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Abstract

How are the meanings of linguistic expres-
sions related to their use in concrete cognitive
tasks? Visual identification tasks show human
speakers can exhibit considerable variation in
their understanding, representation and verifi-
cation of certain quantifiers. This paper ini-
tiates an investigation into neural models of
these psycho-semantic tasks. We trained two
types of network — a convolutional neural net-
work (CNN) model and a recurrent model of
visual attention (RAM) — on the “most” verifi-
cation task from Pietroski et al. (2009), manip-
ulating the visual scene and novel notions of
task duration. Our results qualitatively mirror
certain features of human performance (such
as sensitivity to the ratio of set sizes, indicat-
ing a reliance on approximate number) while
differing in interesting ways (such as exhibit-
ing a subtly different pattern for the effect of
image type). We conclude by discussing the
prospects for using neural models as cognitive
models of this and other psychosemantic tasks.

1 Introduction

Semantics — the scientific study of meaning — has
traditionally studied the truth-conditions of sen-
tences and how the meanings of sub-sentential ex-
pressions combine to generate them. How ex-
actly truth-conditions are represented and then de-
ployed in concrete acts of production and compre-
hension has often not been seen as belonging to
the purview of semantics properly.

A recent line of work, however, has argued
that the mental representation of the meanings
of expressions bias behavior in cognitive tasks
in ways that allow us to adjudicate between
truth-conditionally equivalent but representation-
ally distinct semantic theories. In particular, Piet-
roski et al. (2009) considered the verification of
the sentence “Most of the dots are yellow”. The
meaning of ‘most’ can be expressed in distinct, but
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truth-conditionally equivalent ways. For instance
(where, in the running example, A is the set of
dots, and B the set of yellow things):

o [most](A)(B) = 1iff |[ANB| > |A\ B|

e [most](A)(B) = 1iff thereis f: A\ B —
A N B that is one-to-one, but not onto

The former says that the number of dots which are
yellow is larger than the number of non-yellow
dots, while the latter says that the former can be
paired off with the latter, with some yellow dots
remaining. Whilst these representations are truth
conditionally equivalent, each is associated with a
distinct verification strategy to evaluate those truth
conditions. When deciding whether most of the
dots are yellow: the former representation is asso-
ciated with an algorithm for computing and com-
paring two cardinalities, while the latter represen-
tation is associated with an algorithm for checking
whether a certain correspondence between yellow
and non-yellow dots exists. Whilst a speaker may
be capable of implementing many possible strate-
gies, Pietroski et al. (2009)’s claim is that, all other
things being equal, speakers are biased towards us-
ing the default strategy associated with their rep-
resentation.

Pietroski et al. (2009) sought to determine
whether speakers prefer one of the above repre-
sentations by testing which verification strategy
they typically use. By manipulating the arrange-
ment of the dots in images against which ‘most’
was verified, they created conditions which should
ease the implementation of one of the strategies
(e.g. dots arranged in pairs should favour corre-
spondence). They found no difference in verifi-
cation accuracy between three of the four image
types used. Participants were significantly more
accurate on the remaining image type, which con-
sisted of two paired columns of colour sorted dots.
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Their analysis suggested that the participants used
the columns’ lengths as a proxy for set cardinality,
rather than using a correspondence strategy. The
results of the remaining three image types were
explaind very well by a psychophyiscal model of
approximate number. Given that this system can-
not be used to implement a correspondence strat-
egy, they concluded that the meaning of ‘most’ is
best represented in the former way.!

In this paper, we begin to develop robust mech-
anistic cognitive models of their sentence verifica-
tion task to help elucidate the factors underlying
the psychosemantics of ‘most’. In particular, we
are interested in the following question: do var-
ious neural models show the potential to be de-
veloped into good cognitive models of the mean-
ing of ‘most’? A good cognitive model does at
least two things: (i) fits human data well and (ii)
has movable parameters that enable new predic-
tions to be made. To address this question, we
subjected two different classes of models — convo-
lutional networks and recurrent models of visual
attention — to the experimental design from Piet-
roski et al. (2009), together with an additional and
novel manipulation for ‘task duration’ (inspired by
Register et al. (2018)). This allows us to assess the
models along both dimensions (i) and (ii). Our key
contributions are:

e Subjecting neural models to prominent tasks
from the psychosemantics literature.

e Operationalizing ‘task duration’ in two dis-
tinct ways: depth of a convolutional network,
and the number of glimpses in a model of vi-
sual attention.

The key findings from our experiments are:

e Both models exhibit patterns of behavior
qualitatively similar to humans, including
sensitivity to dot ratio.

e The psychophysical model of approximate
number fits model data well, with parameters
not too far from human participants.

e Model performance is effected by the image
type in a subtly different way than human
performance.

'See Lidz et al. (2011) for further research in this direc-
tion, distinguishing between more candidate representations.
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e The effect of task duration is more robust for
the convolutional networks than for visual at-
tention.

After discussing related work in the next sec-
tion, we outline the hypotheses of our experiment,
before a full explanation of our methods and re-
sults. We conclude by discussing the results and
outlining future work.

2 Related Work
2.1

As discussed in the introduction, different rep-
resentations of a quantifier’s meaning may re-
flect different default verification strategies. This
raises the question: given the many psychologi-
cally plausible verification strategies, can we de-
termine whether any are favoured by speakers?
Pietroski et al. (2009) addressed this question us-
ing the methods described above. Consequently,
by identifying where speakers were most accurate,
they were able to determine which strategy speak-
ers favour and, thus, how ‘most’ is represented.

Their results suggested that speakers favour
a cardinality comparison strategy, computed via
the approximate number system (ANS) (Dehaene,
1997). The ANS is a cognitive system for
representing magnitudes. Instead of relying on
discrete symbols, such as precise cardinalities,
the ANS’s representations are imprecise and dis-
tributed. They can be described using a series
of overlapping Gaussian curves across a continu-
ous ‘number line’: each curve’s mean is the car-
dinality which it corresponds to and the standard
deviations increase linearly with the cardinality.
Thus, the greater the magnitude of a cardinality,
the less precise is its ANS representation. Be-
cause the ANS follows what’s known as Weber’s
law (Feigenson et al., 2004), the discriminability
of any two ANS representations is determined by
the extent of their overlap. Consequently, the diffi-
cultly of a cardinality comparison made using the
ANS is dependent upon the ratio of the cardinali-
ties. For instance, 6:12 is equally as discriminable
as 12:24, or 30:60 or 1:2. This is because the dis-
tributions of the ANS representations used to de-
scribe these ratios overlap by an equal amount —
they each have a Weber ratio of 2. The depen-
dence of accuracy on ratio follows a psychophys-
ical model that generates what are called Weber
curves (to be described precisely in our Results
section).

“Most” and the Visual Identification Task



Pietroski et al. (2009) found that these curves
fit participant data very well (in three of four im-
age types) and thus suggest that speakers may em-
ploy the ANS as a “numeralising waystation” to
interface with precise cardinal values. This would
allow speakers to understand ‘most’ as a cardi-
nality comparison, but to implement it using the
imprecise representations of the ANS. Thus, they
claim the semantics for “most” is specified in a
way that includes cardinality comparison. We will
subject neural models to the same experiment, to
see whether they exhibit the same reliance on car-
dinality and approximation behavior.

Register et al. (2018) argued that it is likely that
the participants in Pietroski et al. (2009) were im-
plementing a speed-accuracy trade off due to the
number (360) and duration (200ms) of the trials.
As such, rather than the preferred semantics for
“most”, they suggest ANS usage may be a result
of task-based strategising: participants relied on
the speed and the low cognitive effort of an ANS-
based strategy in order to cope with unrealisti-
cally high demands resulting from the brevity and
quantity of the trials. They tested this by running
several variations of the experiments from Piet-
roski et al. (2009). One experiment asked partic-
ipants to verify a single trial with unconstrained
response time (RT). Participants’ RT and accuracy
were negatively correlated, as would be expected
were they implementing a speed accuracy trade-
off. Nonetheless, their self-reports indicated that
most participants used a cardinality comparison
based strategy (i.e. either counting or estimating).
A second experiment also manipulated the num-
ber of trials. Participants who completed more tri-
als were more likely to report using an estimation-
based strategy. Additionally, participants’ RTs for
individual trials decreased as they completed tri-
als. Both of these findings suggest that use of the
ANS in Pietroski et al. (2009) was in fact due to
task-based strategising. These two findings show
that while cardinality comparison is the preferred
strategy, it may be computed by different means,
depending upon the particular context. As such,
the semantics of “most” are, to a degree, context
dependent.> Our model(s) will incorporate an el-
ement of this context-sensitivity, by manipulating
a variable not yet tested on humans: task duration,
i.e. how long each trial takes.

MIn a similar vein, Steinert-Threlkeld et al. (2015) show
that ‘most’” and ‘more than half’ are differently effected by
context under working memory load.
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2.2 Quantifiers and Neural Networks

Steinert-Threlkeld and Szymanik (2018) investi-
gated the hypothesis that semantic universals for
quantifiers arise because expressions that satisfy
a universal are easier to learn than those that do
not. By treating the verification and falsification
of quantified sentences as a sequence classifica-
tion task, they trained long short-term memory
networks (LSTMs) to learn the meaning of var-
ious quantifiers. These quantifiers corresponded
to one of three universals (quantity, monotonic-
ity or conservativity), and came in pairs: a real
one satisfying the universal and a hypothetical one
that does not. By observing whether the LSTMs
could learn the expressions satisfying the univer-
sals faster (and by extension, more easily), they
were able to test this hypothesis. They found that
the LSTMs were able to learn to verify expressions
which satisfied the quantity and monotonicity uni-
versals faster than those which did not, confirm-
ing their hypothesis. Not only does this show neu-
ral networks are capable of verifying quantifiers,
but it suggests that they may do so in a similar
way to human speakers. Nevertheless, their moti-
vation was of a more abstract and theoretical na-
ture; consequently, the networks are not tested on
a concrete psycholinguistic task and compared to
human performance, as we do here.

Kuhnle and Copestake (2018) aimed to show
how psycholinguistic tasks may provide more in-
formative methods for evaluating how neural net-
works solve natural language tasks. They trained
the FILM visual question-answering model from
Perez et al. (2018) (a CNN + GRU hybrid) to com-
plete a version of the VIT. Using the Shape World
framework (Kuhnle and Copestake, 2017), they
generated stimuli consisting of images containing
coloured shape objects, a corresponding quantifier
statement and a truth value for that statement. The
objects were either entirely one colour but from
two different shape sets (e.g. red squares and cir-
cles) or vice versa (e.g. red and blue squares). The
ratio and arrangement of the objects was manip-
ulated. The object set ratios ranged linearly from
1:2 to 7:8, and no image contained more than 15
objects. The objects were either randomly dis-
tributed, sorted into contrasting pairs which were
randomly distributed, or partitioned by contrast-
ing feature. They trained two instances of the net-
work. The “Q-half” network trained on stimuli
with “less/more than half” statements, whereas the



“Q-full” network trained on stimuli with a broader
range of quantifier statements (e.g. “some” and
modified numerals such as “at least 4”). Both
networks’ test phases exclusively used “less/more
than half” statements.

Although they found differences in perfor-
mance according to object arrangement, these did
not indicate that the networks favoured any one
verification strategy. They suggest the networks
may have learned an “adaptive strategy” to op-
timise performance across trial types. Both net-
works attained high accuracy (100-72% between
ratios 1:2 and 7:8) and became less accurate as
the object set ratios became more balanced. The
Q-full network was also tested on an evaluation
set including the object ratios 8:9, 9:10 and 10:11
(and consequently 17-21 objects). By fitting We-
ber curves to these data, they found the network’s
Weber fraction was similar to human speakers’.
They interpreted these last two findings as evi-
dence that the network learned an ANS-like sys-
tem. While these are promising results, because of
different motivations, their stimuli differ in certain
ways from those used by Pietroski et al. (2009),
which prevents their models from being cognitive
models of the latter task. Moreover, they have no
operationalisation of task duration, to see in what
way that affects performance.

3 Hypotheses

In the present experiment, we trained two types of
neural network to complete a close replica of the
VIT in Pietroski et al. (2009), with one major ad-
dition: we also manipulate task duration (as oper-
ationalised by parameters of our neural networks).
Based on the VIT research with human speak-
ers discussed in the previous section, we selected
three ‘behavioural traces’ which neural networks
ought to exhibit if they verify “most” in an algo-
rithmically similar manner to human speakers. As
such, replicating these behavioural traces is essen-
tial for the models to be candidate cognitive mod-
els. Note that we do not assume these traces cor-
respond to, or are necessary evidence of under-
lying algorithmic similarity between neural net-
works and human speakers. However, such sim-
ilarities would be sufficient causes of these traces.
The behavioural traces and their associated hy-
potheses are:

1. ANS usage: Network accuracy is negatively
correlated with the stimulus dot ratio size.
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2. Verification strategy preference: Network ac-
curacy is dependent upon the arrangement of
the stimulus.

. Speed-accuracy trade-off: Network accuracy
is positively correlated with an appropriate
operationalisation of task duration.

4 Methods

We generated a range of dot matrix stimuli, each
of which consisted two dot sets in a particular ra-
tio and spatial arrangement. Like Pietroski et al.
(2009), we used up to 22 total dots per image,
in ratios from 1:2 to 9:10 in one of four arrange-
ments. These were: column pairs sorted (paral-
lel columns of colour sorted dots), column pairs
mixed (unsorted parallel columns), scattered pairs
(randomly distributed colour-contrast dot pairs)
and scattered random (randomly distributed dots).
Figure 1 contains an example of each. Each image
was labelled with a truth value for the statement
“Most of the dots are blue”. The stimuli were split
into a training set (18000 images), a validation set,
and a test set (3600 images each). All three sets
were balanced to contain equal proportions of each
ratio/image type/truth-value combination. While
we refer to our dot sets as blue and yellow for con-
sistency with the existing literature, we made the
input to the networks grayscale in order to reduce
dimensionality.

We used two types of neural network and as
such, ran two adjacent experiments. The first
of these was an off-the-shelf convolutional neural
network (CNN) architecture: the VGG networks
from Simonyan and Zisserman (2014).

The second was a variation of the recurrent
model of visual attention (RAM) from Mnih et al.
(2014).3 This model processes its input serially in
a manner that aims to replicate the saccades and
fixations of human visual attention. It does this
by taking a series of retina-like samples (called
‘glimpses’) of its ‘environment’ in order to extract
the information needed to determine the best lo-
cation for future glimpses and to solve its task.
This process of visual search and attention reflects
a core component of human visual scene represen-
tation (Rensink, 2000; Hayhoe and Ballard, 2005;
Wolfe and Horowitz, 2017).

3In particular, the glimpse network described below did
not have convolutional layers and used vector addition in-
stead of component-wise multiplication in Mnih et al. (2014).



Figure 1: Example stimuli. All four have a ratio of 5:4, have a positive truth value (i.e. most of the dots are blue).
From left to right, image types are: column pairs sorted, column pairs mixed, scattered pairs and scattered random.

The network processes an image by using sev-
eral ‘sub-networks’ operating across a number of
time steps (t), as depicted in Figure 2:

Glimpse
coordinate

Location
Network

Core
Network

Internal state ok R 4

Action
Network

[ Classification
. prediction

Figure 2: One time-step of the RAM model.

e The glimpse network. It takes the environ-
ment (which in the current experiment is the
image stimulus) and a location co-ordinate as
its inputs. At £g, the location co-ordinate is
randomly generated. At all subsequent ¢s, it
is selected by the location network (described
below) at t — 1. The network takes a series of

samples centred around the co-ordinate and
concatenates them into a glimpse. Each con-
secutive sample is larger than the previous,
but at a lower resolution. We used 2 sam-
ples, the second of which was twice as large
and at half the resolution of the first. These
are then processed by 3 convolutional layers
and one fully-connected ReL.U layer to gen-
erate a “what” vector. In parallel, the co-
ordinate is processed by a ReLU layer out-
putting a “where” vector. The “what” and
“where” vectors are point-wise multiplied to
generate the glimpse feature vector.

The core network. An LSTM cell, which
takes the glimpse feature vector at ¢ and its
own internal state at the previous time-step
as its inputs.

The location network. A fully connected
layer which takes the core network’s internal
state at ¢ as its input, and outputs two val-
ues ranging between —1 and 1 (via tanh) as
its output. These are the means of Gaussians
(we fixed the standard deviation at 0.03), one
for the x coordinate and one for the y. Ac-
tual coordinates are samples from them and
are fed in to the glimpse network at ¢ + 1.

The action network. A fully connected layer
which takes the core network’s internal state
at ¢ as its input and outputs a binary image
classification. The action network produces
a classification at every ¢, but we only record
the classification decision that occurs at the
final ¢.

Neural networks are not bound by ‘wall clock
time’, so it is not possible to directly manipulate
the amount of time they use to do a task. To op-
erationalise trial duration, we use the networks’



architectures to implement processing constraints
which reflect those faced by human subjects oper-
ating under urgency. The operationalisations re-
flect two complementary ideas about the effect
that task duration will have on human speakers:
as duration increases, (i) the amount of informa-
tion processing and (ii) the number of saccades
and fixations possible increases. For CNNs, we
manipulate network depth (thus manipulating the
amount of information processing possible) and
for the RAM model, we manipulate the number
of glimpses made by the network. Each experi-
ment used four levels of task duration: we use the
VGG7, 9, 11 and 13 architectures and RAM net-
works with 4, 8, 16 and 24 glimpses.

The VGG models are trained using the Adam
optimizer (Kingma and Ba, 2015). For the
RAM models, we adopted the hybrid super-
vised learning approach described in Mnih et al.
(2014), where cross-entropy is back-propagated
to train the action, core, and glimpse networks,
and the REINFORCE rule (Williams, 1992; Sut-
ton et al., 1999) is used for the location net-
work. Complete hyper-parameters and training
details are included in the Supplementary Mate-
rials section. The source code and data may be
found at https://github.com/shanest/
neural-vision-most.

5 Results

5.1 Descriptive

Figure 3 shows the accuracy of all networks by
dot ratio, averaged across all image types. In both
network types, there is a clear trend of decreasing
accuracy as ratios become more balanced. There
is a notable clustering of the three VGG9+ net-
works: they appear to have very similar accuracies
across all ratios, and follow a pattern that differs
dramatically from VGG7, which is significantly
less accurate. Notably, VGG7 is the only CNN
network not to attain 100% accuracy at any ratio.
Moreover, its performance collapses much more
rapidly than the other CNNs as the ratios become
more balanced. Whilst the RAM networks appear
to cluster together a bit, their performance at each
ratio shows a broader degree of variability at each
ratio than the CNNss.

Figure 4 shows the accuracy of all networks by
image type, averaged across all ratios. As above,
there are easily observable differences in the per-
formance of the VGG7 and VGGY9+ networks.
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Figure 3: Accuracy by ratio, across image type.

The former performed more poorly on the scat-
tered type images than the column types, whereas
the latter attained near-or-at-ceiling accuracy on
all but the scattered random trials. The RAM net-
works’ response pattern was similar to VGG7’s,
albeit somewhat more pronounced. With the ex-
ception of instances where near-or-at-ceiling re-
sponses make the data less legible, for the column
and scattered image sets, all networks performed
more accurately on the image types that contained
paired dots than their unpaired equivalent.

VGG7

1 I I
RAM4 RAM8 RAM16
l I

]

VGG9 VGG11 VGG13

RAM24

accuracy

o
S

N

trial_type

. column_pairs_mixed column_pairs_sorted scattered_pairs . scattered_random

Figure 4: Accuracy by trial type, averaged across ratio.

Figure 5 shows the learning curves for both
model types. The VGG7 model hits peak perfor-
mance quickly, and does not improve thereafter.
The VGG13 hits near-ceiling performance very
quickly. VGG9 and 11 show more involved learn-
ing patterns, with significant decreases in accuracy
before hitting their ceilings. These results reflect
the VGG7’s limited computational capacity rela-
tive to the other three.

The RAM models show an interesting pattern:
the two models with fewer glimpses (4 and 8)
have very similar learning trajectories, as do the
two models with more glimpses (16 and 24). And
while all four end up at roughly the same accuracy,
the former models begin improving much earlier.
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Figure 5:

This suggests that learning how to choose a large
number of glimpse location choices is a difficult
reinforcement problem. A more detailed analysis
of model behavior throughout learning will be left
for future work.

5.2 Regression Analysis

To test the significance of these apparent trends,
we fit separate multiple logistic regression models
to the data from each network type.* Correct pre-
diction was the outcome variable. Three predictor
variables relating to the hypotheses were included:
image type, a categorical variable; operationalised
task duration, an ordinal variable; and dot ratio
(converted to real numbers), a continuous variable.
Dot ratio was ordered from least balanced (1/2)
to most balanced (9/10). We also included two
control predictor variables to verify whether dot
ratio is the primary explanatory variable for dif-
ferences in performance following manipulations
of dot ratio sizes, rather than related or potentially
confounding factors. These were: absolute set size
difference, a continuous variable; and total dots,
a continuous variable. The model also included
one interaction term, between dot ratio and net-
work type. The CNN model could not produce re-
liable statistical estimates for some variable levels
due to response invariance (i.e. when performance
was at-or-near-ceiling, there were not enough in-
correct predictions to reliably estimate paramters).
As such, these were excluded from the analysis.
These were the data corresponding to column-type
images and VGG13. Of the variables included in
each analysis, the network with the greatest opera-
tionalised task duration (i.e. VGG11 and RAM?24)

4See, among others, Kotek et al. (2011) (§3.3.2) for a
multiple logistic regression analysis of experimental data on
truth-value judgments of ‘most’ sentences.
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Learning curves for VGG (left) and RAM (right) models.

and the ‘most organised’ image type (i.e. scat-
tered pairs in the CNN analysis and column pairs
sorted in the RAM analysis) acted as the compari-
son class.

Variable Estimate  Std. Error  z value  Pr(> |z|)
Image: Scattered pairs (Intercept) 16,20 4,15 3,91 9.42e-05
Image: Scattered random -0,79 0,09 -8,63 <2e-16 ***
Network: VGG9 -0,73 3,47 -0,21 0,83
Network: VGG7 -12,22 2,45 -4,98 6.37e-07 #**
Dot ratio -14,90 4,93 -3,02  0.00253 **
Absolute difference 0,17 0,37 0,46 0,64

Total dots -0,03 0,04 -0,87 0,39

Ratio * Network: VGG9 1,09 4,00 0,27 0,78

Ratio * Network: VGG7 11,81 2,83 4,18 2.97e-05 ***

Table 1: Multiple logistic regression of the CNN trials.
Significance: 0 “***> 0.001 “**> 0.01 “** 0.05 . 0.1.

The output of the CNN logistic regression can
be seen in Table 1. The model shows that the
log-odds of the VGG7-11 networks correctly pre-
dicting a stimulus’ label are significantly reduced
as the stimulus’ dot set ratio becomes more bal-
anced. We found no significant effect for either of
our control variables (absolute difference and to-
tal number). These findings strongly support Hy-
pothesis 1. Holding all other variables constant,
VGG7-11 were significantly less likely to predict
the correct label of scattered random images than
scattered pairs images. Given that the lack of dif-
ference between the images types that could not
be included in the analysis appears to be due to
ceiling effects, we interpret these findings as sup-
porting Hypothesis 2. Holding all other variables
constant, VGG7 was significantly less likely than
VGG11 to make a correct classification. No dif-
ference was found between VGG9 and 11. Again,
as the lack of difference between the VGG9+ net-
works appears to be best explained by response
invariance due to ceiling effects, we cautiously in-
terpret these findings as supporting Hypothesis 3.
Finally, we found a significant positive interaction



between dot ratio and VGG7. Together with the
negative coefficient for VGG7, the result is that
the predicted log-odds for a correct prediction by
VGGT7 are robustly lower across ratios than for
VGGY and VGG11, as expected. The positive in-
teraction term means that the log-odds decrease at
a slower rate for more balanced ratios for VGG7
than the other two; this is due to the at-or-near-
ceiling performance of the other two at many of
the less-balanced ratios.

Variable Estimate  Std. Error  z value Pr(> |z])
Image: Column pairs sorted (Intercept) 9,57 1,52 6,28 3.41e-10 ***
Image: Column pairs mixed -1,18 0,16 -7.55 4.37e-14 ##*
Image: Scattered pairs -3,54 0,14 -25,15 < 2e-16 ek
Image: Scattered random -3,75 0,14 -26,73 < 2e-16 ##*
Glimpses: RAM16 -0,32 0,51 -0,63 0,53
Glimpses: RAM8 -0,97 0,51 -1,91 0,06
Glimpses: RAM4 -0,77 0,50 -1,54 0,12

Dot ratio -6,91 1,84 -3,75 0.000179 #*#*
Absolute difference -0,25 0,15 -1,64 0,10

Total dots 0,04 0,02 2,24 0.025427 *
Ratio * Glimpses: RAM16 0,33 0,63 0,52 0,60

Ratio * Glimpses: RAM8 1,34 0,62 2,14 0.032372 *
Ratio * Glimpses: RAM4 0,81 0,62 1,31 0,19

Table 2: Multiple logistic regression on RAM trials.

The output of the RAM logistic regression can
be seen in Table 2. According to the model, the log
odds of a RAM network correctly labelling stimuli
is significantly reduced as set ratios become more
balanced. We also found a small but significant ef-
fect of total dots, indicating that the likelihood of a
correct prediction increases with total dots. This is
unsurprising, as increasing total dots reduces im-
age sparseness, increasing the odds that glimpses
will contain dots. This can be especially important
for the initial glimpse, which has a random loca-
tion. This does not invalidate the dot ratio finding,
given their comparative effect sizes. No significant
effect was found for absolute difference. These
findings support Hypothesis 1. The log odds of
a RAM network predicting the correct labels for
column pairs mixed, scattered pairs or scattered
random images was significantly lower (by vary-
ing degrees) than for column sorted pairs images.
This strongly supports Hypothesis 2. We found no
significant difference in the likelihood of the 4-16
glimpse RAM networks correctly labelling stimuli
than their comparison class, the 24 glimpse RAM
network. These findings do not support Hypoth-
esis 3. Finally, we found a small but significant
positive interaction between dot ratio and RAMS,
suggesting that the increase in log-odds of correct
prediction per unit increase in dot ratio is stronger
for RAMS than for RAM24. Because the effect
size is small, we caution against over-interpreting
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this result. And, as before, this effect is somewhat
offset by a negative coefficient for RAMS, lower-
ing the intercept in this case.

5.3 ANS Model Fitting

For each model, we also fit a psychophysical
model of the Approximate Number System (ANS)
to the mean accuracy data, broken down by ratio
and by image type (Pica et al., 2004; Nieder and
Miller, 2004; Halberda and Feigenson, 2008). For
this model, ratio is ordered from most balanced
(10/9) to least balanced (2/1). The model repre-
sents numerosities as Gaussians, and comparisons
between numerosities via the difference in Gaus-
sians. In particular, there is one free parameter w
— the Weber fraction — which represents increase
in accuracy with increase in ratio. More precisely,
we fit the following model:

ny —no
wv/2+/n? + n3

where n; represents the larger number and no the
smaller. Figure 6 shows the fit curves for the
VGG7 and RAM?24 networks, which exhibited the
most human-like behavior. An Appendix includes
these for all eight models.

1
acc = 1 — —erfc

VGG7

08-

accuracy

150
ratio

RAM24

accuracy

150
ratio

Figure 6: Accuracy by trial type and ratio for VGG7
(top) and RAM24 (bottom), with Weber curves.



For both networks, both column image types
have a significantly higher degree of accuracy than
both scattered types, with scattered pairs being a
bit easier than scattered random. The psychophys-
ical model provides a good fit to the data: Table 3
provides the Weber fractions and R? for these
cases. For human participants, Pietroski et al.
(2009) found w to be roughly 0.3 on all but the col-
umn sorted trials, where w was 0.04. Our models
are not too far off of these Weber fractions, with
one noticeable difference: our models treat col-
umn mixed trials much more similarly to column
sorted trials, whereas for humans column mixed
trials pattern with the two scattered trial types.

VGG7 RAM24
type w R? w R?
scattered random 0.363 0.843 0.524 0.801
scattered pairs ~ 0.256 0.581 0.340 0.913
column mixed  0.047 0979 0.078 0.975
column sorted  0.012 1.0 0.051 0.984

Table 3: Weber fractions and R? for the ANS model.

6 Discussion

We subjected convolutional networks of varying
depths and recurrent models of visual attention
with varying number of glimpses to the psychose-
mantic experiment of Pietroski et al. (2009). Our
first two hypotheses are confirmed: all networks
show decreased accuracy with decreasing dot ra-
tio as well as a strong sensitivity to image type.
The third hypothesis is partially confirmed: in-
creasingly deep CNNs do show increased perfor-
mance (with all VGG9+ networks being near ceil-
ing), while increasing the number of glimpses for
a RAM model has little effect on overall accu-
racy. The psychophysical model of approximate
number fits network data well, with some Weber
fractions being near those found for human par-
ticipants. For the RAM models, this suggests that
visual attention and search may be a causal mech-
anism underlying some ANS-like responses. The
primary qualitative difference between model per-
formance and human performance is that the mod-
els do roughly equally well on both column im-
age types, whereas humans are significantly better
on column sorted as opposed to column mixed tri-
als. This suggests that the strategies learned by the
models differ in some interesting ways from those
employed by human participants.
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These results exhibit initial promise in using
neural models as cognitive models in psychose-
mantics. In particular, while the fit with existing
human data is good (criterion (i) above), it is not
quite strong enough to warrant generating robust
predictions about manipulations like task duration
(criterion (ii) above). Nevertheless, these initially
promising results also suggest interesting avenues
for future work.

(1) More detailed hyper-parameter searches
may improve fit with the human data, thus allow-
ing us to use the models to generate predictions.
(2) RAM model performance could be improved
by giving the network a low-resolution version of
the whole image to help it make location choices
(Ba et al., 2014). (3) While our depth manipula-
tion for CNNs was designed to reflect increased
information processing capacity as duration in-
creases, one could control for capacity (number
of parameters in the model) by making the deeper
networks narrower or the shallow networks wider,
and seeing if depth still has an effect. (4) To better
understand what strategies the models are using to
solve the task, techniques such as transfer learn-
ing and diagnostic classifiers (Hupkes et al., 2018;
Giulianelli et al., 2018) could be applied to our
models. (5) Similarly, one can investigate whether
any neurons or groups thereof in the models ex-
hibit activation curves consistent with Weber’s law
(Nieder and Miller, 2004). (6) Independent neural
models that exhibit ANS-like behavior—or, more
generally, that are trained on other image process-
ing tasks—could be used in this task (Stoianov and
Zorzi, 2012); a key challenge here will be opera-
tionalizing task duration. (7) The models could
be used to model performance against more im-
age manipulations, such as the number of colors
in a scence (Lidz et al., 2011). We leave these and
other avenues for improving neural models of psy-
chosemantic tasks to future work.
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A Supplementary Material

Images were 128x128 pixels, converted to
grayscale. The TensorFlow Python library (Abadi
et al., 2016) was used to implement everything.
The networks were trained and tested on an
NVIDIA GeForce 1080Ti GPU. The source code
and data may be found at https://github.
com/shanest/neural-vision-most.
The RAM models had the following hyper-
parameters (found by a small grid search):

e Number of patches: 2
e Size of patches: 12, 24 pixels

o Glimpse network:

— three convolutional layers with 64, 64,
and 128 filters and kernel size 5, 3, and
3, respectively

— Output vector size: 512

e Core network: LSTM with hidden state di-
mension 1024

We trained using the Adam optimizer with learn-
ing rate le-5. The RAM models were trained for
up to 200 epochs, with early stopping with a pa-
tience of 10 epochs (i.e. training was stopped when
loss did not improve over a ten epoch time-frame,
as measured every 2 epochs).

The CNN models were trained using 0.25
dropout (on the final fully-connected layers) and
the Adam optimizer, with learning rate le-4. We
used early stopping with a patience of 10 epochs,
with maximum training length of 40 epochs. For
each model, we saved the best version, as mea-
sured by loss on the validation set.

B Appendix

Here we include results of fitting the psychophys-
ical model of approximate number to all 8 of our
models. Figure 7 shows the VGG models, and Fig-
ure 8 shows the RAM models.

As can be seen, VGGY9-13 look very similar,
with the only non-ceiling performance coming on
scattered random trials, which it still learns per-
fectly for large enough (imbalanced enough ra-
tios). VGG7 shows highly ratio-dependent per-
formance for both scattered random and scattered
pairs trials.
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VGG9
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Figure 7: Fit Weber curves for all VGG models.

RAM4.

accuracy

RAM16
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Figure 8: Fit Weber curves for all RAM models.

The RAM models show subtle patterns. The
model with 8 glimpses (RAMS) was very slightly
the best overall performer, but this looks due to the
two column trial types. RAM24 appears to have
the best performance on the scattered trial types, at
the expense of the column types. For the scattered
types, performance is approaching human levels
of accuracy (roughly 89%, compared to the model
being roughly 85%).

As mentioned in the paper, all models perform
similarly on both column trial types, in contrast to
human participants, who are significantly better on
column sorted than column mixed trials.

Table 4 provides the results of fitting the psy-
chophysical model to mean accuracy for each
model and trial type. In particular, we report the
one parameter of the model (Weber fraction, w),
and the goodness of fit of each model (R?).
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scattered random  scattered pairs column mixed column sorted
model w R? w R? w R? w R?

VGG7 0363 0.843 0.256 0.581 0.047 0978 0.012 1.0
VGGY9 0.085 0985 0.085 0.997 0.015 0999 0.012 1.0
VGG11 0.093 0971 0.045 0.994 0.015 0999 0.012 1.0
VGG13  0.081 0973 0.038 0.999 0012 1.0 0012 1.0
RAM4 0.0650 0.929 0.503 0.845 0.071 0917 0.043 0.998
RAMS 0522 0593 0420 0592 0.042 0998 0.033 0.999
RAM16 0.646 0574 0384 0912 0.049 0986 0.049 0.986
RAM24 0524 0.801 0340 00913 0.078 0975 0.051 0.984

Table 4: Weber fractions (w) and correlations (R2) for all models and all trial types.
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