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Abstract

Modeling sequence data using probabilistic fi-
nite state machines (PFSMs) is a technique
that analyzes the underlying dynamics in se-
quences of symbols. Hidden semi-Markov
models (HSMMs) and hierarchical hidden
Markov models (HHMMs) are PFSMs that
have been successfully applied to a wide va-
riety of applications by extending HMMs to
make the extracted patterns easier to interpret.
However, these models are independently de-
veloped with their own training algorithm,
so that we cannot combine multiple kinds of
structures to build a PFSM for a specific appli-
cation. In this paper, we prove that silent hid-
den Markov models (silent HMMs) are flex-
ible models that have more expressive power
than HSMMs and HHMMs. Silent HMMs
are HMMs that contain silent states, which
do not emit any observations. We show that
we can obtain silent HMM equivalent to given
HSMMs and HHMMs. We believe that these
results form a firm foundation to use silent
HMMs as a unified representation for PFSM
modeling.

1 Introduction

Probabilistic finite state machines (PFSMs) are
widely used for modeling non-deterministic be-
haviors in languages (Wang and Manning, 2012).
One of the powerful applications of PFSMs is au-
tomatic (unsupervised) induction of language pat-
terns (Stratos et al., 2016). The automatic induc-
tion of finite state models can potentially impact
the direction that research takes on finite state ma-
chines, which have been applied to natural lan-
guage processing such as morphological modeling
(Ehsani et al., 2017), word transduction between
different languages (Sharma and Singh, 2017), di-
alog action (Torres, 2013), etc.

Hidden Markov models (HMMs) are the sim-
plest and most well-known probabilistic finite
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Figure 1: A hidden state sequence of silent HMM. zt
corresponds to multiple hidden states that constitute a
silent Markov chain.

state machines. However, the unsupervised train-
ing of HMMs usually does not produce good finite
state machines like the ones crafted by human ex-
perts because of the complexity of reconstructing
language patterns from a finite number of obser-
vations. Human experts can build finite state ma-
chines that are comprehensible because they have
intuition about the latent structure of languages.

This discussion suggests that we need to in-
corporate prior knowledge into the model struc-
ture of HMMs, which is a basic idea that per-
vades the recent methods of automatic induction
of language patterns (Stratos et al., 2016; Jin et al.,
2018). Several kinds of PFSMs, such as hid-
den semi-Markov models (HSMMs) (Moore and
Savic, 2004; Yu, 2010) and hierarchical hidden
Markov models (Fine et al., 1998; Wakabayashi
and Miura, 2012), reflect several different addi-
tional structural assumptions. Each model comes
with a specialized training algorithm that has to
be implemented separately. This requirement pre-
vents us from trying several models; more im-
portantly, we cannot easily combine multiple as-
sumptions that are implemented in different PF-
SMs. To move the research of automatic finite
state machine induction forward, we need to de-
velop a more flexible way to incorporate our prior
knowledge into the PFSMs.
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In this paper, we propose silent hidden Markov
models (silent HMMs) as a generalized represen-
tation of other PFSMs that at least can express the
structure that is assumed in HSMMs and HHMMs.
A silent HMM is an HMM that contains silent
states, which do not emit any observations. We
prove that the expressive power of silent HMMs is
better than HSMMs and HHMMs, and we propose
a method that obtains a silent HMM that is equiv-
alent to an HSMM and an HHMM. This result in-
dicates that we can combine and/or customize the
structural assumptions of HSMMs and HHMMs in
the unified framework of silent HMMs, potentially
leading us to more precise and flexible automatic
induction of finite state machines.

The rest of the paper is organized as follows. In
Section 2, we dfine silent HMMs. In Sections 3
and 4, we detail the HSMMs and HHMMs respec-
tively and prove the expressivity of silent HMMs
is better than these models. In Section 5, we dis-
cuss an inference algorithm of silent HMMs. In
Section 6, we conclude the discussion and men-
tion future work.

2 Silent HMMs

The concept of the silent states, also known as
“null emission” in HMMs, has been used in speech
recognition (Bahl et al., 1983; Rabiner, 1989) and
DNA modeling in bioinformatics (Krogh et al.,
1994; Eddy, 1998) to express optional sounds or
letters in sequences that are implicitly dropped
from observations. Recently, Wakabayashi (2018)
applied a silent HMM to natural language sen-
tences to extract phrase structures in an unsuper-
vised manner. However, surprisingly few descrip-
tions exist in literature that define silent HMMs in
a formal way. In this section, we formally define
silent HMMs.

Let x1:T = x1, . . . , xT be the sequence of
observations and X be the domain of each ob-
servation (xt ∈ X ). We denote the states
that correspond to each observation xt by zt =
zt,1, . . . , zt,|zt|. In silent HMMs, zt can be a se-
ries of states that contain multiple silent states
that precede a normal state producing xt. Fig-
ure 1 illustrates the relationship between xt and
zt. zt,1, . . . , zt,|zt|−1 are all silent states and zt,|zt|
is a normal state.

A silent HMM is defined by a tuple
(X , Q,C,R,π, A,Θ). Q is a finite set of
states. Silence assignment C : Q → {0, 1} is

a mapping that designates silent states. Each
state is either a silent state or a normal state.
C(q) = 1 indicates that the state q ∈ Q is a
silent state and C(q) = 0 means q is a normal
state. The set of normal states is denoted by
Qn = {q ∈ Q|C(q) = 1} and the set of silent
states is denoted by Qs = {q ∈ Q|C(q) = 0}.
R is a predicate that defines a transition topol-

ogy. The domain of R is Q × Q. If R(q1, q2) is
true, the transition from q1 to q2 is allowed. In the
rest of the paper, we also use q1

R−→ q2 to indicate
R(q1, q2) is true.

The joint likelihood of x1:T and z1:T is de-
scribed as follows.

p(x1:T , z1:T ) =

T∏
t=1

p(zt|zt−1)p(xt|zt,|zt|). (1)

Since zt = zt,1, . . . , zt,|zt|, p(zt|zt−1) is the joint
probability given as below.

p(zt|zt−1) = p(zt,1|zt−1,|zt−1|)

|zt|∏
τ=1

p(zt,τ |zt,τ−1).

(2)

When t = 1, the first term in Eq (2), p(z1,1|z0,|z0|),
is defined as an initial state probability. π is a
|Q| dimensional vector that represents the initial
state distribution. A is a |Q|× |Q|matrix of which
Aq1,q2 indicates the transition probability from q1

to q2; e.g., p(zt,τ = q2|zt,τ−1 = q1) = Aq1,q2 .
For q1, q2 such that R(q1, q2) is false, Aq1,q2 is re-
stricted to being zero. Θ = {θq}q∈Qn is param-
eters of the emission distribution p(xt|zt,|zt|) for
each normal state.
X , Q,C,R are meta-parameters of silent

HMMs, which are not trainable from data. These
meta-parameters reflect prior knowledge of a
structure of sequence data. In the following
sections, we show that there is a set of meta-
parameters that makes the likelihood function of
silent HMM identical to the likelihood function of
HSMMs and HHMMs.

3 Hidden Semi-Markov Models

3.1 Model Definition
A hidden semi-Markov model (HSMM) is a prob-
abilistic automaton that allows a state to emit mul-
tiple observations. Figure 2 illustrates a hidden
state sequence of HSMMs. HSMMs explicitly
consider a probabilistic distribution of the dura-
tion. For example, in Figure 2, the duration of the
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Figure 2: Example of a hidden state sequence of
HSMM

first state z1 = 2 is d1 = 3, meaning the state
keeps emitting three observations (x1, x2, and x3)
following the i.i.d. distribution of p(x|z = 2). The
duration of each state is stochastically determined
depending on the state. While multiple ways to de-
fine the distribution of duration p(d|z) have been
proposed (Yu, 2010), we use categorical distribu-
tions with D possible classes to represent p(d|z)
where D ∈ N is the maximum duration.

An HSMM is defined by a tuple
(X , Q′, D,π′, A′,Φ,Θ′). X is a domain of
observations, Q′ is a set of states, and D ∈ N is a
maximum duration. A′ is a transition probability
matrix where the transition probability from the
state i to j is A′i,j . π

′ is an initial probability vec-
tor where the initialization probability of the state
i is π′i. Φ = {φi}i∈Q′ is a set of parameters of
duration distribution where p(d|z) = φz,d. Θ′ is a
set of parameters for the emission distributions.

Let x = x1, . . . , xT be a sequence of obser-
vations, z = z1, . . . , zn be a sequence of hidden
states, and d = d1, . . . , dn be a sequence of dura-
tion variables. We use n to indicate the length of
the hidden state sequence, which is not necessarily
equal to T . Instead,

∑n
τ=1 dτ must be equal to T .

The likelihood function of an HSMM is defined as
follows;

p(x1:T , z1:n,d1:n) =

π′z1

n∏
τ=2

A′zτ−1,zτ

n∏
τ=1

φzτ ,dτ

T∏
t=1

p(xt|θzc(t)), (3)

where c(t) is a function that returns the index of
the hidden state that corresponds to the observa-
tion xt.

X , Q′, D are meta-parameters of HSMMs that
are not trainable from data. In the next section,
we demonstrate how an HSMM that has meta-
parameters X , Q′, D can be equivalently repre-
sented as a silent HMM.
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Figure 3: (Top) Hidden state sequence of the silent
HMM that is equivalent to the state sequence of the
HSMM in Figure 2 (Bottom) State transition diagram

3.2 Expressivity of HSMMs and Silent
HMMs

Given an HSMM that has meta-parameters
X , Q′, D, we can obtain an equivalent silent
HMM that has meta-parameters (X , Q,C,R).
Figure 3 depicts the representation of the transi-
tion dynamics of an HSMM by a silent HMM.
The duration of each state is represented explic-
itly by a transition throughout “countdown states.”
A countdown state qi,d only changes to qi,d−1. The
state of the last count qi,1 changes to bj , which in-
dicates a silent state that represents the beginning
of the state j in HSMM. The transition probabili-
ties from bj correspond to the duration probability
p(d|z = j).

Here, we explain the proposed mapping from a
tuple of meta-parameters (Q′, D) of HSMMs to a
tuple of meta-parameters (Q,C,R) of the equiv-
alent silent HMMs. First, Q is constructed as a
union of a set of countdown states Qc and a set
of beginning states Qb. We define Qc and Qb as
follows.

Qc = {qi,d}i∈Q′,1≤d≤D
Qb = {bi}i∈Q′ .

The whole set of states in the silent HMM is de-
fined asQ = Qb∪Qc. The elements inQc are nor-
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mal states and the elements in Qb are silent states.

C(q) =

{
0 q ∈ Qc
1 q ∈ Qb.

The transition topologyR is defined as depicted in
Figure 3 (Bottom). More formally:

∀i, d(bi
R−→ qi,d)

∀i, j(qi,1
R−→ bj)

∀i, d > 1(qi,d
R−→ qi,d−1).

To show the equivalency of the given HSMM
and the obtained silent HMM, we also specify
a surjective mapping from the distributions in
the silent HMM parameterized by (π, A,Θ) to
the distributions in the HSMM parameterized by
(π′, A′,Φ,Θ′).

• The D-dimensional categorical distribution
in the silent HMM for transition from the
state bi ∈ Qb parameterized by Abi is
mapped into the categorical distribution in
the HSMM for the duration of the state i pa-
rameterized by φi.

• The |Q|-dimensional categorical distribution
in the silent HMM for transition from the
state qi,1 parameterized by Aqi,1 is mapped
into the categorical distribution in the HSMM
for the transition from the state i parameter-
ized by A′i.

• The emission distribution of the state qi,d in
the silent HMM is mapped into the emission
distribution of the state i in the HSMM for
any d ∈ D.

Note that the destination of the transition from qi,d
is only qi,d−1 for any d > 1; therefore, the transi-
tion probability from qi,d to qi,d−1 is always one.
Lemma 1. The likelihood function of the silent
HMM constructed in the way described above is
equivalent to the likelihood function of the given
HSMM.

This lemma can be proved straightforwardly by
mapping random variables as shown in Figure 3
(Top) and putting mapped parameters in Eqs. (1)
and (2).
Theorem 1. The expressivity of silent HMMs is
better than the expressivity of HSMMs. In other
words, the mapping from an HSMM to a silent
HMM that makes the likelihood function equiva-
lent is injective and not surjective.

Proof of being injective is easy: We can con-
firm that different HSMMs have different likeli-
hood functions. If the mapping is not injective,
two HSMMs with different likelihood functions
are mapped into the same silent HMM. This con-
tradicts the Lemma 1. Being not surjective is ob-
vious; for silent HMMs, we can set different meta-
parameters from ones explained above.

This result is useful in practice because we can
use an implementation of the silent HMMs when
we want to use HSMMs. We do not need to im-
plement the training algorithm and the Viterbi al-
gorithm just for HSMMs.

4 Hierarchical HMMs

4.1 Model Definition
A hierarchical HMM (HHMM) is a probabilistic
automaton that simulates multiple Markov chains
that have a hierarchical relationship. Figure 4 il-
lustrates the dynamics of an HHMM that has three
hierarchy levels. A hidden state sequence is in
each level. Each state sequence can be terminated
probabilistically when the sequence reaches a spe-
cial End state. The state at level d is allowed to
change to another state at time step t only when
the state sequences at all the lower levels are ter-
minated. If a state sequence at level d is terminated
at time step t, a state sequence is initialized again
at the next time step t + 1. Only the states at the
bottom level emit the observation. The probabilis-
tic distribution of state transitions and observation
emissions depend on the combination of the states
at all the upper levels1. For example, the state tran-
sition from the bottom state 2 to state 1 at time step
t = 1 in Figure 4 depends on all the upper states,
namely, state 2 at the top level d = 1 and state 1 at
the middle level d = 2.

An HHMM is defined by a tuple
(X , N, L,π′′, A′′,Θ′′) where N is the num-
ber of states in each Markov chain and L is the
number of levels. The HHMM in Figure 4 has
N = 2 and L = 3. When the states at level 1 to
d − 1 are k = (k1, . . . , kd−1), the state transition
probability from the state i to the state j at level
d is denoted by A′′ki,j and the state initialization
probability of the state i at level d is represented
by π′′ki . We consider a special symbol End as

1Another version of HHMMs shares the probabilistic dis-
tributions among the states that have different upper states
(Bui et al., 2004). Although we could extend the discussion
in this section to adapt to this version, we do not go into detail
due to the length limitations.
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Figure 4: Example of a hidden state sequence of hier-
archical HMM

another destination of state transition, which
triggers the termination of the state sequence at
that level. The transition parameters A′′ satisfy
the following condition for all i and k.∑

j∈N≤N∪{End}

A′′ki,j = 1,

where N≤N is a set of natural numbers that are less
than or equal toN (representing the set of states on
the Markov chain at that level).

The formulation of the likelihood function of
HHMMs is complicated because the length of
state sequence is different at each level. To sim-
plify the situation, we apply a variable conversion
proposed by (Murphy and Paskin, 2002) that ex-
plicitly considers random variables that represent
the state at each time step for all levels. Formally,
we define zd = zd1 , . . . , z

d
T as a sequence of hidden

states at level d. For example, the state sequences
in Figure 4 are represented as z1 = 2, 2, 2, 2, 1, 1,
z2 = 1, 1, 2, 2, 1, 1, and z3 = 2, 1, 1, 2, 1, 2.
We also consider a set of binary auxiliary vari-
ables {fdt } that indicate if the state sequence at
level d is terminated at time step t. For exam-
ple, f1:L

1 = 0, 0, 0, f1:L
2 = 0, 0, 1, f1:L

3 = 0, 0, 0,
f1:L
4 = 0, 1, 1. fdt has to be 0 whenever fd+1

t = 0
because the state does not change at level d if the
state sequence at the lower level d + 1 is not ter-
minated.

Using this representation, we can formulate the
likelihood function of HHMMs as Eq. (4). For
simplicity, we define fL+1

t = 1. The first factor
(a) corresponds to an initialization of the state se-
quences at time step t = 1. The second factor (b)
indicates a product of termination probabilities, a
transition probability, and initialization probabili-
ties for each time step. For example, consider the
case of t = 4 for the state sequences in Figure 4.
Since f1:L

4 = 0, 1, 1, we calculate the product of
two termination probabilities A′′(2,2)

2,End, A
′′(2)
2,End (for

d = 3 and d = 2), one transition probability A′′2,1
(for d = 1), and two initialization probabilities
π
′′(1)
1 , π

′′(1,1)
1 (for d = 2, d = 3). The third factor

(c) is a product of emission probabilities for all
observations.

Since the dynamics of HHMMs are complex, an
inference algorithm needs to be reformulated as a
specialized algorithm. Several inference methods
have been proposed, such as a modified inside-
outside algorithm (Fine et al., 1998), an inference
based on dynamic Bayesian network (Murphy and
Paskin, 2002), a method based on a variable con-
version (Wakabayashi and Miura, 2012), etc. The
unsupervised training of HHMMs produces finite
state machines that reflect hierarchical sequential
patterns on letter sequences in natural language
text (Fine et al., 1998), musical pitch structure
(Weiland et al., 2005), etc.

4.2 Expressivity of HHMMs and Silent
HMMs

Given an HHMM that has meta-parameters
X , N, L, we show a method of obtaining a silent
HMM that has the equivalent likelihood function.
First, we represent the combination of the states in
a tree structure as shown in Figure 6 because the
probabilistic behaviors in HHMMs depend on the
combination of states in all the upper levels. We
denote the set of nodes in this tree, excluding the
special ROOT node by Ω. Let parent : Ω →
Ω ∪ {ROOT} be a function that maps a node to
its parent node. We denote the children of the node
ω ∈ Ω by child(ω) = {v|parent(v) = ω} and
the siblings by sib(ω) = child(parent(ω)). We
also denote the set of leaf nodes by Ωl = {v ∈
Ω|child(v) = φ} and the set of non-leaf nodes by
Ωn = Ω− Ωl.

Figure 7 shows an equivalent representation of
the hidden states of the HHMM in Figure 4, which
illustrates the basic idea for obtaining a silent
HMM that has an identical likelihood function.
Each state in the silent HMMs corresponds to a
node in Figure 6. A leaf node is represented as
a normal state denoted by q, and a non-leaf node
is represented as a silent state. Termination of a
state sequence is represented by a state transition
to a silent state denoted by e at an upper level. A
state transition at an upper level is represented by
a state transition from a silent state denoted by e to
another silent state denoted by b. An initialization
of a state at a lower level is represented by a state
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p(x1:T , z
1:L
1:T , f

1:L
1:T ) =

L∏
d=1

π
′′z1:d−1

1

zd1︸ ︷︷ ︸
(a)

T−1∏
t=1

L∏
d=1

(
A
′′z1:d−1
t

zdt ,End

)fdt (
A
′′z1:d−1
t

zdt ,z
d
t+1

)fd+1
t (1−fdt )(

π
′′z1:d−1
t+1

zdt+1

)fdt
︸ ︷︷ ︸

(b)

T∏
t=1

p(xt|θ′′z1:Lt )︸ ︷︷ ︸
(c)

(4)

Figure 5: Likelihood function of HHMMs
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Figure 6: Tree structure that expresses the combination
of states in the HHMM with N = 2, L = 3.

transition from a silent state denoted by b to a state
at a lower level.

We propose a mapping from a tuple of meta-
parameters (N,L) of HHMMs to a tuple of meta-
parameters (Q,C,R) of silent HMMs to make
equivalent likelihood functions. First, we con-
struct the tree structure shown in Figure 6 from
N and L and obtain the sets of nodes Ω,Ωl, and
Ωn. We define a set of production states Qq, a set
of beginning states Qb, and a set of ending states
Qe as follows:

Qq = {qω}ω∈Ωl

Qb = {bω}ω∈Ωn

Qe = {eω}ω∈Ωn .

The whole set of states in the silent HMM is Q =
Qq ∪ Qb ∪ Qe. The elements in Qb and Qe are
silent states and elements in Qp are normal states.

C(q) =

{
1 q ∈ Qb ∪Qe
0 q ∈ Qq

The transition topology R is designed like in Fig-
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Figure 7: (Top) Hidden state sequence of the silent
HMM that is equivalent to the state sequence of the hi-
erarchical HMM in Figure 4. (Bottom) State transition
diagram.

ure 7 (Bottom). More formally:

∀ω ∈ Ωn, ∀ω′ ∈ child(ω)(ω′ ∈ Ωn =⇒ bω
R−→ bω′)

∀ω ∈ Ωn, ∀ω′ ∈ child(ω)(ω′ ∈ Ωl =⇒ bω
R−→ qω′)

∀ω ∈ Ωl, ∀ω′ ∈ sib(ω)(qω
R−→ qω′)

∀ω ∈ Ωl(qω
R−→ eparent(ω))

∀ω ∈ Ωn, ∀ω′ ∈ sib(ω)(eω
R−→ bω′)

∀ω ∈ Ωn(eω
R−→ eparent(ω)).

The transition from bω corresponds to the initial-
ization of the lower state sequence. The transition
from qω or eω to eparent(ω) indicates the termina-
tion of the state sequence at that level.

To show the equivalency of the likelihood func-
tion, we also specify a mapping from the distribu-
tions in the silent HMM parameterized by π, A,Θ
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to the distributions in the given HHMM parame-
terized by π′′, A′′,Θ′′.

• The N -dimensional categorical distribution
in the silent HMM for transition from the
state b(i1,...,id) ∈ Qb is mapped into the cat-
egorical distribution in the HHMM for state
initialization parameterized by π′′(i1,...,id).

• The (N + 1)-dimensional categorical distri-
bution in the silent HMM for the transition
from the state q(i1,...,id) ∈ Qq and e(i1,...,id) ∈
Qe is mapped into the categorical distribu-
tion in the HHMM for the state transition
from id parameterized by A

′′(i1,...,id−1)
id

. The
state transition to e(i1,...,id−1) is mapped into

A
′′(i1,...,id−1)
id,End

.

• The N -dimensional categorical distribution
in the silent HMM for initialization probabil-
ities parameterized by π is mapped into

Lemma 2. The likelihood function of the silent
HMM constructed in the way described above is
equivalent to the likelihood function of the given
HHMM.

Proof. The proof of this lemma is based on a
comparison between the likelihood function of the
silent state sequence in Eq. (1) (2) and factors
(a), (b), (c) in Eq. (4).

Factor (a) For t = 1, the length of the silent
state sequence is exactly L because the sequence
starts from a state inQb at the top level and follows
links to a state at the next lower level. As we de-
fined above, the distribution in the silent HMM for
the transition from the state in Qb is mapped into
the state initialization distribution in the HHMM
parameterized by π. This product is identical to
the first factor (a) in Eq. (4).

Factor (b) This factor depends on the values
ft. We can say that ft is a variable that indi-
cates the level that holds a state transition. Let
l(ft) be the level that holds a state transition.
For example, when f1:L

t = 0, 0, 1, the level 2
holds a state transition and l(ft) = 2. Given
ft, the silent state sequence for the time step t
is e(z1t ,...,z

L−1
t ), . . . , e(z1t ,...,z

l(ft)
t )

, b
(z1t+1,...,z

l(ft)
t+1 )

,

. . . , b(z1t+1,...,z
L−1
t+1 ), q(z1t+1,...,z

L
t+1). By putting the

mapped parameters into the product of the transi-
tion probabilities in this trajectory, we can confirm
that the probability is identical to the factor (b) in
Eq. (4) for any ft.

Factor (c) Factor
∏T
t=1 p(xt|q(z1t ,...,z

L
t )) in Eq.

(1) is identical to the factor (c).

Theorem 2. The expressivity of silent HMMs is
better than the expressivity of HHMMs.

The theorem can be proved in the same way as
Theorem 1. We emphasize again that this result is
useful because we can use an implementation of
the silent HMMs when we want to use HHMMs.
This generalization also brings more flexibility to
the modeling of PFSMs that will allow us to ex-
plore new useful classes of sequence models in fu-
ture work.

5 Inference of silent HMMs

5.1 Silent Circuit Constraint
In this section, we discuss an inference algorithm
used for EM training of silent HMMs. For infer-
ence of silent HMMs, we need to be careful of
an infinite length of state sequence that possibly
happen by an infinite loop of transitions between
silent states. Explicit consideration of an infinite
loop of state transitions obviously complicates an
inference algorithm. In this paper, we impose a
sufficient condition on meta-parameters (Q,C,R)
that ensures the length of a state sequence is finite.

To derive the condition, we consider silent tran-
sition topology, a directed graph representing pos-
sible silent state transitions. The graph is obtained
from the directed graph representation of R by
omitting outlinks from all the normal states. More
formally:

Definition 1 (Silent transition topology). LetQ be
a set of states, C be a mapping that indicates the
silence assignment, and R be a transition topol-
ogy. Let Rs be a set of edges defined as follows:

Rs = {(q1, q2) ∈ Qs ×Q|q1
R−→ q2}.

A directed graphGs = (Q,Rs) is silent transition
topology induced by (Q,C,R).

Figure 8 shows an example of a silent transition
topology. A silent transition topology represents
all the possible transitions allowed in a state se-
quence at a single time step, zt. Based on the set
of meta-parameters in Figure 8 (Left), we can say
a state sequence zt = q1, q3, q4 never happens at
a single time step because q3 is a normal state that
produces an observation. Therefore, the state se-
quence must split into zt = q1, q3 and zt+1 = q4.
The state transition topology (Figure 8 (Right))
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clearly expresses this property, since there is no
link from q3 to q4.

We can use the definition of silent transition
topology to derive a sufficient condition that en-
sures the length of state sequence at a single time
step to be finite.

Definition 2 (Silent circuit constraint). A set of
meta-parameters (Q,C,R) satisfies silent circuit
constraint if the silent transition topology induced
by (Q,C,R) does not contain any circuits.

Theorem 3. If a silent HMM has meta-parameters
satisfying the silent circuit constraint, p(zt|zt−1)
is always zero whenever |zt| > |Qs|+ 1 for any t
and zt−1.

Proof. p(zt|zt−1) is greater than 0 only when zt
is a path in the silent transition topology because
transition probabilities from q1 to q2 are restricted
to being zero when ¬q1

R−→ q2. Since the silent
transition topology contains no circuits and nor-
mal states have no outlinks, the length of a path in
the silent transition topology is at most |Qs| + 1.
From these facts, p(zt|zt−1) = 0 when |zt| >
|Qs|+ 1.

Silent HMMs that satisfy the silent circuit con-
straint form a subclass of general silent HMMs.
The following theorems show that the constrained
silent HMMs have more expressive power than
HSMMs and HHMMs.

Theorem 4. The silent HMM constructed from a
given HSMM by using the method explained in
Section 3.2 satisfies the silent circuit constraint.

Theorem 5. The silent HMM constructed from a
given HHMM by using the method explained in
Section 4.2 satisfies the silent circuit constraint.

These theorems are easily proven by checking
that the silent transition topologies contain no cir-
cuits. Based on these results, we can apply effi-
cient inference algorithms (explained in the next
section) to silent HMMs that are equivalent to
HSMMs and HHMMs.

5.2 Inference Algorithms
The inference of silent HMMs indicates a calcula-
tion of the expectations of hidden states z given
a sequence of observations x. We describe a
modified forward-backward algorithm for the in-
ference of silent HMMs. The forward-backward
algorithm is an inference algorithm for normal
HMMs based on efficient computation of forward
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Figure 8: (Left) A set of meta-parameters (Q,C,R)
that satisfies the silent circuit constraint. (Right) Silent
transition topology obtained omitting the outlinks from
the normal states.
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Figure 9: Propagation of the forward probabilities in
the silent HMM that has a transition topology in Fig-
ure 8. We can calculate the forward probabilities in
O(T |Q|2) with the same complexity as normal HMMs
by processing in the topologically sorted order of the
states.

and backward probabilities. In this paper, we ex-
plain the calculation of forward probabilities to
handle the existence of silent states to apply the
algorithm to silent HMMs. For details on the
forward-backward algorithm, please refer to (Ra-
biner, 1989).

The forward probability of state qi at time step
t is defined as the joint probability of the observa-
tions until the time step t. For silent HMMs, we
divide cases for silent states and normal states as
follows.

αt(q)=

{
p(zt = q, x1:t−1) C(q) = 1(silent)

p(zt = q, x1:t) C(q) = 0(normal).

While multiple transitions can be involved in a
single time step t in silent HMMs, the forward
probabilities can be efficiently calculated by fol-
lowing the topological order of states in the silent
transition topology. Given a silent HMM with
meta-parameters (Q,C,R), we obtain a silent
transition topology and apply the topological sort
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algorithm to the directed graph of the silent transi-
tion topology. The obtained topological order re-
flects the possible order of transitions throughout
the silent states at a single time step t. Figure 9
shows the flow of the computation of αt for the
silent HMM that has the transition topology ex-
pressed in Figure 8. By following the topologi-
cal order we decided in this way, the computation
of αt for each state can be done with the compu-
tational complexity O(|Q|2), which has the same
computational complexity as the normal HMMs.
The recursive formula is derived as follows:

αt(q) =
∑
q′∈Qn

αt−1(q′)Aq′,q

+
∑

q′∈T (q)∩Qs

αt(q
′)Aq′,q,

where T (q) is a set of states that are earlier than q
in the topological order imposed on R.

While we are omitting the case for the backward
probabilities due to length limitations, we can ef-
ficiently calculate the backward counterpart and
apply the forward-backward algorithm to ensure
the inference is the same computational complex-
ity as normal HMMs. We are not detailing the al-
gorithm that estimates the most likely hidden state
sequence, but we can obtain the Viterbi algorithm
straightforwardly by replacing the forward com-
putation in the Viterbi algorithm for HMMs (Ra-
biner, 1989) with the method we explained above.

6 Conclusion

In this paper, we provided formal descriptions
of silent HMMs and proposed methods to obtain
silent HMMs that are equivalent to given HSMMs
and HHMMs. We believe that our results establish
a firm foundation to use silent HMMs as a unified
framework for PFSM modeling.

Future work includes developing PFSMs for
modeling structures in natural language (e.g.,
morphological structure) by combining the struc-
tural assumptions in HSMMs and HHMMs in the
framework of silent HMMs. Other future work
is more advanced Bayesian extensions of silent
HMMs incorporating Dirichlet prior (Foti et al.,
2014) and nonparametric Bayesian prior (Beal
et al., 2002; Heller et al., 2009). These extensions
coule enable us to estimate the number of states
during the training process, offering more power-
ful PFSM modeling methods.
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