Using Meta-Morph Rules to develop Morphological Analysers:
A case study concerning Tamil

K Sarveswaran Gihan Dias Miriam Butt
University of Moratuwa University of Moratuwa University of Konstanz
Sri Lanka Sri Lanka Germany

sarvesk@uom. 1k

Abstract

This paper describes a new and larger
coverage Finite-State Morphological Anal-
yser (FSM) and Generator for the Dra-
vidian language Tamil. The FSM has
been developed in the context of com-
putational grammar engineering, adhering
to the standards of the ParGram effort.
Tamil is a morphologically rich language
and the interaction between linguistic anal-
ysis and formal implementation is complex,
resulting in a challenging task. In order to
allow the development of the FSM to fo-
cus more on the linguistic analysis and less
on the formal details, we have developed
a system of meta-morph(ology) rules along
with a script which translates these rules
into FSM processable representations. The
introduction of meta-morph rules makes
it possible for computationally naive lin-
guists to interact with the system and to
expand it in future work. We found that
the meta-morph rules help to express lin-
guistic generalisations and reduce the man-
ual effort of writing lexical classes for mor-
phological analysis. Our Tamil FSM cur-
rently handles mainly the inflectional mor-
phology of 3,300 verb roots and their 260
forms. Further, it also has a lexicon of
approximately 100,000 nouns along with a
guesser to handle out-of-vocabulary items.
Although the Tamil FSM was primarily
developed to be part of a computational
grammar, it can also be used as a web
or stand-alone application for other NLP
tasks, as per general ParGram practice.

1 Introduction

A morphological analyser and generator is a
crucial tool for Natural Language Processing
(NLP), especially for processing morphologi-
cally rich languages like Tamil, in which mor-
phemes are used to mark various types of infor-

gihan@uom. 1k

76

miriam.buttQuni-konstanz.de

mation like tense, aspect, mood, person, num-
ber and, gender, etc. Our use of Finite-State
Morphology (FSM) is based on the two-level
approach to morphology in which there are
two layers, namely surface and lexical (Kart-
tunen and Beesley, 2001). The surface layer
represents the actual word, and the lexical
layer has a string, also called a lexical string,
which shows the morphological analysis. For
a language like Tamil, this analysis string is
generally complex and may be long.
Designing and writing out a large number of
lexical strings is not only tedious but also com-
plicated for a morphologically rich language
like Tamil. On the other hand, Tamil is mor-
phologically well structured, in other words,
the order of morphemes is generally rather
templatic (Lehmann, 1993), though there are a
few exceptions. For instance, simple indicative
verbs consist of a root that is then followed by
a tense marker and finally the person-number-
gender (PNG) marker. Because of the com-
plex, yet templatic nature of the morphologi-
cal system, we decided to aid and speed up the
development of the Tamil FSM via the innova-
tion of a set of meta-morph(ology) rules. We
further found that our meta-morph approach
can also be extended to other structured lan-
guages by performing some initial experimen-
tation with Sinhala, an Indo-Aryan language.

Our FSM is being developed in the context
of the construction of a computational gram-
mar for Tamil. For this, we are using the Xe-
rox Linguistic Environment (XLE) using Lex-
ical Functional Grammar (LFG), adhering to
standards and methods set within the interna-
tional ParGram effort (Butt et al., 1999).

"https://typo.uni-konstanz.de/redmine/projects,
pargram /wiki

Proceedings of the 14th International Conference on Finite-State Methods and Natural Language Processing, pages 76—86
Dresden, Germany, September 23-25, 2019. (©2019 Association for Computational Linguistics

2 Background
2.1 The Tamil language

Tamil is a Dravidian language, specifically a
Southern Dravidian language that is spoken
natively by more than 80 million people across
the world. It has been recognised as a classi-
cal language by the government of India since
it has more than 2000 years of a continu-
ous and unbroken literary tradition (George,
2000). It is an official language of Sri Lanka
and Singapore, and has regional official sta-
tus in Tamil Nadu and Pondichchery, India.
It has also been recognised as a minority or
indigenous language in several countries in-
cluding Malaysia, Mauritius and South Africa
and is taught as a second language in several
other countries, including Canada, Australia
and United Kingdom.

Tamil is an agglutinative language where a
set of morphemes are generally suffixed to a
lemma. However, there are a few exceptions
where morphemes are prefixed to lemmas.
Words in Tamil take both inflectional and
derivational suffixes, and engage in compound-
ing. Nouns in Tamil are primarily marked for
case and number. Verbs, on the other hand,
display complex morphological paradigms that
express a range of information relevant for syn-
tactic and semantic analysis.

2.2 Morphology of Tamil
2.2.1 Verb morphology

Verbs in Tamil realise a range of information
including tense, mood, aspect, negation, inter-
rogation, information about emphasis, speaker
perspective, sentience or rationality, and con-
ditional and causal relations (Annamalai et al.,
2014). Entities in Tamil are fundamentally
classified into rational vs. irrational. Entities
are termed rational if they are perceived as be-
ing able to think on their own. The rest are
termed irrational. Further, it has been claimed
that a weak vs. strong distinction found ex-
ists in the verbal paradigms that can be used
to determine transitivity, ergativity, volitativ-
ity and affectedness (Paramasivam, 2011).
All of these properties are realised via
suffixation.
ing can be translated by the Tamil verb
form eumbgCamaTymBSHES DTN (van-

tukontiruntirukkiran). This word consists

For instance, he has been com-

77

of the following morphs: eur (va) (lemma:
‘come’) + Gamewr() (kontu) (continuous) +
@mBg (iruntu) (has) + @ (iru) (be) +
Slmi(kiru) (present tense)+ e (an) (3rd
person + singular + masculine + rational). In
Tamil, PNG and rationality are expressed via
a single portmanteau form (Nuhman, 1999;
Sarveswaran et al., 2018). For instance, in
the above example it is the morph <61 (an)
that marks all of these features.

Tamil verbs can be classified on the ba-
sis of criteria that can be either morpho-
logical, syntactic or semantic (Paramasivam,
2011; Agesthialingom, 1971). Many scholars,
including Lisker (1951); Graul (1855); Arden
(1962) have classified verbs based on their
morphology, specifically, based on how mor-
phemes conjugate. Graul (1855) has provided
an early classification on which other scholars
have built their proposals (e.g., Irakavaiyankar
1958; Sithiraputhiran 2004). His classifica-
tion was also adapted for the Tamil lexicon
project (Rajaram, 1986). Graul’s classification
of Tamil verbal lemmas includes 12 categories,
and is based on the future tense markers in the
verbs. His basic classification is also adopted
in our work. In addition, Tamil also contains a
set of auxiliaries, derived verbs and compound
verbs.

2.3 Noun morphology

Nouns in Tamil display the morphological pro-
cesses of inflection, derivation and compound-
ing. Nouns are inflected for number and cases
(Rajendran, 2012; Nuhman, 1999). In our
FSM, we have so far tackled the inflectional
morphology. We have also implemented a
guesser which handles the inflections of out-
of-lexicon nouns, including compound nouns.
Compound nouns are handled as a single unit
in our current system.

Rajendran (2012) has proposed a paradigm
for noun morphology with 26 classes based on
the morphophonological changes, also called
canti (Sandhi). Among these 26 classes, 9
classes are used to capture the morphophono-
logical rules pertaining to pronouns. Pronouns
take different forms (different from their nom-
inative forms) when inflecting for a case suffix.
Currently, we are handling a subset of all of
the possible pronoun categories.

In our noun paradigm, we have identified 38

classes for pronouns, including personal, pos-
sessive, and interrogative pronouns. We found
that though many pronouns are subject to the
same morphophonological rules, these result in
different analyses or lexical strings. Therefore,
these have been sorted into different classes.
Overall, we followed the same classification as
proposed by Rajendran (2012) for other noun
classes.

2.4 Finite-State Morphology

Analysis run+V+3p+Sg
A A
Y Y
Morphological Analyzer Morphological Analvzer
A A
Y Y
Word form runs

Figure 1: Word form (or Surface form) and Anal-
ysis form (or Lexical form)
Source : https://fomafst.github.io/morphtut.html

The theory of two-level morphology saw suc-
cessful early applications for morphologically
rich languages like Finnish, Russian and
Sanskrit (Koskenniemi, 1983; Karttunen and
Beesley, 2001). Subsequently, it has been
taken up by researchers developing morpho-
logical analysers for other languages, including
the South Asian languages Urdu, Sindhi and
Nepali (Bogel et al., 2007; Prasain, 2011; Rah-
man, 2016) (see also Seiss 2012 for the morpho-
logically extremely complex Australian lan-
guage Murrinh-patha). In the two-level mor-
phological analysis, a word is represented at
two levels, namely the lexical level or lexical
form, and the surface level or surface form, as
shown in Figure 1.

Several tools have been developed to model
FSM. Proprietary tools like the Xerox Finite-
State Transducer (XFST) (Beesley and Kart-
tunen, 2003) and the FSM Library from
AT&T (now in OpenFST) have been widely
used in the past. Open source solutions
like OpenFST (Allauzen et al., 2007), HFST
(Lindén et al., 2009) and Foma (Hulden, 2009)
are also employed. XFST has been used
widely as an aid to grammar engineering in the
LFG/XLE context (Beesley and Karttunen,

78

2003; Butt et al., 1999; Rahman, 2016) as part
of the ParGram effort. However, we found
that in addition to licensing issues, XFST also
has issues in rendering the scripts of South
Asian languages, including Tamil, Sinhala and
Devanagari. Among the available open source
solutions, Foma complies with XFST stan-
dards, and has built-in support for the Uni-
code processing and proper rendering of South
Asian scripts. We therefore decided to work
with this software.

3 Related work

3.1 Meta-model / Meta-grammar
development

Fokkens and Bender (2013) argue strongly
that humans are better suited to the task of
developing linguistic analyses than machines.
We also believe that it is specifically bet-
ter for the analysis of a language like Tamil,
which is computationally under-resourced and
which displays complex and interacting pat-
terns of linguistic structure that need to be
made transparent for down-stream NLP ap-
plications.

Bender et al. (2011) and Butt and King
(2003) point out that regression testing is im-
portant for grammar engineering to be able
to manage complex models when extended.
This is also true for the development of a
morphological analyser for a morphologically
complex language like Tamil, where a contin-
uous development is required, and where each
time the system should be checked for possi-
ble errors. In order to facilitate the regres-
sion testing, Fokkens and Bender (2013) pro-
posed a meta-grammar layer for grammar de-
velopment, which places the customisation of
source code under the control of grammar en-
gineers while other users are then encouraged
to do whatever changes may be necessary for
their language specific needs. Otherwise, engi-
neers need to engage with in-depth linguistic
knowledge, and in turn, linguists need to en-
gage with engineering issues.

The concept of meta-modelling has also
been used in domains such as information min-
ing. For instance, Ruiz et al. (2016) have pro-
posed meta-association rules to compile new
information from data extracted from multi-
ple data sets, in order to provide a summarised

representation. Similarly, the meta-rules pro-
posed here also provide a summary of how
words are formed.

3.2 Morphological analysers

A number of studies have been done on FSMs
for South Asian languages. One of the earliest
was Bogel et al. (2007) for Urdu that includes
a transliteration component so that the mor-
phological analyzer and generator can also be
used for the structurally almost identical lan-
guage Hindi. In addition to inflectional and
derivational morphology, it also tackles com-
plex problems such as reduplication and com-
pounding. Prasain (2011) has developed an
FSM for Nepali using the two-level morphol-
ogy approach and XFST tool. Rahman (2016)
has developed an analyser and generator for
Sindhi as a part of his work on grammar devel-
opment for Sindhi. He also used XFST, which
he then integrated within his grammar.

Antony and Soman (2012) have carried out
a survey on the state of affairs of computa-
tional morphology of Indian languages, and
have documented 17 efforts of morphological
analysers and/or generators for Tamil. 12 of
them were carried out before 2007 and the rel-
evant papers, data sets and/or software are
not retrievable. The remainder have been car-
ried out since 2010. Among those five ef-
forts (Anand Kumar et al., 2010b,a; Menaka
et al., 2010) are available for download in bi-
nary form yet without any data sets.

Menaka et al. (2010) and Anand Kumar
et al. (2010b) have used rule-based approaches
which only perform morphological genera-
tions. Anand Kumar et al. (2010a) have, on
the other hand, applied a machine learning
approach for the morphological analysis and
generation of Tamil. Anand Kumar et al.
(2010a) claim that the system was tested us-
ing 40,000 verbs and 30,000 nouns, and that
the machine learning system was trained using
130,000 verbs and 70,000 nouns from their own
corpus. However, data sets, sources or any de-
tailed documentation are not available except
for a sample corpus with 270,000 tokens. The
extendability of this work to aid grammar de-
velopment is also questionable, and would yet
need to be researched. An email exchange with
the authors has established that they do not
work on this domain anymore.

79

Parameshwari (2011) has implemented a
morphological analyser and generator for
Tamil using a rule-based approach which cov-
ers verbs, nouns, adjectives, pronouns, numer-
als and non-standard Tamil words, with the
use of the Apertium tool. The author claims
that the system shows an accuracy of 84%.
There are no associated data sets or rules avail-
able and the authors are also not contactable.

Lushanthan et al. (2014) have proposed
a morphological analyser and generator for
Tamil and have implemented it using XFST.
The authors have used transliteration to han-
dle the Tamil script given that XFST has is-
sues in rendering, although it supports Uni-
code internally. The authors have considered
2,000 noun and 96 verb stems for the analy-
sis and generation. They have tested the pro-
posed system using their own data set consist-
ing of 3,500 nouns and 500 verbs with a success
rate of 78%. However, the data sets and XFST
rules have not been made available.

Anna University, India has developed
a morphological analyser in 2001 called
Atcharam that has recently been added to the
GitHub repository.? It is developed for TAB
(TAmil Bilingual) encoded text as a stand-
alone application using Java. Further, there
is no detailed technical documentation or rule
set. Some data in the form of a list of words
are available in the repository. However, those
are encoded using TAB, and an attempt to
convert them to Unicode was also not success-
ful.

There are also some morphological tools
available in the GitHub code repository
without corresponding academic publications.
Pranavan and et al.? have provided work on
a basic morphological analyser developed as a
stand-alone application using Java. However,
as also claimed by the developers, it is a basic
analyser which handles only 20 words with 28
conjugation forms.

Yet another code repository is that by
tacola-aucse.* This is also developed as a
stand-alone application using Java, covering
the analysis of verbs and nouns. However, no

2https://github.com/tacola-auceg/morpha,_ ta

Shttps://github.com/Pranavan135/Tamil
__Morphological _Analyzer

“https://github.com/tacola-aucse/Morphological-
Analyzer-For-Tamil

information about the data set or the rules de-
veloped, were found. We managed to run the
tool with an older version of Java, but, irreg-
ular verbs like Qeggmen (cettan) ‘he died” do
not give any analysis. In some cases, the given
analysis is very confusing, especially when an
out-of-vocabulary word is fed in. For instance,
the analysis of #7Ceuuteuey (carvesvaran), a
proper noun, showed that it has the root of
g7CGau (carve) and a future tense marker ey
(v) and the past tense marker e (n). That is,
it not only mistakes a proper noun for a verb,
it also provides a completely wrong analysis
with two tense markers. Furthermore, if the
text is not Unicode normalised, then the tool
produces unexpected results. Finally, when
there are multiple analyses for a word, only
one is provided. In comparison to the other
tools available, however, this tool works well,
but the extendability of the stand-alone Java
tool is not very straightforward, unless a com-
plete documentation can be found.

4 Development of Tamil FSM
4.1 Need for a Tamil FSM

Our research conducted on existing Tamil
morphological analysers has demonstrated
that none of the analysers developed in the
past are complete or maintained anymore and
that most of the existing applications do not
support Unicode encoding. Our target task
of constructing a computational grammar re-
quires a morphological analyser with good ac-
curacy with a specific type of interface to the
grammar. None of the existing efforts fulfill
these requirements.

On the other hand, we found that the open
source software Foma fulfils our requirements;
while rendering our scripts correctly, it also
complies with XFST and can be easily inte-
grated to the grammar we develop.

4.2 Methodology

Lexicons of verbs and nouns were compiled
from various sources and classified on the ba-
sis of their inflected classes. Thereafter, a set
of labels was identified and a parser to parse
the meta-morph rules was developed. Next,
orthographic rules were written for the iden-
tified classes. The FSM was then evaluated.
In order to evaluate, a data set was also com-

80

piled, since there were no existing benchmark
data sets found. All the inputs were pre-
processed before being analysed. The Tamil
FSM has been developed as a web-based sys-
tem (parsers.projects.uom.lk) so that anyone
can check or use it, where a word can be fed
in, and an analysis produced as an output.

4.2.1 Pre-processing

Due to the nature of the Tamil Unicode encod-
ing and input methods, all the inputs needed
to be Unicode normalised before being fed to
the web interface for analysis or generation. In
Tamil, the same character can be formed by
multiple code sequences if it is not controlled
or handled by the keyboard input driver. For
instance, the letter Q&m can be entered by
users using the following sequences: & + @
or & + O + . However, it is only the
first sequence is acceptable and logical. Be-
cause, in Tamil, a composite character like
@& is formed by adding a vowel to a con-
sonant. In Unicode, vowels are denoted by
vowel modifiers. Therefore, a consonant can-
not be followed by two vowel modifiers (ac-
tually two vowels). However, in the case of
& + @ + o, there are two vowel modi-
fiers are followed by a consonant. This is im-
possible in Tamil. Therefore, it is important
to convert all the unacceptable formations to
acceptable formations; the process of convert-
ing other forms to Unicode normalised form is
called Unicode normalisation. Otherwise, this
would lead to issues when passing through the
FST. We therefore developed a script that en-
ables the Unicode normalisation of Tamil text.

4.2.2 Compiling lexicons

A lexicon of 3,300 lemmata of Tamil verbs
was compiled from the following two verified
sources:

o Annamalai et al. (2014) identified 369 of
the most frequently used verbs in Mod-
ern Tamil. Their analysis is based on a
corpus of 7 million tokens compiled from
the web and took into account expert ad-
vice on linguistic matters. Their list has
been included in the contemporary Tamil
dictionary Cre-A (Ramakrishnana, 2014).

Irakavaiyankar (1958) surveyed Tamil lit-
erature up until 1958, where he identi-

fied 3,124 lemmas and categorised these
into 12 classes as per the classification
proposed by Graul (1855) (Sithiraputhi-
ran, 2004). However, some of these forms
are not used in the contemporary lan-
guage. Nevertheless, since the analysis
of those verbs is necessary for processing
the historical Tamil text, the entire list
has been considered for the development
of our FSM.

In Tamil, complex verbs are formed on the ba-
sis of infinitival forms, verbal participles and
verbal nouns (Boologarambai, 1986). There-
fore, in addition to the verbal lemmata col-
lected, auxiliary classes were also constructed
manually, using the infinitival and verbal par-
ticiple forms of the lemmata.

Tamil nouns were collected from various
databases online, glossaries and corpora. An
initial level of cleaning was additionally con-
ducted in order to ensure that the list has only
lemmata.

4.2.3 Verb Paradigm

Instead of handling words individually, a
paradigmatic approach is used to reduce the
volume of the problem. Anand Kumar
et al. (2010b) have proposed a paradigm with
32 classes in their data-driven morphological
analyser, while Menaka et al. (2010) identi-
fied a verb paradigm with 34 classes in their
Tamil morphological generator study. How-
ever, we have here chose to use the widely ac-
cepted 12 verb paradigm proposed by Graul
(1855). In addition to these 12 categories, each
of the 7 irregular verbs defined in (Annamalai
et al., 2014) is considered as a separate cate-
gory. Further, 15 auxiliaries, identified from
the literature, were also implemented as 15
separate classes. Altogether, a taxonomy of
34 classes has been used to develop the FSM
for verbal forms.

4.2.4 Conjugation forms

Annamalai et al. (2014) have identified 254
forms for each Tamil verb after a rigorous
analysis of their corpus of contemporary texts.
Some verbs may not take all of the 254 forms.
Further, Rajaram (1986) has also identified 21
forms for each verb from a pedagogical per-
spective. On the other hand, Anand Kumar
et al. (2010a) claim that a Tamil verb lemma

81

can take up to 8,000 forms though not all are
listed or found in the literature. In our FSM
260 inflectional forms are considered. These
forms are the set common to Annamalai et al.
(2014) and Rajaram (1986). For each lemma,
these 260 forms are generated and analysed.
However, more forms can easily be added to
the system without the need of any additional
programming.

4.2.5 Morpheme labels

There are different sets of labels used to mark
the morphemes in the morphological analysers
of Anand Kumar et al. (2010a); Menaka et al.
(2010). Kirov et al. (2016) attempt to unify
the morphological labels under the brand of
Unimorph to facilitate the cross-lingual mor-
phological transfer.

However, in our Tamil FSM, we have de-
veloped a set of our own morpheme labels.
Because PNG and rationality are marked by
a single morph in Tamil, it is more efficient
from a grammar engineering perspective to
handle them together, thus reducing the num-
ber of lexical rules in the grammar (Butt et al.,
1999). While we have decided to develop and
use our own labelling, we plan to implement
an interface that will facilitate exporting infor-
mation in the Unimorph format (Kirov et al.,
2016).

5 Meta-morph rules

From the review of Tamil morphological anal-
ysers, it is evident that most of the efforts in
defining morphological structure or morpho-
tactics are deeply coupled with the program-
ming logic. In some other efforts, people have
spent a considerable amount of time writing
rules.

Snippet 1 Snippet of meta-morph rules
1.classes=C1,C2,C3,C4,C5,C17,C18,C19
commonlLabels=+fin+sim+ind

v-ind=root+tense+png

2.
3.
4 .v-euph=root+past+euph+pngeuph

On the other hand, arguments have been
presented that a meta-representation of the
formal implenentational details will allow and
encourage computationally naive linguists to
contribute to the development of linguistic re-
sources for language processing.

The meta-morph rules outlined in this pa-
per successfully hide the programming details
of the morphological analysis and help to focus
only on the analysis of the language. Further,
this also automates the generation of lexical
entries, which when done manually is not only
a tedious and time-consuming task, but also
one where people can easily make mistakes.
This is particularly true for a language like
Tamil in which each verb may undergo sev-
eral hundred inflections. Therefore, even if a
paradigm approach is used, it is challenging
to write rules, maintain them and perform a
regression testing without the aid of a meta-
grammar.

To achieve this we have developed meta-
morph rules. Consider Snippet-1 of the meta-
morph rules example. Line number 3 shows
how finite, simple and indicative verbs are
formed for the classes listed in line number 1.
The order of conjugation also matters, where
it shows that with a verb root, first, it is a
tense marker that is coined, and finally a PNG
marker follows. These rules can also be ap-
plied in other studies to see how words are
conjugated in Tamil. Further, the rules can
be defined at different levels. For instance,
line number 3 shows that all the finite, simple
and indicative verbs are formed by conjugat-
ing a tense and a PNG, where tense stands
for the realisation of one of the three tenses
available. However, line number 4 shows that
verbs which consist of euphonic markers (ma-
terial used to fulfill phonological phrasing re-
quirements) are constructed only with past
tense verbs, and with a specific PNG marker.
Snippet-1 thus exemplifies the type of meta-
morph rules that we have devised.?

The corresponding values for the labels in
the meta-morph rules are stored in JSONS
files. Data are stored in JSON as key-value
pairs which are also human readable. The
above rules and JSON entries can be written in
a plain text file. For instance, Snippet-2 shows
how tense labels are defined and stored in a
JSON file. As shown here, there can be dif-
ferent past tense markers for different classes
of verbs. For general cases, the tense marking

5A reviewer asks about the formal power of the
meta-morph rules. Essentially they replace the con-
tinuation classes found in LEXC.
Shttps://www.json.org/

82

can be done as shown in line 3. However, if re-
quired, a particular tense marker can also be
used, as shown in line number 4 of the above
Snippet-1. In addition to labels, values corre-
sponding to each morph can also be stored in
the JSON file, as shown in Snippet-2. For in-
stance, in the above example for “past1”, the
label is past and the morph & (which marks
the verb as past) is also included as a part of
the label. This information becomes part of
the lexical analysis. Further, as shown in the
Snippet-2, the proposed data structure pro-
vides the flexibility for defining different tense
markers and labels for different classes, and
these data can be referred at different levels
when writing the meta-morph rules. For in-
stance, it can be either referred as “past” or
“past1l” rule-base.

Snippet 2 Snippet of data in a JSON file

"tense”: {
"past”: {
"pastl”: {
"label”:"+past=8",
77marker” : 77‘&)77
"classes”:["C1”,7C15”]
2
"past2”: {

"label”:”+past=aurL_",
99,9

"marker”:”ewrL_",
"classes”:["C2”]

}

"pres”:{
"presl”: {
"label”:”+pres=4liH”,
"marker”:"&lp”,
"classes”:["C27,”C3”|
}
e ¢
ut”:
"futl”: {
"label”: 7+fut=eu”,

"marker”: "eu”,

"classes”: [7C3”,7C4”|

In case a mistake in the labelling, or in the

value of a marker, is found, it can be easily cor-
rected in the JSON text file without needing
to engage with FSM programming.

Once the meta-morph rules are finalised,
they can be parsed to produce the actual
lexical strings that are then fed to Foma to
compile an FST. A parser is developed using
Python to parse these morph-rules to gener-
ate lexical rules for Foma. A sample of com-
piled meta-morph rules will look as shown in
Snippet-3. We use the pipe “|” symbol to mark
morpheme boundaries, as inspired by Beesley
and Karttunen (2003), who use “TB” to mark
the token boundary. “|” is used in Universal
Dependencies to separate features.” The % is
allowed to escape special characters in the lex-
ical string.

Apart from the generation of these interme-
diate entries, orthographical rules were writ-
ten for each class in the paradigm as neces-
sary. If a new class needs to be introduced,
then a new set of entries needs to be added to
the orthographical file. Otherwise, there is no
need to touch the lexical strings or the ortho-
graphical files.

Snippet 3 Snippet of lexical string or analysis
string
%|+fin %|+sim %|+ind %|+strong
%o|4+past %= & %|+3sgn %o==ig

We initially developed a Tamil FSM by
entering all of the necessary lexical strings
manually, yet found this to be tedious task
that took time and energy away from under-
standing the more generalised overall struc-
ture of the language morphology. In evalu-
ating our progress, we found that correcting
errors was complicated and time-consuming,
since we always had to engage with the de-
tails of the Foma specifications. The frustra-
tion with these time-consuming tasks led us
to experiment with meta-morph rules. We
found writing rules in the meta-morph and
defining feature-value pairs using JSON to be
easy and quick. It also helped us to accel-
erate the process of developing our FSM for
Tamil, where for instance the identification of
mistakes could be corrected easily. Adding a

"https:/ /universaldependencies.org/format.html

83

lexical string or new conjugational form also
became very straightforward. We need to just
list the classes which will take those new forms
and then define a generalised rule for the for-
mation of that word as shown in Snippet-1.

6 Evaluation and Discussion

There are no benchmark data sets available
to evaluate a morphological analyser in Tamil.
Therefore, the 500K corpus from AUKBC?®
was used for evaluation. This corpus is com-
piled from a popular Tamil historical novel
written by an Indian author. From the 19,250
unique verbs found in the corpus, only the
finite, infinitives, relative participles, verbal
participles and conditional verbs were ex-
tracted. However, the finite verbs compiled
also comprised of compound and derivational
verbs, which cannot be separated from the fi-
nite list as there are no tags to identify them.
In addition 26,000 tokens which were marked
as nouns also extracted from the corpus to
evaluate the noun morphology. However, the
list had a significant number of compound
nouns, nominal complex (for instance, noun +
conjunction), personal names, and borrowed
words from Sanskrit. Table 1 shows the out-
come of the evaluations.

Derivational verbs, spelling mistakes, nom-
inal complex words, and personal names, as
well as errors in the tagging, were the primary
causes for the failure of the Tamil FSM. The
guesser provided an analysis for the compound
verbs and nouns.

7 Conclusion

We conclude that meta-morph rules are use-
ful for the acceleration of the development of
FSMs. At the same time, they allow the state-
ment of linguistic generalisations in a form
that is easily human readable and provides an
interface for computationally naive linguists to
interact with the FSM and to potentially help
extend and improve it.

The Tamil FSM outlined in this paper has
also been developed as a web-based system:
parsers.projects.uom.lk. The evaluation
in Table 1 shows that the Tamil FSM al-
ready provides a high accuracy for the anal-
ysis of verbs and a reportable accuracy for the

8http://www.au-kbc.org/nlp/corpusrelease.html

parsers.projects.uom.lk

analysis of nouns.
shows if there are multiple analyses for a word;
for instance, an analysis for a word GQ&Wiud
(ceyyum) is shown in the Figure 2.

In future work, we intend to explore whether
the meta-morph rule interface can be further
generalised and used for other languages, at
least for other South Asian Languages. We
already have performed an initial work on this
for the Indo-Aryan language Sinhala and the
results are encouraging. We will also extend
the existing Tamil FSM by fully incorporating
derivational morphology.

Analysis of Gailnyb

Root : Gail

+nonfin

+sim

+futANDadjpart=ai

Root : Q&

+fin

+sim

+ind

+strong

+fut=a1d

+3sgn=2

Root : Q=i

+fin

+sim

+ind

+strong

+fut=210

+3pln=5

Figure 2:
interface

Screenshot of the analysis from the web

84

Word type Found in the Corpus | Analysed | Percentage
Verbs - Finite 10,269 10,142 98.7
Verbs - Infinitive 1,615 1,540 95.4
Verbs - Relative participle 2,677 2,525 94.3
Verbs - Verbal participle 3,339 3,110 93.1
Nouns 26,000 19,990 76.5
Table 1: Evaluation results
Further, the system also ~ Acknowledgement

This research was supported by the Accelerat-
ing Higher Education Expansion and Develop-
ment (AHEAD) Operation of the Ministry of
Higher Education, Sri Lanka funded by the
World Bank and the DAAD (German Aca-
demic Exchange Office). We also thank Lauri
Karttunen for his time and provision of several
helpful pointers.

References

S Agesthialingom. 1971. A Note on Tamil Verbs.
Anthropological Linguistics, pages 121-125.

Cyril Allauzen, Michael Riley, Johan Schalk-
wyk, Wojciech Skut, and Mehryar Mohri. 2007.
OpenFst: A general and efficient weighted finite-
state transducer library. In International Con-
ference on Implementation and Application of
Automata, pages 11-23. Springer.

M Anand Kumar, V Dhanalakshmi, KP Soman,
and S Rajendran. 2010a. A sequence labeling
approach to morphological analyzer for Tamil

language. International Journal on Computer
Science and Engineering (IJCSE), 2(06):1944—
195.

M Anand Kumar, VV Dhanalakshmi, and S Rajen-
dran. 2010b. A novel data driven algorithm for
Tamil morphological generator. International
Journal of Computer Applications, 6:52—56.

E Annamalai, A Dhamotharan, and A Ramakrish-
nan. 2014. Akaratiyin putiya patippil tarkalat
tamil ilakkana vilakkam, pages xxxi—xlvii. Crea-
A Publishers, India.

PJ Antony and KP Soman. 2012. Computational
morphology and natural language parsing for In-
dian languages: a literature survey. Interna-
tional Journal of Scientific and Engineering Re-
search, 3.

Albert Henry Arden. 1962. A progressive grammar
of common Tamil. Christian Literature Society.

Kenneth R Beesley and Lauri Karttunen. 2003.
Finite-state morphology: Xerox tools and tech-
niques. CSLI Publications, Stanford.

Emily M Bender, Dan Flickinger, and Stephan
Oepen. 2011. Grammar engineering and linguis-
tic hypothesis testing: Computational support
for complexity in syntactic analysis. Language
from a cognitive perspective: grammar, usage
and processing, pages 5-29.

Tina Bogel, Miriam Butt, Annette Hautli, and Se-
bastian Sulger. 2007. Developing a Finite-State
Morphological Analyzer for Urdu and Hindi. In
Finite-State Methods and Natural Language Pro-
cessing, pages 86-96. Potsdam University Press.
Revised Papers of the Sixth International Work-
shop on Finite-State Methods and Natural Lan-
guage Processing.

A Boologarambai. 1986. A Study of Auxiliaries
in the Old and the Middle Tamil. Ph.D. thesis,
Centre of Advanced study in linguistics, Anna-
malai University, India.

Miriam Butt and Tracy H. King. 2003. Grammar
writing, testing and evaluation. In Ali Farghaly,
editor, A Handbook for Language FEngineers,
pages 129-179. CSLI Publications, Stanford.

Miriam Butt, Tracy Holloway King, Maria-
Eugenia Nino, and Frederique Segond. 1999. A
Grammar Writer’s Cookbook. CSLI Publica-
tions, Stanford.

Antske Fokkens and Emily M Bender. 2013. Time
travel in grammar engineering: Using a meta-
grammar to broaden the search space. In Pro-
ceedings of the ESSLLI Workshop on High-Level
Methodologies in Grammar Engineering, pages
105-116.

. Hart George. 2000. Statement on the Status
of Tamil as a Classical Language. Available:
https://southasia.berkeley.edu/tamil-classes.
Accessed on: 2017-11-12.

Karl Graul. 1855.
Leipzig University.

Outline of Tamil grammar.

Mans Hulden. 2009. Foma: a finite-state compiler
and library. In Proceedings of the 12th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Demonstrations
Session, pages 29-32. Association for Computa-
tional Linguistics.

)

M Irakavaiyankar. 1958. ’Vinaittiripu vilakkam
(conjugation of Tamil verbs) (in Tamil). Eighty
year anniversary publication.

Lauri Karttunen and Kenneth R Beesley. 2001.
A short history of two-level morphology.
ESSLLI-2001 Special FEvent titled” Twenty
Years of Finite-State Morphology. Available:
http://www.helsinki.fi/esslli/.

Christo Kirov, John Sylak-Glassman, Roger Que,
and David Yarowsky. 2016. Very-large scale

85

parsing and normalization of wiktionary mor-
phological paradigms. In Proceedings of the
Tenth International Conference on Language
Resources and Evaluation (LREC 2016), Paris,
France. European Language Resources Associa-
tion (ELRA).

Kimmo Koskenniemi. 1983. Two-level morphology.
Ph.D. thesis, University of Helsinki.

T. Lehmann. 1993. A grammar of modern Tamil.
Pondicherry Institute of Linguistics and Cul-
ture, India.

Krister Lindén, Miikka Silfverberg, and Tommi
Pirinen. 2009. HFST tools for morphology—an
efficient open-source package for construction
of morphological analyzers. In International
Workshop on Systems and Frameworks for Com-
putational Morphology, pages 28-47. Springer.

Leigh Lisker. 1951. Tamil verb classification. Jour-
nal of the American Oriental Society, 71(2):111—
114.

Sivaneasharajah Lushanthan, AR Weerasinghe,
and DL Herath. 2014. Morphological analyzer
and generator for Tamil language. In Advances
in ICT for Emerging Regions (ICTer), 2014
International Conference on, pages 190-196.
IEEE.

S Menaka, Vijay Sundar Ram, and Sobha Lalitha
Devi. 2010. Morphological generator for Tamil.
Proceedings of the Knowledge Sharing event on
Morphological Analysers and Generators (March
22-23, 2010), pages 82-96.

M Nuhman. 1999. Basic Tamil Grammar (In
Tamil). Readers’ Association, Sri Lanka.

K Paramasivam. 2011.
Grammar. Adaiyaalam.

Contemporary Tamil

K Parameshwari. 2011. An implementation of
APERTIUM morphological analyzer and gener-
ator for Tamil. Parsing in Indian Languages,
page 41.

Balaram Prasain. 2011. Computational Analysis of
Nepali Morphology: A Model for Natural Lan-
guage Processing. Ph.D. thesis, Faculty of Hu-
manities and Social Sciences of Tribhuvan Uni-
versity, Nepal.

Mutee U Rahman. 2016. Developing a Sindhi
Computational Resource Grammar in Lexical
Functional Grammar framework. Ph.D. thesis,
Faculty of Engineering Science and Technology,
Isra University, Hyderabad.

S Rajaram. 1986. English-Tamil Pedagogical Dic-
tionary. Thanjavur: Tamil University.

https://southasia.berkeley.edu/tamil-classes
https://southasia.berkeley.edu/tamil-classes

S Rajendran. 2012. Preliminaries To The Prepa-
ration Of A Spell And Grammar Checker For
Tamil. Upoaded in academia. edu and Reseach
Gate.

S Ramakrishnana, editor. 2014. Cre-A: Dictio-
nary of Contemporary Tamil. Cre-A publishers,
Chennai, India.

M Dolores Ruiz, Juan Gémez-Romero, Miguel
Molina-Solana, Jestis R Campana, and Maria J
Martin-Bautista. 2016. Meta-association rules
for mining interesting associations in multiple
datasets. Applied Soft Computing, 49:212-223.

K Sarveswaran, Gihan Dias, and Miriam Butt.
2018. ThamizhiFST: A Morphological Analyser
and Generator for Tamil Verbs. In 2018 3rd In-
ternational Conference on Information Technol-
ogy Research (ICITR), pages 1-6. IEEE.

Melanie Seiss. 2012. A rule-based morphological
analyzer for murrinh-patha. In Proceedings of
the 8th International Conference on Language
Resources and Fvaluation (LREC 2012), pages
751-758. Istanbul,Turkey: FEuropeanLanguage
Resources Association (ELRA).

H Sithiraputhiran. 2004. Vinaittiripu vilakkamum
moliyiyal kotpatum. International Institute of
Tamil Studies.

86

