64). Therefore, we 
only submitted ELMo results with 5, 10, and 15 
epochs. The model performed less well for the 
validation set (F1 = 0.41), below the average F1 
score of 0.50 among all teams, which might result 
from overfitting. Using more sophisticated 
architecture after the embedding layer might 
improve performance.  

Since task 2’s performance depends strongly on 
task 1, we also scored lower on this task compared 
to the team average (0.40 vs. 0.54). Since ADR 
phrases and tweets do not always lexically match, 
approaches such as named entity recognition 
(NER) might perform better. 
 

Other approaches to improve performance: 
Task 1: 
• Try other embeddings such as BERT 

• Experiment with more complex 
architectures after the ELMo layer 

• Add part of speech (POS) tags  

• Add topic modeling and tweet cluster 
features 

Task 2: 
• Search Twitter for keywords from lexicon 

sets to augment the training set with new 
tweets which mention ADRs 

• Try NER 
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Abstract

CLaC labs participated in Task 1 and 4 of
SMM4H 2019. We pursed two main objec-
tives in our submission. First we tried to use
some textual features in a deep net framework,
and second, the potential use of more than one
word embedding was tested. The results seem
positively affected by the proposed architec-
tures.

1 Introduction

The ongoing SMM4H challenge tasks define
evolving challenges defined on Twitter data (Weis-
senbacher et al., 2019). The intention of epidemi-
ologists is to detect mentions of health issues early
on Twitter. One of the challenges is to detect
real reports of personally experienced health is-
sues and to distinguish them from generalizations,
hypotheticals, news, and institutional advice.

Task 1 of SMM4H 2019, “Automatic classifica-
tion of adverse effects mentions in tweets”, asks to
distinguish tweets that report an adverse drug ef-
fect (AE) from those that do not. Training data
consists of 25,672 tweets with imbalanced dis-
tribution: 2,374 positive and 23,298 negative la-
bels. An example of an adverse effect mention in
a tweet is:

saphris gives me a mad appetite omg i
hate this

Task 4 is on “Generalizable identification of
personal health experience mentions”. Two spe-
cialized training sets were released , “flu vacci-
nation” and “flu infection”, comprising approxi-
mately 6,200 and 1,100 tweets. Task 4 training
data was balanced. A sample positive tweet from
this task is:

I must say that flu shot packed a punch.
#WorstInoculationEver

The CLaC submission to SMM4H 2019 had
three general goals: first, to experiment with ar-
chitectures that can address both tasks, second, to
compare different word embeddings for their indi-
vidual, but also their combined effectiveness, and
third, to test whether we can augment the basic
word vectors input with additional local and global
knowledge from word lists and text preprocessing.
The experiments remain inconclusive, due to an
error in our submission pipeline.

2 Word embeddings

We experimentd with three types of word embed-
dings: BERT ( a Transformer-based Bidirectional
representation) (Devlin et al., 2018) (BERT-Base,
Uncased)1; Word2Vec (Mikolov et al., 2013)
trained on Sentiment140 2 as well as training
data from SMM4H 2018 and 2019 (all tasks) us-
ing Gensim package (Řehůřek and Sojka, 2010);
and Glove word embeddings, pretrained on tweets
(Pennington et al., 2014).

3 Textual features

Use of textual features as external source of
knowledge has recently been the topic of interest
(Sennrich and Haddow, 2016), (Ebert et al., 2015).
We preprocess the tweets using the ANNIE Twit-
ter Tokenizer (Cunningham et al., 2002), the Hash-
tag Tokenizer (Maynard and Greenwood, 2014),
and the Stanford Part-Of-Speech Tagger with a
model trained on tweets (Toutanova et al., 2003).
We determine negation and modality spans using
(Rosenberg et al., 2012). We use the Diego Lab
ADR wordlist (Nikfarjam et al., 2015) to annotate
terms appropriate for negative effects and health
concerns.

1https://github.com/google-research/
bert

2http://help.sentiment140.com/
for-students
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User mentions (@) were removed from the
tweets. URLs are annotated, as are the first per-
son personal pronouns I, my, mine.

Negation and modality The span of negation
and modality is determined using (Rosenberg
et al., 2012) and projected onto the token represen-
tation: tokens present in the span of a negation or
modality are indicated by a binary flag appended
to the respective word vector (see Figure 1). The
presence of negation and/or modality might reflect
uncertainty in a given tweet and it may not convey
facts.

URL Tweets about a personal experience do not
usually include a URL. Specifically for Task 4,
80% of the tweets including a URL are negative. A
binary URL feature encodes presence or absence
of a URL in the tweet.

POS embedding We experimented with the no-
tion of part of speech embeddings to address spar-
sity. Here, a representation for each POS tag is
obtained using Word2vec by training on a POS
tagged corpus (instead of words themselves). We
use the Penn tree bank tag set (36 tags) with a win-
dow size of 5.

ADR lexicon Terms from the Diego Lab adverse
drug reaction lexicon (Nikfarjam et al., 2015) are
indicated as a binary, tweet level feature, in order
to increase recall.

First person personal pronoun First person
pronouns I, my, and mine are indicated at token
level by a separate binary feature. In both tasks, a
personal experience is more likely to be a positive
sample, therefore, enhancing recall.

I should n’t have gotten that flu shot
W2V . . . . . . . . . . . . . . . . . . . . .
Neg. 0 0 0 1 1 1 1 1
Mod. 0 0 1 1 1 1 1 1
1st 1 0 0 0 0 0 0 0

Figure 1: Feature vector encoding

3.1 System architecture
Our system has two parallel branches and is
trained in two stages. One branch works only
with BERT word embeddings, the other branch
works on our concatenated token level features
plus word embeddings (Word2Vec/Glove) shown
in Figure 1. The input vectors of each branch are
fed into Bi-LSTMs and are followed by attention
and finally two softmax decision neurons.

After optimizing each branch with binary cross-
entropy loss, the parameters of the networks are
frozen for the second stage of training. We train
an SVM on the input vector that concatenates
class probabilities provided by the softmax neu-
rons with the tweet level features, ADR and URL.

The network is optimized using the Adam opti-
mizer (Kingma and Ba, 2014) with learning rate
lr = 0.001 for 5 epochs (for both tasks). For
Task 1, the class weights of cwpos = 1 and
cwneg = 0.4 are used as thresholds for posi-
tive and negative samples respectively. For the
SVM, the RBF kernel is used with γ = 0.001.
The hyper-parameters have been chosen by cross
validations. The first stage deep net learning is
implemented using Keras 3 and the second stage
SVM classification is implemented using Scikit-
learn (Pedregosa et al., 2011).

4 Development phase

During the development phase we considered a
number of different features and performed an ab-
lation study with more than 130 different configu-
rations. For this phase, 22,000 and 3,672 samples
were considered for training and test sets respec-
tively.

An interesting observation was the different be-
havior of word embeddings in the presence of
language features. For Task 1, Glove embed-
dings usually performed higher, whereas in Task 4,
Word2Vec embeddings were generally superior.
In Task 1, adding textual features to Word2Vec
embeddings resulted in a decrease in performance,
however, adding the same features to Glove re-

3https://keras.io

Table 1: Development results for Task 1. Submitted
configurations are indicated by *

Prec. Rec. F1
Glove 0.41 0.73 0.52
BERT 0.56 0.50 0.53
Glove+ADR 0.46 0.67 0.55
Glove+BERT 0.49 0.64 0.55
Glove+Mod+BERT 0.53 0.57 0.55
Glove+Neg+BERT 0.48 0.61 0.54
Glove+Neg+Mod+BERT 0.58 0.55 0.56
Glove+BERT+ADR 0.53 0.64 0.58
Glove+Neg+Mod+ADR 0.49 0.65 0.56
* Glove+Neg+Mod+ADR+BERT 0.54 0.64 0.59
W2V 0.42 0.65 0.51
W2V+ADR 0.39 0.67 0.49
* W2V+BERT 0.59 0.53 0.56
W2V+1st 0.48 0.62 0.54
* W2V+1st+BERT 0.52 0.63 0.57
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sulted in increased performance. This effect was
small, but persistent across ablation of the other
features, and we concluded that the different be-
haviors of the embedding vectors could be lever-
aged in an ensemble situation.

For Task 1, the ADR word list generally in-
creased recall in our ablation studies, demonstrat-
ing that domain specific gazetteer lists can ef-
fectively supplement training data. In combina-
tion with Glove, textual features such as nega-
tion and modality increased precision, but di-
minished recall. Adding ADR to this combina-
tion (Glove+Neg+Mod+BERT) compensates for
the drop in recall without significantly decreas-
ing precision. The results also corroborates the
hypothesis that the 1st feature enhances the re-
call (W2V+1st and W2V+1st+BERT compared to
W2V and W2V+BERT).

Looking at the confusion matrix reveals that the
model (specifically Glove+BERT) associates drug
mentions in the subject position with positive la-
bels, incurring a considerable amount of false pos-
itives, see for instance:

this lozenge has my sore throat fading

paxil makes you susceptible to sunburns?

The ADR feature (Glove+ADR+BERT) re-
duces these false positives while it causes other
instances of false positives. As mentioned before,
ADR generally increases recall, but in some con-
figurations with Glove it has increased precision
which is interesting and we will study it in more
detail.

Modality reduces false positives and is the most
effective token level textual feature. Two instances
of false positives (in Glove+BERT) which are cor-
rectly classified in the presence of modality are:

Table 2: Development results for Task 4. Submitted
configurations are indicated by *

Prec. Rec.
F1
W2V 0.70 0.88 0.78
BERT 0.78 0.82 0.80
W2V+BERT 0.76 0.85 0.80
W2V+Mod 0.72 0.87 0.79
W2V+POS 0.76 0.81 0.79
W2V+URL 0.76 0.84 0.80
* W2V+URL+BERT 0.83 0.79 0.81
W2V+1st+URL 0.77 0.83 0.80
* W2V+1st+URL+BERT 0.81 0.81 0.81
W2V+Mod+POS+URL 0.78 0.85 0.81
* W2V+Mod+POS+URL+BERT 0.81 0.84 0.83

i’m sucha psycho when i study already if i
ever took adderall i would probably explode

seroquel can have potential fatal effects
when taken & being in direct sunlight for
extended periods. can i get you a bottle a
tanning bed?

When combined with Glove, we observed that
the negation feature degrades the F1 score, how-
ever, it inter-plays well with the modality feature.

For Task 4, combining textual features with
Word2Vec increases precision. The URL feature
by itself increases precision even more, but incurs
a larger drop in recall.

5 Evaluation phase

Task 1 We submitted three configurations to
Task 1: Glove with our textual features, W2V
alone, and W2V with the first person pronoun fea-
ture (all used in an ensemble with BERT). These
were not our top performing configurations during
development, rather we included W2V to bridge
to Task 4 and we included two runs with differ-
ent textual features and one without. The perfor-
mance of our system in the competition is pro-
vided in Tables 3, the competition performance of
all three models is commensurate with our devel-
opment results with ±2% in F1 measure. More-
over, the three configurations performed near iden-
tically and all three were above the competition
mean.

It is interesting to note that the Word2Vec em-
beddings trained on Sentiment140 data proved as
effective on this data set as Glove with the tex-
tual features, in contrast to our development ex-
periments. We interpret the fact that W2V in an
ensemble with BERT lies above the competition’s
mean to confirm the importance of our genre se-
lection for Word2vec training.

Table 3: CLaC competition results for Task 1

Prec. Rec. F1
W2V+ BERT 0.54 0.60 0.57
Glove+Neg+Mod+ ADR+BERT 0.52 0.60 0.56
W2V+ 1st+BERT 0.51 0.59 0.55
Competition mean 0.53 0.50 0.50

Task 4 Our three submissions for Task 4 were
all based on Word2vec and the URL feature. Re-
sults, however, diverge drastically from our devel-
opment runs, where runs scored between 75-85%
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Table 4: CLaC competition results for Task 4

Prec. Rec. F1
Condition 1

W2V+Mod+POS+URL+BERT 0.84 0.32 0.47
W2V+1st+URL+BERT 0.83 0.42 0.56
W2V+BERT+URL 0.75 0.29 0.42

Condition 2
W2V+Mod+POS+URL+BERT 0.42 0.19 0.26
W2V+1st+URL+BERT 0.44 0.12 0.20
W2V+BERT+URL 0.44 0.12 0.20

Condition 3
W2V+Mod+POS+URL+BERT 0.71 0.26 0.38
W2V+1st+URL+BERT 0.62 0.26 0.37
W2V+BERT+URL 0.62 0.26 0.37

Overall
W2V+Mod+POS+URL+BERT 0.70 0.28 0.40
W2V+1st+URL+BERT 0.75 0.29 0.42
W2V+BERT+URL 0.74 0.33 0.46
Competition mean 0.90 0.58 0.70

F1 measure. The official results in Table 4 demon-
strate.

6 Conclusions

We participated in the SMM4H 2019 shared task
with two major ideas. First, we tried to use textual
annotations in a deep net architecture and specif-
ically proposed encodings for negation, modality,
and use of a gazetteer list. Our observations during
the development phase showed that textual fea-
tures are effective for enhancing the performance
of the system but that standard embedding vectors
without additional textual features give compara-
ble performance on these datasets.

Our second idea was to have more than one type
of embedding in our system to have an ensem-
ble and try to aggregate the predictions using a
support vector machine rather than using a simple
majority voting. This worked well, but again, on
the datasets of this challenge, the computational
overhead seems questionable for the degree of im-
provement achieved.
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Abstract

In this paper, we present our approach and the
system description for the Social Media Min-
ing for Health Applications (SMM4H) Shared
Task 1,2 and 4 (2019). Our main contribu-
tion is to show the effectiveness of Transfer
Learning approaches like BERT and ULM-
FiT, and how they generalize for the clas-
sification tasks like identification of adverse
drug reaction mentions and reporting of per-
sonal health problems in tweets. We show
the use of stacked embeddings combined with
BLSTM+CRF tagger for identifying spans
mentioning adverse drug reactions in tweets.
We also show that these approaches perform
well even with imbalanced dataset in compar-
ison to undersampling and oversampling.

1 Introduction

Drugs administered for alleviating common suf-
ferings are the fourth biggest cause of death in
US, following cancer and heart diseases (Giaco-
mini et al., 2007), making it one of the most im-
portant medical problems for the human society.
While heart diseases and cancer are commonly re-
ported and studied, adverse reactions to drugs ei-
ther goes unreported or is confused or lost within
other narratives. While it is the onus of the govern-
ment and the society as a whole to tackle the first
task, the second one is an overwhelmingly compu-
tational task.

With the advent of universal internet and smart-
phones, reportrage of incidents is generally in-
creasing, thanks to a host of social media plat-
forms like Twitter, Facebook, Instagram, etc.
Hence, this unique situation presents a challenging
as well as rewarding opportunity to improve our
current computational systems for dealing with the
existing incidents more sensibly and increase their
reportage with the use of electronic media.

With this motivation, four shared tasks were
conducted as part of Social Media Mining for
Health Applications (SMM4H) Workshop 2019
(Weissenbacher et al., 2019). Our team partic-
pated in Tasks - 1, 2 and 4 of the workshop. The
problems for these tasks were:
Problem Definition Sub-task 1: Given a labeled
dataset D of tweets, the objective of the task is to
learn a classification/prediction function that can
predict a label l for a given tweet t, where l ∈
{reporting adverse effects of drugs (ADR) - 1,
no adverse effects of drugs (non-ADR) - 0}.

Example of tweets mentioning adverse drug re-
actions:
• I feel siiiiiiiiiiiiiiick. Damn you venlafaxine.
• Who need alcohol when you have gabapentin
and tramadol that makes you feel drunk at
12oclock.
Problem Definition Sub-task 2: The motive of
this sub-task is to first discern ADR tweets from
the non-ADR ones and then identify the span of a
tweet where an adverse drug effect is reported.

An example of a span from a tweet that repre-
sents the mention of adverse drug reactions:
• losing it. could not remember the word power
strip. wonder which drug is doing this memory
lapse thing. my guess the cymbalta. #helps, where
not remember is the adverse drug reaction that
needs to be identified and extracted from the tweet,
which is most likely caused by the intake of the
drug named cymbalta.
Problem Definition Sub-task 4: Given a labeled
dataset D of tweets, the objective of the task is to
learn a classification/prediction function that can
predict a label l for a given tweet t, where l ∈
{reporting personal health experience - 1,
no mention of personal health experience - 0}.

Example of tweets reporting personal health ex-
perience mentions:
• This flu shot got my arm killing me.

127



• man i am so sick i feel terrible i got all the symp-
toms of the swine flu i am scared.
Our Contributions: Towards the objectives of the
tasks as described above, we present some of our
contributions in this paper:

1. We train ULMFit and BERT models for
Tasks 1 and 4, and show that these models
are agnostic to the effects of undersampling
and oversampling, given a highly imbalanced
dataset.

2. We make an initial attempt in studying the ef-
fectiveness of transfer learning using ULM-
Fit and BERT for the problems in the domain
of health care pertaining to the shared tasks.

3. We show the use of stacked embeddings com-
bined with BLSTM+CRF tagger for identify-
ing spans mentioning adverse drug reactions
in tweets.

4. We also show the use of combining pre-
trained BERT embeddings with Glove em-
beddings fed to a BLSTM text classifier for
sub-task-1 and sub-task-4.

2 Related Work

In general, self reporting of drug effects by pa-
tients is a highly noisy source of data. How-
ever, even after being noisy, it captures quite a
lot of information which might not be available
in other cleaner sources of data such as limited
clinical trials or a doctor’s office (Leaman et al.,
2010). Taking cognizance of this, the International
Society of Drug Bulletins in 2005 said, “...pa-
tient reporting systems should periodically sample
the scattered drug experiences patients reported
on the internet...”. This is an upcoming branch
which lies at the intersection of information sys-
tems and medicine - pharmacovigilance (Leaman
et al., 2010). Detecting and tracking information
about certain diseases has been the focus of quite a
lot of work (Nakhasi et al., 2012; Paul and Dredze,
2011). For instance, cancer investigation (Ofran
et al., 2012), flu (Aramaki et al., 2011; Lamb
et al., 2013) and depression (De Choudhury et al.,
2013; Yazdavar et al., 2017). There has been some
work in the domain of pharmacovigilance (Mahata
et al., 2018b,a,c; Mathur et al., 2018; Sarker et al.,
2018), recently as well.

The body of works most relevant to ours is the
one which uses transfer learning on health domain.

Figure 1: Distribution of classes in Train and Vali-
dation datasets for Sub-Task-1 (Identifying ADR and
non-ADR tweets)

Normally, data in health domain is harder to get
and process. Thus, many researchers have resorted
to using transfer learning in order to deal with the
data paucity. The works using transfer learning
generally use word embeddings in order to im-
prove the generalization of classification to unseen
textual cases. In the context of this work we heav-
ily use ULMFit (Howard and Ruder, 2018) and
BERT (Devlin et al., 2018) for our experiments
and make an initial attempt on how transfer learn-
ing in the domain of health works using them for
the different text classification tasks of Social Me-
dia Mining for Health Workshop. Next, we give a
brief description of the datasets used in this work
for the different tasks.

3 Dataset

The dataset for the shared tasks was collected from
the social networking website, Twitter. It consists
of mentions of drug effects and other health related
issues.

1. For the shared task 1, a total of 25,672 tweets
are made available for training, out of which
2,374 contain adverse drug reaction (ADR)
mention and the rest (23,298) do not. Only
training data was provided by the organiz-
ers. For performing our experiments we seg-
mented the provided dataset into train and
validation splits. Figure 1 shows the distri-
bution of data in the training and validation
splits. The evaluation metric for this task was
the F-score for the ADR class. Due to appre-
ciable data bias, for the various experiments
for this subtask, we oversample ADR tweets
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Figure 2: Distribution of classes in Train and Valida-
tion datasets for Sub-Task-4 (Identifying reporting of
personal health experience mentions and no mentions
in tweets)

and undersample non-ADR tweets. For over-
sampling, we just copy the ADR tweets and
for undersampling, we randomly select a set
of tweets such that the total number of tweets
in both the sets becomes equal. For instance
”feeling a little dizzy from the quetiapine i
just popped!” represents a positive sample
from the dataset while ”don’t say no to pills!
latuda won’t kill!” is a non-ADR tweet. We
also try imbalanced proportions such as from
1:2 to 1:10 as well.

2. For the shared task 2, we got a total of 2,367
tweets out of which 1,212 were positive and
1,155 were negative. In the positive samples,
the ADR portion was marked. For instance,
the tweet ”friends! anybody taken #cipro?
(antibiotic) complications?? big side effect
is tendon rupture...figured my dr would know
better?” is an ADR tweet and the portion
”tendon rupture” is where the author of the
tweet mentions about ADR.

3. For the shared task 4, we were given a to-
tal of 10,876 tweets out of which only 7,388(
67.9%) of the tweets were available on twit-
ter for downloading. A total of 3,598 were
positive and the rest were negative in orig-
inal data. The positive tweets in this case
contained a personal mention of ones health
(for example, sharing health status or opin-
ion) where as negative samples contained
a generic discussion of the health issue, or
some unrelated mention of the word. For in-
stance, 9,832 is an example of tweet which

contains flu-vaccination context in original
data. Similarly, in the tweet 1,046, the au-
thor tries to discuss disease context of flu. For
the available data we had 2,426 positive com-
bined and 4,962 negative samples where the
author is initiating general health discussion
as opposed to mentioning any particular con-
text of flu. For performing our experiments
we segmented the provided dataset into train
and validation splits. Figure 2 shows the dis-
tribution of data in the training and validation
splits.

3.1 Preprocessing
Before feeding the dataset to any machine learn-
ing model we took some steps to process the data.
We point to those steps in this section. Normaliza-
tion of tokens were done using some hand-crafted
rules mainly for dealing with short forms such as
thru(through), abt(about), etc. The ‘@user’ and
URL tokens were removed. The hashtags that con-
tained two or more words were segmented into
their component words using ekphrasis library1.
For example #NotFeelingWell was converted to
not feeling well.

3.2 Training Models
For all the tasks, we mainly concentrated in train-
ing recently introduced ULMFit and BERT mod-
els that are well known for their transfer learning
capabilities and generalizing well for various nat-
ural language processing tasks across different do-
mains. We describe our models in this section. We
extensively used fast.ai2, bert3, and flair4 for train-
ing our models related to all the tasks. The differ-
ent models trained and their corresponding hyper-
paramaters chosen for the tasks are presented in
Table 1. We provide their brief description next.
ULMFiT- We used ULMFit (Howard and Ruder,
2018) for tasks 1 and 4. One of the main advan-
tages of training ULMFiT is that it works very
well for a small dataset as provided in the task and
also avoids the process of training a classification
model from scratch. This avoids overfitting. We
have used the base (fast.ai) implementation of this
model.

The ULMFiT model has mainly two parts,
the language model and the classification model.

1https://github.com/cbaziotis/ekphrasis
2http://nlp.fast.ai/category/classification.html
3https://github.com/google-research/bert
4https://github.com/zalandoresearch/flair
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Tasks Models Hyperparameters
Task 1

(Identification of Tweets
mentioining ADR)

BERT
(Submission 1)

batch size=32, learning rate=2e-5, epochs=4

ULMFit
(Submission 2)

batch size=72, learning rate= 3e-2, bptt=70,
epochs= 8, embedding size=400, hidden size=1150,
number of layers=3

BLSTM
(Submission 3)

Pretrained Embeddings - BERT + Twitter Glove
learning rate=0.1, mini batch size=32, anneal factor=0.5,
patience=5, max epochs=50, lstm units=512, dense-size=256

Task 2
(ADR span extraction

from Tweets)

BLSTM + CRF
(Submission 1)

Stacked Pretrained Embeddings - BERT+Twitter Glove
hidden units=256, learning rate=0.1, epochs=150, batch size=32

BLSTM + CRF
(Submission 2)

Stacked Pretrained Embeddings - BERT+Twitter Glove + Flair
hidden units=256, learning rate=0.1, epochs=150, batch size=32

Task 4
(Identification of Tweets
reporting personal health

experience)

BERT
(Submission 1)

batch size=32, learning rate=2e-5, epochs=4

BLSTM
(Submission 2)

Pretrained Embeddings - BERT + Twitter Glove
learning rate=0.1, mini batch size=32, anneal factor=0.5,
patience=5, max epochs=50, lstm units=512, dense-size=256

BLSTM
(Submission 3)

Pretrained Embeddings - BERT + Flair
learning rate=0.1, mini batch size=32, anneal factor=0.5,
patience=5, max epochs=50, lstm units=512, dense-size=256

Table 1: Model architectures and their corresponding hyperparameters of all the submissions by team MIDAS for
sub-tasks 1, 2 and 4.

We observe that fine-tuning the language model
on a larger dataset provides a significant im-
provement in the performace (Tuhin Chakrabarty,
2019). Therefore, we fine-tune the language
model over 1,90,823 tweets containing 250-drug
related mentions (Sarker and Gonzalez, 2015).
Default (fast.ai) parameters were used to train the
language models. Finally, we find the best hyper-
parameters and train the classifier over the original
training data.

BERT - We use the provided Tensorflow im-
plementation of BERT and fine-tune BERT-base-
uncased. We find the best parameters and train the
model over original dataset.

BLSTM - We train a bidirectional LSTM text
classifier and feed different types of pretrained
embeddings as presented in the Table 1. It is im-
portant to note that due to the long time needed for
training the BLSTM models with the embeddings
and unavailability of GPUs, we could not finish
the training before submitting our results for the
test data provided by the organizers. We would
like to make our predictions on the final model and
keep it as a future work.

BLSTM+CRF Tagger - We treated the problem
posed in sub-task 2 as a named entity extraction
and recognition problem. The text span corre-

sponding to an adverse drug reaction mention is
treated as an entity, that further needs to be classi-
fied into one of the two categories ADR or non-
ADR. Following the current state-of-the-art, we
trained a BLSTM+CRF tagger implemented in the
flair library (referred above). Apart from that, we
also used the BLSTM+CRF architecture with two
different combinations of stacked embeddings.

Next, we present the results obtained on the test
data provided by the organizers for sub-tasks 1, 2
and 4.

4 Results

4.1 Task-1: Identifying Tweets Mentioning
Adverse Drug Reactions

Model F1 Precision Recall
BERT 0.5759 0.5615 0.5911

ULMFiT 0.5988 0.6647 0.5447
BLSTM 0.5196 0.5891 0.4649

Table 2: Results for Task-1: Identifying Tweets Men-
tioning Adverse Drug Reactions

Table 2, presents the F1 scores on the test data
for sub-task 1. The ULMFit model showed the
best performance. As already mentioned, the
data provided for sub-task 1 was highly imbal-
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Figure 3: F1 score for ULMFit and BERT models
trained on differently undersampled ratio of the classes
(ADR : non-ADR).

anced. We performed undersampling with dif-
ferent ratios of the classes (ADR : non-ADR).
Figure 3, presents the performance of ULMFit
and BERT models on the training data for dif-
ferent undersampling ratios. We also tried over-
sampling, but didn’t observe any improvement in
performance. The best performance using both
BERT and ULMFit was obtained without using
any undersampling or oversampling. Therefore,
the model that we used on the test data was trained
on the full training dataset maintaining the given
ratio of ADR:non-ADR tweets.

4.2 Task 2: Extraction of Adverse Effect
Mentions

Model Relaxed F1 Relaxed
Precision

Relaxed
Recall Strict F1 Strict

Precision
Strict
Recall

BLSTM+CRF Tagger with
Stacked Pretrained BERT and

Twitter Glove Embeddings
0.638 0.532 0.796 0.315 0.262 0.395

BLSTM+CRF Tagger with
Stacked Pretrained BERT and

Flair Embeddings
0.641 0.537 0.793 0.328 0.274 0.409

Table 3: Results for Task-2: Extracting spans of text
expressing adverse drug reactions in Tweets

Table 3, presents the performance scores for
sub-task 2 on the test data. The different metrics
as presented in the table were implemented by the
organizers and the scores were provided by them.

4.3 Task 4: Generalized Identification of
Personal Health Experience Mentions

The objective of the task is to classify whether a
tweet contains a personal mention of ones health
(for example, sharing ones own health status or
opinion), as opposed to a more general discus-
sion of the health issue, or an unrelated mention
of the word. Each model was finally evaluated us-
ing four F1-scores - F1 for the held out influenza

Models Accuracy F1 Precision Recall
Model 1 - BERT 0.8105 0.7453 0.9875 0.5985

Model 2 - BERT + Twitter Glove Embeddings 0.8211 0.783 0.8932 0.697
Model 3 - BERT + Flair Embeddings 0.8035 0.7544 0.8958 0.6515

Health Concerns Condition 1
Model 1 - BERT 0.9 0.8919 1 0.8049

Model 2 - BERT + Twitter Glove Embeddings 0.8875 0.88 0.9706 0.8049
Model 3 - BERT + Flair Embeddings 0.8938 0.8859 0.9851 0.8049

Health Concerns Condition 2
Model 1 - BERT 0.6377 0.359 0.875 0.2258

Model 2 - BERT + Twitter Glove Embeddings 0.6667 0.5818 0.6667 0.5161
Model 3 - BERT + Flair Embeddings 0.6087 0.4706 0.6 0.3871

Health Concerns Condition 3
Model 1 - BERT 0.7679 0.48 1 0.3158

Model 2 - BERT + Twitter Glove Embeddings 0.8214 0.6667 0.9091 0.5263
Model 3 - BERT + Flair Embeddings 0.7857 0.5714 0.8889 0.4211

Table 4: Results for Task-4: Generalized identification
of personal health experience mentions

data, the second and third undisclosed context, and
the F1-score overall. The results that our mod-
els obtained on the test data is presented in Table
4. As already mentioned that the BLSTM models
trained using pretrained embeddings could not be
completed. Inspite of the fully trained model, we
do see a decent performance using BLSTM along
with a combination of pretrained embeddings on
the provided dataset.

5 Future Work and Conclusion

In this work, we presented our initial attempt to
use BERT and ULMFit for text classification tasks
related to the domain of pharmacovigilance. We
obtained decent results for three different tasks
organized as a shared task in Social Media Min-
ing for Health Workshop - 2019. We noticed that
the BERT and ULMFit were agnostic to under-
sampling and oversampling unlike previously ob-
served performances on traditional text classifiers
as reported on a similar task (Sarker et al., 2018),
that was a part of the same workshop held in 2017.
We consider our reported work in this paper as a
preliminary attempt and would like to extend them
in the future. As part of our future work we would
like to train better models using BERT for all the
three sub-tasks that we participated in, and would
also like to interpret the predictions of the models.
We think domain specific training of different em-
beddings could help and would like to try them in
the future.
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Abstract

This paper details our approach to the task
of detecting reportage of adverse drug reac-
tion in tweets as part of the 2019 social media
mining for healthcare applications shared task.
We employed a combination of three types
of word representations as input to a LSTM
model. With this approach, we achieved an F1
score of 0.5209.

1 Introduction

The social media mining for health care appli-
cations shared task aims to provide a benchmark
for validating and comparing methods for health-
care applications using social media data (Weis-
senbacher et al., 2019). The focus of task 1 is on
identifying adverse drug reaction as a medication
related outcome. Participants on this task are ex-
pected to differentiate tweets as reporting adverse
drug reaction or not and the performance metric is
F1. This task demands that adverse drug reaction
be distinguished from a similar and mostly con-
founding expression of the indication of a drug.
The former is usually associated with the usage
of the drug while the latter is a specification of
the reason to use a drug. In addition, the task of
detecting mention of adverse drug reaction is an
extremely imbalanced binary classification task.
About 1% of the training set are positive exam-
ples and approximately 99% are negative exam-
ples. Our approach is based on the combination
of three different types of word embedding rep-
resentations viz: character (Lample et al., 2016),
non-contextual(Glove pre-trained on Twitter data)
(Pennington et al., 2014), and contextual(BERT)
(Devlin et al., 2018). The following section gives
details of our model and training set-up. Section
3 shows the results of our experiments while we
conclude and speculate on future directions in Sec-
tion 4.

2 Model and Experimental Set-Up

We hypothesize that the different types of em-
beddings capture different relationships and their
combination could help in the identification of ad-
verse drug reaction in tweets. In our experiments,
the word representation differs in two dimensions:
whether they are pre-trained (Glove and Bert) or
not (character embedding) and if they are contex-
tual (Bert) or otherwise (Glove and Character em-
beddings). We briefly describe each representa-
tion:

• Character embedding - is a 50 dimensional
representation of the characters in a word
(how are they combined to form an em-
bedding for the word). This representation
is trained together with the model. It is
based on a bidirectional LSTM. The advan-
tage of character-based representation for so-
cial media text is that it eliminates the out-of-
vocabulary problem which results from noise
in the form of misspellings and abbreviations
in word-based representation such as Glove.
Also, this representation is specific to the task
and domain of the training set.

• Glove (twitter) - is a 100 dimensional repre-
sentation pre-trained on a huge twitter cor-
pus. We expect this to contribute by reflect-
ing the language of twitter users. However,
the embedding is not a contextual one.

• BERT (en, base-uncased) - is a general do-
main contextual word representation where
the representation of a word is based on other
words in its context (sentence). The BERT
base model which is not cased gives a word
embedding of dimension 768. It has enabled
state-of-the-art results on several NLP tasks.
However, to the best of our knowledge, its
application to social media text is limited.
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No. of Examples
train 24202
dev 6051
test 4575

Table 1: Details of the Data

In order to leverage some of the benefits of the
representations above, we concatenated these rep-
resentations for a given word in a tweet. This com-
bination is of dimension 918. A linear layer then
project this representation into a dimension of 256.
This projection is meant to serve as a distillation
step and/or as a fine-tuning step. The resulting rep-
resentation is fed into an LSTM layer with hidden
size of 512 to sequentially model a tweet. Finally,
a dense layer is used as the classifier.

The model was trained for 100 epochs with
learning rate annealing factor of 0.5 using SGD
as the optimizer and a batch size of 8. We used a
train-dev split of 80:20. Table 1 shows the num-
ber of training, validation, and evaluation exam-
ples used in our experiment. Weissenbacher et al.
(2019) provide details on the collection and an-
notation of the dataset. Based on the validation
split, a model with the best F1 score is saved
during training as the best model. With the best
model, we made predictions on the unseen eval-
uation examples as our first submission (sub1 in
Table 2). Our second submission (sub2 in Table
2) was based on the model at the 100th epoch or
the last epoch as training is terminated if learn-
ing rate becomes too small. Our experiments were
performed using the Flair framework (Akbik et al.,
2018).

3 Results

Table 3 shows the results obtained on the test
set. We achieved our best submission with the
final model with an F1 of 0.5209. This result
ranks above the average score of all participants
in the task with average F1, precision, and re-
call of 0.5019, 0.5351, 0.5054 respectively (Weis-
senbacher et al., 2019). Table 3 shows the re-
sults obtained from our ablation experiments with
respect to the contributions of the different em-
bedding representations and the distillation/fine-
tuning step. The F1 scores reported are based on
the model that achieved the best F1 score on the
validation set during training. We observed a min-
imal drop in performance (0.0045) when we re-

P R F1
sub1 0.6145 0.4457 0.5167
sub2 0.6203 0.4489 0.5209

Table 2: Performance on the Test Set (Scores as pro-
vided by the organizers)

Model F1
emb comb w/ fine tuning 0.9015
emb comb w/o fine tuning 0.9060

emb comb w/ fine tuning w/o character 0.8777
emb comb w/ fine tuning w/o Glove 0.9020
emb comb w/ fine tuning w/o BERT 0.9040

Table 3: Performance of Model Variants on the Valida-
tion Split

moved the fine-tuning layer. This suggests that the
fine-tuning layer either hurts performance or the
dimension of the resulting fine-tuned representa-
tion is an important parameter to tune with our ap-
proach. We assessed the contribution of the three
embedding representations to performance by re-
moving one at a time from the model while keep-
ing our fine-tuning strategy. When the character
embedding word representation is absent, a per-
formance drop of 0.0238 is observed. When the
BERT representation is removed, the performance
improved by 0.0025. Without the Glove embed-
ding, the performance increased by 0.0005. This
result is consistent with our perceived advantages
and disadvantages of the three embedding repre-
sentations. With the character embedding con-
tributing the most to the model performance. Re-
markably, the removal of BERT and Glove leads
to improved performance. This can be attributed
to the out-of-vocabulary problem with Glove and
domain mismatch in the case of BERT.

4 Conclusion

This paper outlines our participation in the 2019
social media mining for healthcare application
challenge on identifying the reportage of adverse
drug reaction in tweets. Our approach is based
on the combination of three different types of em-
bedding representations and a fine-tuning strategy.
With this approach, we made two submissions us-
ing a model that achieved the best F1 score on
the validation data and with a model trained till
the last epoch possible. The latter gave a better
performance. Through ablation experiments, we
observed that our fine-tuning strategy results in a
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small drop in performance contrary to our expec-
tation. In addition, the different word represen-
tations contribute to different degrees. The char-
acter embedding representation makes the most
significant contribution, without it the model per-
formance drops while there is a marginal perfor-
mance improvement when both Glove and BERT
representation are removed from the model.

As a follow-up work, we would like to inves-
tigate other fine-tuning or distillation approaches
as well as parameter tuning of the size of the fine-
tuning layer. It is also interesting to examine the
impact of normalizing tweets and identifying us-
age expressions as an auxiliary task.
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Abstract

Analyzing social media posts can offer in-
sights into a wide range of topics that are
commonly discussed online, providing valu-
able information for studying various health-
related phenomena reported online. The out-
come of this work can offer insights into phar-
macovigilance research to monitor the adverse
effects of medications. This research specifi-
cally looks into mentions of adverse drug re-
actions (ADRs) in Twitter data through the
Social Media Mining for Health Applications
(SMM4H) Shared Task 2019. Adverse drug
reactions are undesired harmful effects which
can arise from medication or other methods of
treatment. The goal of this research is to build
accurate models using natural language pro-
cessing techniques to detect reports of adverse
drug reactions in Twitter data and extract these
words or phrases.

1 Introduction

On average, one in a thousand messages from pub-
lic Twitter data is health-related (Sadilek et al.,
2012). These health-related Twitter posts can be
used to monitor and analyze various health-related
phenomena such as drug use and side effects re-
sulting from medication. The purpose of this work
was to develop a model to accurately analyze men-
tions of adverse drug reactions (ADRs) in Twitter
posts. To achieve this task, natural language pro-
cessing techniques were used to predict whether
each Tweet from a given set of Tweets contains a
mention of an ADR and extract any mentions of
ADRs. The results of this project can be useful for
research done in the field of pharmacovigilance,
which is the monitoring of drug effects with the
intention of finding and preventing adverse effects.
This work was conducted as part of the Social Me-
dia Mining for Health (SMM4H) challenge hosted
by the Health Language Processing (HLP) Lab at
the University of Pennsylvania. The predictions of

the models developed for this project were evalu-
ated against test data and given F-scores as well as
scores of accuracy, precision, and recall based on
the degree to which they were able to accomplish
the goals of each task.

2 Methods

2.1 Subtask 1

For Subtask 1, a lexicon-based approach was fol-
lowed. To identify important keywords – key-
words whose presence or absence in a Tweet can
serve as valuable, reliable indicators of whether
the Tweet contains a reference to an Adverse Drug
Reaction or not – a methodology adapted from
the Internal + External Lexicon Selection tech-
nique (Rawal et al., 2019), a technique that has
yielded successful results in previous similar clas-
sification tasks, was used. First, uni- and bi-grams
were extracted from the training dataset. The pres-
ence or absence of each of these n-grams were
then used as binary features in a logistic regres-
sion model. To estimate the performance of the
model using metrics that were to be used for eval-
uation, such as precision, recall, and F1-score, the
model was trained via 10-fold cross-validation of
the training set. Finally, the coefficients associ-
ated with each keyword were examined. There
were 166,466 total features obtained through the
aforementioned technique. Through this process,
the top 700 absolute-valued coefficients were hy-
pothesized to be the most significant keywords and
stored. This number of top keywords to keep was
a hyperparameter that was experimentally deter-
mined through model performance over 10-fold
cross-validation of the training set. This list of sig-
nificant keywords was then manually pared down
to exclude any intuitively irrelevant terms (such as
stop words); the presence or absence of these re-
maining keywords were used as binary features for
our final logistic regression model. Other mod-
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els were also tested during training, such as a
BioBERT (Lee et al., 2019) model that was fine-
tuned using the provided training data. Although
the BioBERT model showed promising results, it
was not implemented into the final submission due
to time constraints.

2.2 Subtask 2

For Subtask 2, a deep learning approach was
taken. Specifically, a Bidirectional Long
Short-Term Memory (BiLSTM) coupled with a
Conditional Random Field (CRF) layer neural
network architecture was used to perform Named
Entity Recognition to identify the Adverse Drug
Reaction mentions. This architecture has been
empirically shown to perform well at Named
Entity Recognition (NER) tasks (Lample et al.,
2016). To represent input words, the Embedding
layer weights of the model was pre-initialized
with values obtained from a word2vec model that
was trained on the MIMIC-III dataset (Johnson
et al., 2016).

Figure 1: BiLSTM-CRF neural network architecture

3 Results

On Task 1, our system performed with an F1
score of 0.4317, Precision of 0.3223, and Recall
of 0.6534.

On Task 2, on the relaxed metric, our system
performed with an F1 score of 0.535, Precision of
0.415, and Recall of 0.753; on the strict metric,

our system performed with an F1 score of 0.269,
Precision of 0.206, and Recall of 0.390.

4 Conclusion

Overall, our systems for Tasks 1 and 2 consisted
of a combination of (1) lexicon selection and
domain-specific feature engineering; (2) classical
machine learning techniques such as logistic re-
gression; and (3) neural architectures, including
BioBERT and BiLSTM-CRF models. We found
simpler models consisting of lexicon selection and
classical machine learning models (such as the lo-
gistic regression model discussed previously) per-
formed better with limited datasets and offered ex-
plainability into feature importance. In the Named
Entity Recognition task, we utilized a deep learn-
ing approach, given the demonstrated effective-
ness of such an architecture in this domain (Lam-
ple et al., 2016). We expect to improve the perfor-
mance of our systems through further refinement
of our feature engineering and tuning of our model
parameters.
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