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Abstract

We show that regular transductions for which
the input part is generated by some multiple
context-free grammar can be simulated by syn-
chronous multiple context-free grammars. We
prove that synchronous multiple context-free
grammars are strictly more powerful than this
combination of regular transductions and mul-
tiple context-free grammars.

1 Introduction

In machine translation, one is interested in auto-
matically translating sentences of one natural lan-
guage into sentences of another natural language.
Such translations can be considered as string-to-
string transductions by viewing the words of a nat-
ural language as symbols of a formal language,
and viewing sentences as strings. Several formal
models for such transductions have been proposed,
e.g., syntax-directed translation schemata (Lewis
and Stearns, 1968), also known as synchronous
context-free grammars (Chiang, 2007), two-way
generalized sequential machines (2gsm) (Sheperd-
son, 1959; Aho and Ullman, 1970), MSO definable
string-to-string transductions (MSO-sst) (Courcelle
and Engelfriet, 2012), and streaming string trans-
ducers (SST) (Alur and Černý, 2010).

It has been established that the deterministic
versions of 2gsm, MSO-sst, and SST generate
the same class of string-to-string transductions
(Alur and Černý, 2010; Engelfriet and Hoogeboom,
2001); the same is true for the nondeterministic ver-
sions of MSO-sst and SST (Alur and Deshmukh,
2011). Due to these characterizations, the involved
transducers and the corresponding transductions
are called regular transducers and regular trans-
ductions, respectively.

In statistical machine translation (Lopez, 2008),
one aims at automatically inferring a translation

model from some bilingual corpus, where the trans-
lation model is chosen from some class of formal
devices, e.g., the class of regular transducers. In the
seminal paper by Brown et al. (1993), the inference
is based on the concept of alignment graph (used
as hidden random variable in the EM-algorithm
(Dempster et al., 1977)); each such graph consists
of an input sentence w, an output sentence v, and a
binary relation between the set pos(v) of positions
of v and the set pos(w) of positions of w. In the
particular case of the IBM models each alignment
graph is a partial mapping from pos(v) to pos(w).
These have almost the same mathematical structure
as the origin graphs of Bojańczyk (2013), except
that in the latter, the mapping is total.

Bojańczyk (2013) and Bojańczyk et al. (2017a,b)
investigated the concept of regular transductions
with origin semantics, where the origin semantics
of a regular transducer A is a set of the origin
graphs that A can create: if A produces a portion
v′ of the output while reading the input symbol at
position i, then each position of v′ is aligned to i.

Since the domain of each regular transduction
is a regular string language, it cannot capture non-
regular syntactic phenomena on the source side
of the translation. To enhance this capability, this
paper investigates imposing additional syntactic
restrictions on the input of a regular transducer,
through intersection with a multiple context-free
grammar (Seki et al., 1991) (MCFG). We prove
that the resulting transduction can also be gener-
ated by a synchronous MCFG, which is a pair of
MCFGs with synchronized nonterminals, much as
in, e.g., synchronous context-free grammars. We
further give an example of a synchronous MCFG
whose transduction cannot be represented as the
intersection of a regular transducer and a MCFG.
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2 Preliminaries

We let N = {0, 1, 2, . . .}, N+ = N \ {0}, and
[i, j] = {k ∈ N | i ≤ k ≤ j} for every i, j ∈ N.
We abbreviate [1, j] by [j]. We abbreviate se-
quences of objects, like a1 · · · an and a1, . . . , an,
by a1,n. We denote the powerset of a set A by
P(A). We abbreviate a set {a} with one element
by a. An alphabet A is a nonempty and finite set.

For functions f : A → B and g : B → C, we
denote their composition by f ◦g, i.e., (f ◦g)(a) =
g(f(a)) for each a ∈ A.

We let X = {x1, x2, x3, . . .} be a set of vari-
ables and Xk = {x1, . . . , xk} for each k ∈ N.

Let Σ1 and Σ2 be alphabets. An origin graph
(over Σ1 and Σ2) is a triple (w, v, g) wherew ∈ Σ∗1,
v ∈ Σ∗2, and g (origin mapping) maps each position
j of v to a position i of w. Intuitively, the pair
(j, i) ∈ g indicates that the symbol at position j of
v originated from position i of w. Let A be a set
of origin graphs and L1 and L2 formal languages.
Then we define

A e (L1 × L2) =

{(w, v, g) | (w, v, g) ∈ A,w ∈ L1, v ∈ L2} .

We generally refer to Σ1 as the input alphabet
and Σ2 as the output alphabet. For a set L ⊆ L1 ×
L2 we define the input projection as proj1(L) =
{w | (w, v) ∈ L} and the output projection as
proj2(L) = {v | (w, v) ∈ L}.

3 Streaming String Transducers

Here we recall the definition of streaming trans-
ducer from Alur and Deshmukh (2011), with some
slight modifications that refer to the final output of
a string.

LetR be a finite set of registers, and let ρ = |R|.
Let Γ be an alphabet. A copyless assignment to
R over Γ (or short: assignment) is a mapping
α : R → (R∪Γ)∗ such that any r ∈ R occurs at
most once in the set {α(r′) | r′ ∈ R}. We assume
there is a fixed total ordering r1, . . . , rρ of the ρ reg-
isters inR. This allows us to specify an assignment
α in the form (r1, . . . , rρ) := (α(r1), . . . , α(rρ)).
The identity assignment is the mapping id : R →
(R ∪ Γ)∗ such that id(r) = r for each r ∈ R.
The set of all copyless assignments to R over Γ
is denoted by Ass(R,Γ). The composition of two
copyless assignments α1, α2 ∈ Ass(R,Γ) is the

mapping α1 ◦ α′2 : R → (R ∪ Γ)∗, where α′2 is
the canonical extension of α2 to a mapping of type
(R∪ Γ)∗ → (R∪ Γ)∗. For convenience, we drop
the prime and write α1 ◦ α2 instead of α1 ◦ α′2.
Clearly, α1 ◦α2 is a copyless assignment toR over
Γ, and (Ass(R,Γ), ◦, id) is a monoid.

A nondeterministic streaming string transducer
(over Σ1 and Σ2) (for short: NSST) is a tuple
A = (Q,Σ1,Σ2,R, ro, T, q0, F ) where Q is a fi-
nite, nonempty set of states, Σ1 and Σ2 are the in-
put alphabet and the output alphabet, respectively,
R is a finite set of registers, ro ∈ R is the output
register, T ⊆ Q×Σ1×Ass(R,Σ2)×Q is a finite
set of transitions, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states.

The summary of A is the mapping

∆ : (Q× Σ∗1)→ P(Ass(R,Σ2)×Q)

defined inductively as follows.

∆(q, ε) = {(id, q)}
∆(q, wa) = {(α ◦ αw, q′′) |

(∃q′ ∈ Q) : (αw, q
′) ∈ ∆(q, w),

(q′, a, α, q′′) ∈ T}

for each q ∈ Q, w ∈ Σ∗1, and a ∈ Σ1.

The string-to-string transduction computed by A
is the set [[A]] ⊆ Σ∗1 × Σ∗2 defined by

[[A]] = {(w, (α ◦ α′ε)(ro)) |
w ∈ Σ∗1, (∃q′ ∈ F ) : (α, q′) ∈ ∆(q0, w)}

where αε ∈ Ass(R,Σ2) is defined by αε(r) = ε.
Clearly, proj1([[A]]) is a regular language. We note
that q0 ∈ F if and only if {v ∈ Σ∗2 | (ε, v) ∈
[[A]]} = {ε}.

Each (w, v) ∈ [[A]] is obtained by at least one
sequence of transitions, and possibly more than one
due to nondeterminism. For a given such sequence,
each symbol occurrence in v is obtained by applica-
tion of a transition (q′, a, α, q′′), and this links the
index of that symbol occurrence in v to the index of
the corresponding occurrence of a in w. Thereby
the sequence of transitions corresponds in a natu-
ral way to an origin graph. The set of such origin
graphs is denoted by [[A]]o, and will be called the
origin semantics of A.
Example 3.1. Let Σ = {a, b,#}. We consider the
transformation

τ = {(w,w#w) | w ∈ {a, b}∗,
|w| = 2 · n for some n ∈ N+} .
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a b

a b # a b

Figure 1: Origin graph of (ab, ab#ab) in Exam-
ple 3.1.

For instance (ab, ab#ab) ∈ τ . The transfor-
mation τ can be computed by the NSST A =
(Q,Σ,Σ,R, r1, T, q0, F ) where Q = {q0, q1, qf},
F = {qf}, R = {r1, r2}, T contains, for every
i ∈ {0, 1} and γ ∈ {a, b}, the transitions(

qi, γ, (r1, r2) := (r1γ, r2γ), q1−i
)

and(
q1, γ, (r1, r2) := (r1γ#r2γ, ε), qf

)
.

For instance,

∆(q0, ε) = {(id, q0)}
∆(q0, a) = {((r1, r2) := (r1a, r2a), q1)}

∆(q0, ab) = {((r1, r2) := (r1ab, r2ab), q0),
((r1, r2) := (r1ab#r2ab, ε), qf )} .

Let α denote (r1, r2) := (r1ab#r2ab, ε). Then

(α ◦ αε)(r1) = αε(α(r1)) = αε(r1ab#r2ab)

= ab#ab .

Since q0 is the initial state and qf is the final state,
we obtain (ab, ab#ab) ∈ [[A]]. The corresponding
origin graph is shown in Figure 1.

We call a NSST nondeleting if for each as-
signment α occurring in a transition, each reg-
ister r occurs exactly once in {α(r′) | r′ ∈
R}. For each NSST A, there is a nondeleting
NSST A′ such that [[A]] = [[A′]]. The proof is
very similar to the proof of a similar result for
MCFG by Seki et al. (1991), which we will men-
tion again in Section 4. We outline how A′ =
(Q′,Σ1,Σ2,R′, ro, T ′, q′0, F ′) is constructed from
A = (Q,Σ1,Σ2,R, ro, T, q0, F ).

First,Q′ contains a new state q′0 plus states of the
form qD where q ∈ Q and D ⊆ R. The intuition
is that the registers in D are those that must remain
empty in A′, as in a corresponding computation
in A their contents would later appear as part of
a register that is deleted (or that is not the output
register when the end of the input is reached). By
keeping those registers empty, they no longer need

to be deleted, and instead can be added in an ar-
bitrary way to assignments without changing the
semantics. We let qD ∈ F ′ if and only if q ∈ F
and ro /∈ D, and q′0 ∈ F ′ if and only if q0 ∈ F .

For each D ⊆ R and (q, a, α, q′) ∈ T , we have
(qD′ , a, α

′, q′D) ∈ T ′, where D′ and α′ are defined
as follows. The registers in D′ are obtained in one
of two ways. First, if r ∈ D, then every register
in α(r) is in D′, and secondly, if a register r′ does
not occur in α(r) for any r, then it is in D′.

In the first instance, α′(r) is a copy of α(r) for
each r /∈ D, and α′(r) is obtained from α(r) by
omitting all output symbols for each r ∈ D. How-
ever, each register r′ that does not occur in α(r),
for any r, is added to α′(r′′) in an arbitary place
for an arbitrary r′′. Moreover, if q = q0, then T ′

also contains (q′0, a, α
′, q′D).

For example, if

(q, a, (r1, r2, r3, r4) := (r2br3, c, d, er1), q
′)

is in T , then for D = {r1, r3}, we have D′ =
{r2, r3, r4}, where D′ contains r2 and r3 because
r2br3 is assumed to be deleted later, and D′ con-
tains r4 because it is deleted here. Further, T ′

would include

(qD′ , a, (r1, r2, r3, r4) := (r2r3, cr4, ε, er1), q
′
D)

where we have added r4 to the right-hand side of
the assignment in an arbitrary place.

4 Synchronous Multiple Context-Free
Grammars

A multiple context-free grammar (over Σ) (for
short: MCFG) is a tuple G = (N,S,Σ, P ) where
N is an alphabet of nonterminals, each nontermi-
nalA has a fanout in N (denoted by fo(A)), S ∈ N
is an initial nonterminal with fo(S) = 1, Σ is an
alphabet of terminals, and P is a finite set of rules,
where each rule has the form

A0(w1,`0)→ A1(x
(1)
1,`1

) · · ·An(x
(n)
1,`n

)

where n ∈ N, A0, A1, . . . , An are nonterminals
with fo(Ai) = `i for each i ∈ [0, n]; for each i ∈
[n], x(i)1,`i

is a sequence of `i variables inX such that

the set of all variables occurring in x(1)1,`1
, . . . , x

(n)
1,`n

is Xm where m =
∑n

i=1 `i; for each j ∈ [`0], each
wj is in (Σ ∪ Xm)∗; finally, the rule is linear in
X , i.e., each variable in X occurs at most once in
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w1 · · ·w`0 . The rank of this rule is n. The rank of
G is the maximal rank of its rules.

Rules can be instantiated by consistent substi-
tution of variables. The derivation relation⇒ of
G is defined in the usual way, by applying instan-
tiated rules. The language over Σ generated by
G is defined to be the set of strings w such that
S(w)⇒∗ ε, and is denoted by L(G). Two MCFGs
are equivalent if they generate the same language.

A MCFG is called uni-lexicalized if there is ex-
actly one terminal in each rule. For each MCFG
there is an equivalent uni-lexicalized MCFG. A
MCFG is called nondeleting if each variable that
occurs in the right-hand side occurs exactly once
in the left-hand side. For each MCFG there is an
equivalent nondeleting MCFG (Seki et al., 1991).

A synchronous multiple context-free grammar
(for short: synchronous MCFG) is a tuple G =
(N,S,Σ1,Σ2, P ) such that G′ = (N,S,Σ1 ∪
Σ2, P ) is an MCFG (called underlying MCFG)
except that S has fanout 2. Moreover, for each non-
terminal A we split its fanout ` into an input fanout
`1 and an output fanout `2 such that ` = `1 + `2,
and denote this by fo(A) = (`1, `2). In particular,
we let fo(S) = (1, 1). We call the first `1 argu-
ments of A its input arguments and the remaining
`2 arguments its output arguments, and we sepa-
rate these two blocks by a semicolon. We require
that elements of Σ1 and Σ2 may only occur in in-
put arguments and output arguments, respectively.
Finally, we require that no variable may simultane-
ously occur in an input and in an output argument.
We implement this requirement by choosing X as
set of input variables and Y = {y1, y2, . . .} as set
of output variables. Hence, a rule of a synchronous
MCFG has the form

A0(w1,`0 ; v1,m0)→

A1(x
(1)
1,`1

; y
(1)
1,m1

) · · ·An(x
(n)
1,`n

; y
(n)
1,mn

)

where n ∈ N, A0, A1, . . . , An are nonterminals
and each Ai has fanout (`i,mi); for each i ∈ [n],
x
(i)
1,`i

and y(i)1,mi
are sequences of variables in X and

Y , respectively; for each j ∈ [`0], string wj is in
(Σ1 ∪ {x(1)1,`1

, . . . , x
(n)
1,`n
})∗, and for each j ∈ [m0],

string vj is in (Σ2 ∪ {y(1)1,m1
, . . . , y

(n)
1,mn
})∗; finally,

the rule is linear in X and Y .

The MCFG G1 = (N,S,Σ1, P1) is the input
component of G, where the fanout of each nonter-
minal ofN is its input fanout in G, and P1 is the set

of all rules of P in which the output arguments are
dropped. Similary, we define the output component
of G.

Let G be a synchronous MCFG. We define the
derivation relation ⇒G of G to be the derivation
relation of its underlying MCFG. The string-to-
string transduction computed by G is the set

[[G]] = {(w, v) ∈ Σ∗1 × Σ∗2 | S(w; v)⇒∗ ε} .

A uni-lexicalized synchronous MCFG is a syn-
chronous MCFG in which each rule either contains
exactly one input symbol or contains neither input
symbols nor output symbols. In a straightforward
way, we can associate with each uni-lexicalized
synchronous MCFG G a set [[G]]o of origin graphs
by linking each occurrence of an output terminal
of a rule to the unique input terminal of that rule.

5 Intersecting the Input of NSST with
MCFG

Lemma 5.1. For every NSST A over Σ1 and
Σ2 and every MCFG G over Σ1, there is a uni-
lexicalized synchronous MCFG G′ over Σ1 and Σ2

such that [[A]]o e ([[G]]× Σ∗2) = [[G′]]o.

Proof. Let A = (Q,Σ1,Σ2,R, ro, T, q0, F ),
where R consists of the registers r1, . . . , rρ, and
let G = (N,S,Σ1, P ) be an MCFG. Without loss
of generality we may assume that A is nondeleting
and that G is uni-lexicalized.

The intuition behind the construction of G′ cov-
ers two aspects. Starting from the MCFG G, we
impose the state behaviour of A onto the non-
terminal behaviour of G by a type of construc-
tion that can be traced back to Bar-Hillel et al.
(1964). This aspect of the construction achieves
proj1([[G′]]) = proj1([[A]]) ∩ [[G]]. The second as-
pect concerns the manipulation of the registers of
A. We let G′ simulate the assignments in its output
component, while its input component processes
the input string.

The number of relevant assignments is in general
infinite. In order to be able to simulate these assign-
ments using a finite set of rules of G′, we split up
each assignment into a finite part, called “pattern”,
and a potentially infinite part, called “residue”. The
pattern represents ρ register occurrences in the im-
age of the assignment, while the residue consists of
the 2ρ strings that are interlaced with the register
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occurrences. The patterns are maintained as anno-
tations of the nonterminals of G′ and the residues
appear in the output arguments of G′. The residues
of the left-hand side of a rule will be expressed in
terms of residues that appear as output variables
in the right-hand side. For this purpose, we intro-
duce assignments that have output variables in their
image.

For instance, let G contain the rule
A(ax

(2)
1 x

(1)
1 ) → B(x

(1)
1 ) C(x

(2)
1 ) and A

have states q1, . . . , q5. Assume that there is a
transition (q5, a, α, q3), and that there are strings
w

(2)
1 , w

(1)
1 ∈ Σ∗1 such that (α2, q1) ∈ ∆(q3, w

(2)
1 )

and (α1, q2) ∈ ∆(q1, w
(1)
1 ). Then G′ will have a

rule of the form

A
(q5,p

(0)
1 ,q2)

(ax
(2)
1 x

(1)
1 ; ...)→

B
(q1,p

(1)
1 ,q2)

(
x
(1)
1 ; ...

)
C
(q3,p

(2)
1 ,q1)

(
x
(2)
1 ; ...

)
where p(1)1 and p(2)1 are patterns corresponding to
α1 and α2, respectively, and p(0)1 corresponds to
α1 ◦α2 ◦α. Hence there is a corresponding pattern
for each argument in the right-hand sided and in
the left-hand side.

Formally, a pattern overR is an assignment p ∈
Ass(R, ∅). Obviously, Ass(R, ∅) is finite. Now as-
sume a rule A0(w1,`0)→ A1(x

(1)
1,`1

) · · ·An(x
(n)
1,`n

).

Let ~̀ = (`1, . . . , `n), X~̀ = {x(k)i | k ∈ [n], i ∈
[`k]}, and Y~̀ = {y(k)i | k ∈ [n], i ∈ [2ρ`k]}. For
each α ∈ Ass(R,Σ2 ∪ Y~̀) we define the pattern
p(α) and the residue r(α) ∈ ((Σ2 ∪ Y~̀)∗)∗ as fol-
lows. Assume that for each j ∈ [ρ] the string
α(rj) has the form vj,0rj,1vj,1 · · · rj,µjvj,µj for
some µj ∈ [0, ρ], vj,k ∈ (Σ2 ∪ Y~̀)∗ (k ∈ [0, µj ]),
and {rj,1, . . . , rj,µj} ⊆ R. Then

p(α) = ((r1, . . . , rρ) :=
(r1,1 · · · r1,µ1 , . . . , rρ,1 · · · rρ,µρ))

r(α) = (v1,0, v1,1, . . . , v1,µ1 , . . . ,
vρ,0, vρ,1, . . . , vρ,µρ) .

For example, let α be the assignment

(r1, r2, r3, r4) :=

(ay3br4, r2y2cr3, dey4, fy1r1) .

Then

p(α) = ((r1, r2, r3, r4) := (r4, r2r3, ε, r1))

r(α) = (ay3b, ε, ε, y2c, ε, dey4, fy1, ε) .

For a pattern p(k)i corresponding to x(k)i , we de-
fine an assignment [p

(k)
i ] ∈ Ass(R, Y~̀), which in-

troduces output variables next to register occur-
rences. Assume that

p
(k)
i = ((r1, . . . , rρ) := (s1 · · · sµ1 ,

sµ1+1 · · · sµ2 , . . . ,
sµρ−1+1 · · · sµρ))

for some µ1, . . . , µρ ∈ [0, ρ], µi ≤ µi+1 (i ∈ [ρ−
1]), and sj ∈ R (j ∈ [µρ]). Let µ0 = 0 and
κj = 2ρ(i− 1) + µj + j (j ∈ [0, µρ]). Then

[p
(k)
i ](rj) =

y
(k)
κj−1+1 sµj−1+1 y

(k)
κj−1+2 · · · sµj y

(k)
κj .

For instance, if ρ = 4 and p(2)3 is the pattern

(r1, r2, r3, r4) := (r4, r2r3, ε, r1)

then µ1 = 1, µ2 = 3, µ3 = 3, µ4 = 4, κ0 =
2ρ(i − 1) = 16, κ1 = κ0 + µ1 + 1 = 18, κ2 =
κ0 + µ2 + 2 = 21, κ3 = κ0 + µ3 + 3 = 22,
κ4 = κ0 + µ4 + 4 = 24, and

[p
(2)
3 ] = ((r1, r2, r3, r4) :=

(y
(2)
17 r4y

(2)
18 , y

(2)
19 r2y

(2)
20 r3y

(2)
21 , y

(2)
22 , y

(2)
23 r1y

(2)
24 )) .

We construct the synchronous MCFG G′ =
(N ′, S′,Σ1,Σ2, P

′) as follows. We let

N ′ = {S′} ∪ {Ac | A ∈ N, foG(A) = `,
c ∈ (Q×Ass(R, ∅)×Q)`}

where foG′(S
′) = (1, 1) and foG′(Ac) =

(foG(A), 2ρ · foG(A)).

Let A0(w1,`0) → A1(x
(1)
1,`1

) · · ·An(x
(n)
1,`n

) be a
rule in P . For every k ∈ [0, n] and i ∈ [`k] let
q
(k)
i,1 , q

(k)
i,2 ∈ Q and p(k)i ∈ Ass(R, ∅). We abbrevi-

ate (q
(k)
i,1 , p

(k)
i , q

(k)
i,2 ) by c(k)i .

We extend ∆ to a function

∆′ : Q× (Σ1 ∪X~̀)
∗ → P(Ass(R,Σ2 ∪Y~̀)×Q)

by defining

∆′(q, ε)={(id, q)}
∆′(q, wa)={(α ◦ αw, q′′) |

(∃q′ ∈ Q) : (αw, q
′) ∈ ∆′(q, w),

(q′, a, α, q′′) ∈ T}

∆′(q, wx
(k)
i )={([p(k)i ] ◦ αw, q(k)i,2 ) |

(αw, q
(k)
i,1 ) ∈ ∆′(q, w)}
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Then the set P ′ contains the rule

(A0)c(0)1,`0

(w1,`0 ; v1,2ρ`0)→

(A1)c(1)1,`1

(x
(1)
1,`1

; y
(1)
1,2ρ`1

) · · ·

(An)
c
(n)
1,`n

(x
(n)
1,`n

; y
(n)
1,2ρ`n

)

for each choice of α1,`0 such that (αi, q
(0)
i,2 ) ∈

∆′(q
(0)
i,1 , wi) and p(αi) = p

(0)
i , for each i ∈ [`0],

where r(αi) = (v2ρ(i−1)+1,2ρi). This is illustrated
in Figure 2.

In addition, for each c ∈ {(q0, p(1)1 , q) | p ∈
Ass(R, ∅), q ∈ F} the rule

S′(x1;αε([p
(1)
1 ](ro)))→ Sc(x1; y

(1)
1,2ρ)

is in P ′. Note that if G is uni-lexicalized, then so is
G′.

We can prove the following invariant. For ev-
ery A ∈ N , ` = fo(A), w1, . . . , w` ∈ Σ∗1,
v1, . . . , v2ρ` ∈ Σ∗2, c = (c1, . . . , c`) with ci =
(qi1, pi, qi2) ∈ Q×Ass(R, ∅)×Q for each i ∈ [`],
we have

Ac(w1,`; v1,2ρ`)⇒∗G′ ε if and only if

A(w1,`)⇒∗G ε ∧
(∀i ∈ [`]) : (∃α) : (α, qi2) ∈ ∆(qi1, wi) ∧

r(α) = v2ρ(i−1)+1,2ρi .

This invariant implies that for every w ∈ Σ∗1 and
v ∈ Σ∗2: S′(w; v) ⇒∗G′ ε if and only if S(w) ⇒∗G
ε ∧ (w, v) ∈ [[A]]. Thus [[G′]] = [[A]] ∩ ([[G]] ×
Σ∗2). By the assumption that G is uni-lexicalized,
furthermore [[G′]]o = [[A]]o e ([[G]]× Σ∗2).

Example 5.2. We consider the NSST A of Ex-
ample 3.1 and the MCFG G = (N,A,Σ, P ) with
N = {A}, fo(A) = 1, and for each γ ∈ Σ, P
contains the rules

A(γx1)→ A(x1) and A(γ)→ ε .

Obviously, [[G]] = Σ∗. We apply the construction
of Lemma 5.1 to A and G and we obtain the uni-
lexicalized synchronous MCFG G′ which contains
for each γ ∈ Σ and i ∈ {0, 1} at least the following
rules.

S′(x1; y1y2y3)→A(q0,p,qf )(x1; y1,4)

A(qi,p,qf )(γx1; y1, γy2, γy3, y4)→
A(q1−i,p,qf )(x1; y1,4)

A(q1,p,qf )(γ; ε, γ#, γ, ε)→ ε

where p = ((r1, r2) := (r1r2, ε)). For instance,
∆′(q0, γx1) contains ([p

(1)
1 ] ◦ α, qf ) where α =

((r1, r2) := (r1γ, r2γ)) is the assignment in the
transition (q0, γ, α, q1) of A. The calculation of
[p

(1)
1 ] ◦ α is(
r1
r2

)
[p

(1)
1 ]
−→

(
y1r1y2r2y3

y4

)
α−→(

y1r1γy2r2γy3
y4

)
hence p([p

(1)
1 ] ◦ α) = ((r1, r2) := (r1r2, ε)) and

r([p
(1)
1 ] ◦ α) = (y1, γy2, γy3, y4).

An example of a derivation is

S′(ab; ab#ab) ⇒G′ A(q0,p,qf )(ab; ε, ab#, ab, ε)

⇒G′ A(q1,p,qf )(b; ε, b#, b, ε)

⇒G′ ε .

This example can be easily generalized:

Lemma 5.3. For every NSST A there is a
uni-lexicalized synchronous MCFG G′ such that
[[A]]o = [[G′]]o.

Proof. Let A be a NSST over Σ1 and Σ2. As illus-
trated by Example 5.2, we can construct a MCFG
G such that [[G]] = Σ∗1. The result then follows
from Lemma 5.1.

On the basis of Lemma 5.3, one can obtain com-
plexity bounds on typical tasks involving NSST,
such as deciding whether (w, v) ∈ [[A]] for given
strings w and v and NSST A, relying on known
complexity results for synchronous MCFG, and
related formalisms such as synchronous LCFRS
(Kaeshammer, 2013).

However, the relation between NSST and syn-
chronous MCFG does not in any obvious way sug-
gest a practical algorithm to do inference of NSST
on the basis of sets of origin graphs, and this prob-
lem must remain outside the scope of the present
paper.1

6 A Proper Subclass of Synchronous
MCFG

In the light of Lemma 5.1 one may ask whether for
every synchronous MCFG G one may find NSSTA

1We thank an anonymous reviewer for the suggestion to
consider the problem of inference of NSST.
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A
(q5,p

(0)
1 ,q2)

(
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(2)
1 x

(1)
1 ; y

(1)
1 y

(2)
3 b, cy

(2)
4 y

(1)
2 y

(2)
1 de, y

(2)
2 y

(1)
3 , y

(1)
4

)

B
(q1,p

(1)
1 ,q2)

(
x
(1)
1 ; y

(1)
1 , y

(1)
2 , y

(1)
3 , y

(1)
4

)
C
(q3,p

(2)
1 ,q1)

(
x
(2)
1 ; y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4

)

(α1, q2) ∈ ∆′(q5, ax
(2)
1 x

(1)
1 )

α1 = [p
(1)
1 ] ◦ [p

(2)
1 ] ◦ α = ((r1, r2) := (y

(1)
1 y

(2)
3 b r1 cy

(2)
4 y

(1)
2 y

(2)
1 de r2 y

(2)
2 y

(1)
3 , y

(1)
4 ))

p(α1) = ((r1, r2) := (r1r2, ε)) = p
(0)
1

r(α1) = (y
(1)
1 y

(2)
3 b, cy

(2)
4 y

(1)
2 y

(2)
1 de, y

(2)
2 y

(1)
3 , y

(1)
4 )

p
(1)
1 = ((r1, r2) := (r2r1, ε))

[p
(1)
1 ] = ((r1, r2) := (y

(1)
1 r2y

(1)
2 r1y

(1)
3 , y

(1)
4 ))

p
(2)
1 = ((r1, r2) := (r2, r1))

[p
(2)
1 ] = ((r1, r2) := (y

(2)
1 r2y

(2)
2 , y

(2)
3 r1y

(2)
4 ))

Figure 2: The construction in the proof of Lemma 5.3, for an NSST with two registers, A(ax
(2)
1 x

(1)
1 ) →

B(x
(1)
1 ) C(x

(2)
1 ), and transition (q5, a, α, q3) with α = ((r1, r2) := (br1c, der2)).

and MCFG G′ such that [[G]] = [[A]] ∩ ([[G′]]× Σ∗2),
for the shared output alphabet Σ2, and perhaps even
that [[G]]o = [[A]]o e ([[G′]]×Σ∗2). In this section we
show the answer to the former question is negative,
whereby it is negative for the latter question as well.
This holds even if the rank of G is restricted to 1 and
[[G]] is a function, that is, if (w, v1), (w, v2) ∈ [[G]]
implies v1 = v2.

To see this, consider the synchronous MCFG
G of rank 1 with N = {S,A}, Σ1 = Σ2 =
{a, b, a′, b′}, and the following rules.

S(x1x2; y)→ A(x1, x2; y)

A(x1a, x2a
′; yaa′)→ A(x1, x2; y)

A(x1a, x2b
′; yab′)→ A(x1, x2; y)

A(x1b, x2a
′; yba′)→ A(x1, x2; y)

A(x1b, x2b
′; ybb′)→ A(x1, x2; y)

A(ε, ε; ε)→ ε

For two strings w = a1 · · · an and w′ = a′1 · · · a′n
of identical length n, we define shuffle(w,w′) to
be the string a1a′1 · · · ana′n. The string-to-string
transduction computed by G can now be written as

[[G]] = {(ww′, shuffle(w,w′)) | (∃n ∈ N) :
w ∈ {a, b}n ∧ w′ ∈ {a′, b′}n}

which is clearly a function. Suppose [[G]] were
[[A]] ∩ ([[G′]] × Σ∗2) for some NSST A =
(Q,Σ1,Σ2,R, co, T, q0, F ) and MCFG G′. Then

[[G]] = [[A]] ∩ ({ww′ | (∃n ∈ N) :
w ∈ {a, b}n ∧ w′ ∈ {a′, b′}n} × Σ∗2) .

For each (w,w′) ∈ {a, b}n×{a′, b′}n, there are
q ∈ Q, q′ ∈ F , and assignments α1 and α2 such
that (α1, q) ∈ ∆(q0, w) and (α2, q

′) ∈ ∆(q, w′).
We then have (α2 ◦ α1 ◦ αε)(ro) = shuffle(w,w′).

As illustrated in Figure 3, we want to capture
how the contents that the registers have just after
reading w eventually become substrings of register
ro, after also w′ has been read. To formalize this,
we first define Φα1(r) = r|(α1◦αε)(r)| for r ∈ R. In
words, each register r is mapped to |(α1 ◦ αε)(r)|
copies of its own name, to encode the size of its
contents after reading w. Secondly, we introduce a
new symbol †, and define Ψ to be the assignment
such that Ψ(r) = r for r ∈ R and Ψ(c) = † for
c ∈ Σ2. We now define σ(α1, α2) = (α2 ◦ Ψ ◦
Φα1)(ro) ∈ ({†} ∪ R)2n. We call σ(α1, α2) the
schema of α1 and α2.

If we fix n > 0, to be determined later, then the
number of possible schemas σ(α1, α2) is bounded
by (2n)2ρ, where ρ = |R| as before. This follows
from the fact that each schema is determined by
a set of pairs of indices. There is one such pair
for each register r, consisting of the index in the
schema where the substring r|(α1◦αε)(r)| starts, and
another index where it ends. If this substring is
empty, this can be encoded by a starting index that
is greater than the ending index.

We define the predicate G as

G(w,w′, q, s) ≡
(∃α1, α2, q

′ ∈ F ) : (α1, q) ∈ ∆(q0, w)∧
(α2, q

′) ∈ ∆(q, w′)∧
σ(α1, α2) = s
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α1 ◦ αε
a
b′
b

r1

...

b′
b
a′

ri

...

a
a′
b
a′

rj

...

α2 ◦ α1 ◦ αε
a
...

ro

a
a′
b
a′

b

b′
b
a′

b
...

σ(α1, α2)

†
...
rj
rj
rj
rj
†
ri
ri
ri
†
...

indices

q0 q q′
w w′

Figure 3: The processing of ww′ and corresponding schema σ(α1, α2). A set of indices, one pair per register,
determines a schema.

for (w,w′) ∈ {a, b}n × {a′, b′}n, q ∈ Q and
schema s. For each (w,w′) ∈ {a, b}n × {a′, b′}n,
there is at least one combination of q and s such
that G(w,w′, q, s).

For each q ∈ Q, let C(q) be the number of
pairs (w,w′) ∈ {a, b}n × {a′, b′}n such that
G(w,w′, q, s) for some s. Now fix q to be such
thatC(q) is maximal among the κ states ofA. This
means that there are at least 22n/κ pairs (w,w′) ∈
{a, b}n × {a′, b′}n such that G(w,w′, q, s) for
some s.

For each schema s, let C(q, s) be the num-
ber of pairs (w,w′) ∈ {a, b}n × {a′, b′}n such
that G(w,w′, q, s). Now fix s to be such that
C(q, s) is maximal among the at most (2n)2ρ

schemas. This means that there are at least 22n

κ·(2n)2ρ

pairs (w,w′) ∈ {a, b}n × {a′, b′}n such that
G(w,w′, q, s).

There is a string w′ ∈ {a′, b′}n such that
there are at least 22n

κ·(2n)2ρ /2
n = 2n

κ·(2n)2ρ strings
w ∈ {a, b}n such that G(w,w′, q, s). For this w′

and α2 fixed, there are at least log2(
2n

κ·(2n)2ρ ) =

n− log2 κ− 2ρ(1 + log2 n) ≥ n− log2 κ− 2ρn
positions in shuffle(w,w′) where we may find
both a and b, depending on the choice of w ∈
{a, b}n. This means the schema s contains at least
2n − 2 log2 κ − 4ρn − ρ occurrences of symbols
from R; note that in the output string, symbols
from {a′, b′} are interlaced with symbols from
{a, b}.

Similarly, there is a string w ∈ {a, b}n such that
there are at least 2n

κ·(2n)2ρ strings w′ ∈ {a′, b′}n

such that G(w,w′, q, s). For this w and α1 fixed,
there are at least n − log2 κ − 2ρn positions in
shuffle(w,w′) where we may find both a′ and b′,
depending on the choice of w′ ∈ {a, b}n. This
means the schema s contains at least 2n−2 log2 κ−
4ρn− ρ occurrences of †.

Altogether, this requires the length of the
schema, and thereby of the output string, to be
at least 4n− 4 log2 κ− 8ρn− 2ρ. We now obtain
the contradiction 4n− 4 log2 κ− 8ρn− 2ρ > 2n

by choosing n > ρ+2 log2 κ
1−4ρ .

The transduction [[G]] above is almost the same
as the transduction called merge by Alur and Černý
(2010), who also present a proof that this is beyond
the power of deterministic SST (DSST). Because
this transduction is a function, and because func-
tional NSSTs are equivalent to DSSTs (Alur and
Deshmukh, 2011), this could be used to produce
an alternative to our proof above. However, the
proof by Alur and Černý (2010) appears to contain
at least one mistake, which is why we chose to
present our own.2

2The proof by Alur and Černý (2010) considers “short
configurations”. These represent the contents of the registers
after reading the first half of an input string, but replacing
the contents of a register by a special symbol ∗ if its length
is greater than some number t such that 2t > ρ. (Here we
use our own variable names rather than those of op. cit.) It is
then argued that the number of distinct short configurations
is bounded by κρ2t. It appears to us this should have been
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7 Conclusions

Motivated by potential applications of origin
graphs for machine translation, we have consid-
ered NSSTs. We have shown that when their input
languages are restricted by MCFGs, then transduc-
ers with origin semantics are obtained that can also
be generated by synchronous MCFGs. We have
further shown that not every synchronous MCFG
can be obtained by such a combination of a NSST
and a MCFG.
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