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Abstract

Inspired by the literature on multisensory inte-
gration, we develop a computational model to
ground quantifiers in perception. The model
learns to pick out of nine quantifiers (‘few’,
‘many’, ‘all’, etc.) the one that is more likely
to describe the percent of animals in a visual-
auditory input containing both animals and ar-
tifacts. We show that relying on concurrent
sensory inputs increases model performance
on the quantification task. Moreover, we eval-
uate the model in a situation in which only
the auditory modality is given, while the visual
one is ‘hallucinanted’ either from the auditory
input itself or from a linguistic caption de-
scribing the quantity of entities in the auditory
input. This way, the model exploits prior asso-
ciations between modalities. We show that the
model profits from the prior knowledge and
outperforms the auditory-only setting.

1 Introduction

Quantifiers (words like ‘some’, ‘most’, ‘all’) have
long been the holy grail of formal semanticists
(see Peters et al. (2006) for an overview). More
recently, they have caught the attention of cogni-
tive scientists, who showed that these expressions
are handled by children quite early in life (Hal-
berda et al., 2008), even before developing the
ability to count (Hurewitz et al., 2006). Though
some effort has been paid to model these high-
frequency expressions from their use in big cor-
pora of texts (Baroni et al., 2012; Herbelot and
Vecchi, 2015), relatively little work has focused on
the models’ ability to quantify using these words.

In computer vision, some focus to the task of
extracting quantities from images has been ex-
pressed through visual question answering, whose
benchmark dataset (Antol et al., 2015) contains
‘count questions’ (e.g., ‘How many Xs have the
property Y?’) that repeatedly turned out to be
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Figure 1: Learning to quantify through a ‘Hub and
Spoke’ model enhanced with prior knowledge. The
Hub learns to integrate multisensory inputs, whose rep-
resentations (Spokes) are affected by such integration
and can be ‘hallucinated’ by prior knowledge. We fo-
cus on how this prior knowledge hallucinates the visual
representation (signalled by the dotted arrow).

rather challenging (Malinowski et al., 2015; Fukui
et al., 2016). While this work paid little atten-
tion to quantifiers, a few recent studies specifically
investigated their computational learning from vi-
sual inputs (Sorodoc et al., 2016; Pezzelle et al.,
2017). These works built on the evidence that (part
of) the meaning of quantifiers is grounded in per-
ception. However, they only experimented with
the visual modality, though the numerical repre-
sentations humans derive from sensory inputs have
been shown to be shared across modalities, e.g.,
vision and sound (Feigenson et al., 2004).

In the literature on multisensory integration it is
well established that redundant information con-
veyed through different sensory inputs leads to
a better performance on semantic tasks (McGurk
and MacDonald, 1976). These findings have
brought researchers to propose the ‘Hub and
Spoke’ model (hence, H&S): concepts are learned
by mutual interaction of the representation pro-
duced by sensory specific processors, the ‘spokes’,
with a transmodal ‘hub’ (Patterson et al., 2007;



106

Ralph et al., 2017). The role of the cross-modal
hub is to take each of the spokes’ output and to re-
produce the correct information across the others
by back-propagation (Ralph et al., 2017). There
is evidence that memory recall is affected by the
multisensory context in which the concept was
learned. In particular, it has been shown that a
congruent pair of audiovisual inputs may facilitate
subsequent recall. In other words, we learn to pro-
cess a sound (e.g., ‘meow’ or ‘woof’) and to asso-
ciate it to the visual representation of the entity we
see making it, and this facilitates the recall of the
corresponding concept (i.e., ‘cat’ or ‘dog’).

In this work, we apply the H&S model to the
conceptual learning of quantifiers and study how
the hub learns to integrate the visual and auditory
spoke representations (as illustrated in Figure 1) to
perform the quantification task. That is, the model
has to learn to say that ‘none’, ‘few’, ‘most’, etc.
of the objects in the visual and auditory inputs be-
long to a given category, that of animals. We fo-
cus on 9 common quantifiers and experiment with
visual and auditory inputs strongly aligned (viz.,
aligned at the entity level). We show that

• Using congruent audio visual inputs in-
creases the performance of the model in
learning quantifiers within single-sensory
models;

• The H&S model can generalize to unseen
data quite well. In particular, it generalizes
better when trained on small combinations
and tested on large ones than vice versa.

Furthermore, a second part of our work is based
on an ongoing debate in multisensory integra-
tion, namely whether the processing of sensory
inputs is passive or rather influenced by previ-
ous experience that creates cross-sensory associ-
ations. Within this debate, one of the most influ-
ential frameworks is the Predictive Coding Model
(hence, PCM), according to which prior knowl-
edge affects the representation of perceptual in-
puts (Friston, 2010). There is a general agree-
ment on the predictive effects between visual and
auditory inputs, whereas the role of language in
priming visual perception is still under debate
(see Simanova et al. (2016) for an overview).

Inspired by this work, we compare a single au-
ditory sensory model with a model in which the
processing of the auditory stimuli is facilitated
by prior expectation elicited by either the visual

spoke (implemented as a mapping from the expe-
rienced auditory input to its corresponding visual
representation) or the language input (again im-
plemented as a mapping from language to visual
representations). In Figure 1, the ‘prior’ arrow il-
lustrates this predictive factor. Simplifying some-
what, we simulate a setting where a model, trained
to quantify from co-occurring synchronous audio
visual inputs, is tested on a situation where (a) it
hears but does not see the entities (audio-vision
association prior) or (b) it reads a description of
the entities and hears their sounds but does not
see them (language-vision association prior). We
show that

• Using priors hallucinating the visual repre-
sentation improves the performance of the
model compared to when it receives only au-
ditory inputs;

• Language prior is slightly more effective than
sound prior to hallucinate concurring vision.

2 Related Work

2.1 Multimodal Models
Fueled by the explosion of deep learning, much ef-
fort has been paid in recent years to develop mod-
els that exploit information from various modal-
ities. Attention has been mostly on language
and vision, for which various tasks have been
proposed, i.e. image captioning (Hodosh et al.,
2013), visual question answering (Antol et al.,
2015; Goyal et al., 2017), visual reasoning (An-
dreas et al., 2016; Johnson et al., 2017; Suhr
et al., 2017), visual storytelling (Huang et al.,
2016; Gonzalez-Rico and Fuentes-Pineda, 2018),
and visual dialogue (De Vries et al., 2017). While
all this work combines images with written text,
some other studies employed spoken language to
perform various tasks, such as image-audio re-
trieval (Chrupała et al., 2017; Harwath et al.,
2018). Overall, these works repeatedly showed
that combining information from language and vi-
sion leads to representations that are beneficial in
virtually any task.

A relatively recent strand of research focused
on the integration of visual and sound informa-
tion, where the latter is, e.g., the ‘roar’ of a fast
car (Owens et al., 2016, 2018; Zhao et al., 2018).

More akin to our work is Aytar et al. (2017),
who jointly investigated language, vision, and
sound. By training a deep convolutional network
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for aligned representation learning across the three
modalities, they showed that the emerging align-
ment improved both retrieval and classification
performance. Interestingly, their results also sug-
gested that, even though the network was never
exposed to pairs of sounds and text inputs during
training, an alignment between these two modali-
ties was learned, possibly due to the use of images
as an internal ‘bridge’. We explore the same three
modalities studied by Aytar et al. (2017). How-
ever, we use different models and evaluation set-
tings (to mimic the PCM) and tackle a different
task, namely quantification.

2.2 Computational Models of Quantification

The task of quantification (in the broad sense
of providing some quantitative information), has
been largely explored in computer vision (Seguı́
et al., 2015; Zhang et al., 2015a; Arteta et al.,
2016). In these works, the focus is to provide
the exact number of objects in a scene, and only
rarely it is inspired by cognitive abilities (Zhang
et al., 2015b; Chattopadhyay et al., 2017). Simi-
larly, in the visual question answering community,
the so called ‘number’ questions are almost exclu-
sively about cardinals, with some exceptions in-
cluding generalized quantifiers like every or more
than half (Suhr et al., 2017; Kuhnle et al., 2018).

Inspired by the cognitive skill of Approximate
Number Sense (ANS) is instead Stoianov and
Zorzi (2012), which tested hierarchical generative
networks and showed that they learn ANS as a
statistical property of images. Practically speak-
ing, the model was able to compare one approxi-
mate ‘numerosity’ against another and to perform
a more/less task. Similar high-level cognitive abil-
ities are required to humans to use vague quanti-
fiers such as few, many, or most, whose meaning is
heavily dependent on contextual factors. Using vi-
sual scenes as context, a recent strand of work has
focused on the computational learning of quanti-
fiers with neural networks. One approach tack-
led the task in a visual question answering fash-
ion (Sorodoc et al., 2018), while another aimed at
learning to apply the correct quantifier to a given
scene (Sorodoc et al., 2016; Pezzelle et al., 2017).

More related to our work is Pezzelle et al.
(2018b), which tested a model in the task of pre-
dicting the probability of each quantifier to be used
in a given scene. The network was trained with
probabilities from human participants by Pezzelle

et al. (2018a). We use the same human annotation
but make two steps further: First, we also experi-
ment with auditory inputs; second, we experiment
with different settings inspired by the literature on
multisensory integration.

3 Task and Datasets

3.1 Task

Given an input (a scene) consisting of entities
that are either animals (targets) or artifacts (dis-
tractors), the model has to quantify the former.
For instance, given the image in Figure 2 on the
left, it should assign a high probability to ‘most’,
whereas for the image on the right it should as-
sign a high probability to ‘few’. The inputs are
either unimodal (sound, vision) or multimodal
(sound+real vision, sound+hallucinated vision).
We inherit and adapt to our multimodal datasets
the gold standard annotation collected by Pezzelle
et al. (2018a): Human participants were asked
to select, out of nine quantifiers (‘none’, ‘almost
none’, ‘few’, ‘the smaller part’, ‘some’, ‘many’,
‘most’, ‘almost all’, ‘all’), the one that best re-
ferred to the set of animals depicted in a briefly-
presented visual scene (these scenes were similar,
but not identical to those in Figure 2). Each quanti-
fier turned out to be used to refer to various propor-
tions of animals. For instance, ‘most’ could apply
when animals corresponded to 57%, 60%, 67%,
75% and 80% of the objects. At the same time,
various proportions had different probabilities to
be referred by a given quantifier. With a propor-
tion of 60% animals, for example, the probability
to choose ‘most’, ‘many’ and ‘some’ is 0.52, 0.20
and 0.18, respectively. The models have to learn
the probability distribution associated with each
proportion. Intuitively, ‘none’ and ‘all’ are almost
exclusively used with, respectively, 0% and 100%
animals.

3.2 Datasets

Following Pezzelle et al. (2018a), our datasets
consist of scenes containing animals and artifacts
with a minimum of 3 and a maximum of 20 enti-
ties in total. There are in total 17 proportions, out
of which 8 contain more animals than artifacts, 8
contain more artifacts than animals, and 1 contains
an equal number of them.1 For each proportion

1The proportions obtained by having min. 3 max 20 ob-
jects are: 0%, 10%, 17%, 20%, 25%, 33%, 40%, 43%, 50%,
57%, 60%, 67%, 75%, 80%, 83%, 90%, 100%.



108

Figure 2: Visual dataset. Left: ‘most’ (60%) of the
objects are animals, viz. 3:2. Right: ‘few’ (20%) of the
objects are animals, viz. 1:4.

we generated scenes containing all possible com-
binations of cardinalities: For the proportion 0%,
for example, 17 combinations were built, ranging
from 0:3 (0 animals, 3 artifacts) to 0:20.

We built visual and auditory datasets aligned
at the entity level: For each image, we created
the corresponding auditory datapoint containing
the sound of each entity in the image. By so do-
ing, using the terminology of (Aytar et al., 2018),
we obtained strongly aligned visual and auditory
datasets. In total, we used 55 unique animals and
55 unique artifacts. We only used those entities for
which we could have whole-depicting images (not
just parts) and for which we had a corresponding
sound. Furthermore, for each audio-visual input
we created a corresponding linguistic caption de-
scribing the quantities of the entities in it. Details
on the three datasets are provided below.

Visual Dataset Similarly to Pezzelle et al.
(2018b), we built a large dataset of synthetic vi-
sual scenes depicting a variable number of ani-
mals and artifacts on top of a neutral grey back-
ground (see Figure 2). The scenes were auto-
matically generated using the following pipeline:
(a) Natural images depicting target objects (e.g.,
a dog) or distractors (e.g., a car) were randomly
picked up from the 110 entities pre-selected from
the dataset by Kiani et al. (2007). As opposed
to the synthetic dataset of Pezzelle et al. (2018a),
where multiple copies of the same animal/artifact
were reproduced in the scene, we have different
target/distractor instances in each scenario (e.g,
different instances of ‘car’ as in Figure 2 (right)).
However, we do not vary the size and orien-
tation of entities; (b) The proportion of targets
in the scene was chosen by selecting only those
matching the 17 pre-defined proportions men-
tioned above. We generated 17K scenes balanced
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Figure 3: Histogram representing the number of to-
tal objects in the scene for the 17 different proportions
(training set). On top the 17 proportions.

per proportion (1K scenes/proportion), and split
them into train (70%), validation (10%), and test
(20%) sets. The distribution of proportions per to-
tal number of objects in the training set is illus-
trated in Figure 3.

Auditory Dataset We followed a similar pro-
cedure to build the auditory scenes. We took
Audioset (Gemmeke et al., 2017) as our starting
point to obtain sounds corresponding to the enti-
ties since it contains a huge collection of human-
labeled 10-sec sound clips. It is organized as a
hierarchical graph of event categories, covering a
wide range of human and animal sounds, musi-
cal instruments and genres, and common every-
day environmental sounds. We took sounds be-
longing to the categories of ‘animals’ and ‘tools’.
We built our auditory dataset starting from the vi-
sual one described above and obtained the strongly
aligned auditory version. Hence, as in the case
of the visual datapoint, an auditory datapoint can
contain different instances of the same type of
animal/artifact. The auditory dataset consists of
17K scenes again balanced per proportion (1K
scenes/proportion), with the same split as the vi-
sual one and each ‘scene’ containing min 3 max
20 entities out of 110 entities.

Linguistic Dataset For each aligned visual and
auditory input pair, we built a linguistic cap-
tion describing the exact quantities of the entities
present in it (for instance, for the image in Figure 2
(left), we obtain ‘There are one butterfly, two au-
tomobiles and two mammals’). The procedure, il-
lustrated in Figure 4, is as following: (a) We man-
ually annotated each of the 110 entities used to



109

MONKEY

PRIMATE

MAMMAL

BUTTERFLY

ARTHROPOD

INSECT

CAR

AUTOMOBILE

VEHICLE

CAT

FELINE

MAMMAL

CAR

AUTOMOBILE

VEHICLE

1st LEVEL

2nd LEVEL

3rd LEVEL

MAMMAL BUTTERFLY MAMMAL

“There are one butterfly, two automobiles and two mammals”

AUTOMOBILE AUTOMOBILE

Figure 4: Linguistic dataset construction. In red: ran-
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ated caption.

build the dataset (55 animals and 55 artifacts) with
3 nouns expressing different levels of an ontologi-
cal hierarchy (e.g., ‘cat’, ‘feline’, ‘mammal’).2 (b)
For each entity present in the audio-visual scene,
we randomly picked one of the three nouns. (c)
For each noun, we counted the number of enti-
ties present in the audio-visual input, assigned that
number to the noun and pluralized it, if necessary.
(d) In order to account for more variability, we
started the linguistic caption by choosing one of
six possible starting phrases.3 We obtained cap-
tions with on average 10.5 nouns (standard devia-
tion: 4.53).

Sensory Representations The vector represen-
tation of the visual scene is extracted using Incep-
tion v3 CNN (Szegedy et al., 2016) pretrained on
ImageNet (Deng et al., 2009) from the last aver-
age pooling layer which consists of 2048-d visual
vectors.

For the auditory dataset, we built the repre-
sentation of each entity and the scenes contain-
ing them as following. We started from the au-
dio features computed with the VGG-inspired au-
ditory model described in Hershey et al. (2017)
which has been trained on a preliminary version
of YouTube-8M.4 For each second of a sound clip,
the model produces a 128-d vector; hence each 10-
sec sound clip of the Audioset dataset (Gemmeke
et al., 2017) would be represented by a 1280-d

2Note that in the case of animals, this hierarchy is much
more easier to build (e.g. Linnaean taxonomy) while for the
artifacts the 3 nouns are generally more often synonyms and
often do not represent a real hierarchy/taxonomy.

3 ‘There are . . . ’ , ‘It seems to me that there are . . . ’, ‘I’m
thinking of . . . ’, ‘I can spot . . . ’, ‘There exists . . . ’, ‘I can
spot . . . ’).

4https://research.google.com/
youtube8m/

vector. To work with smaller and more representa-
tive vectors, we selected the two central seconds of
each 10-sec audio clip (the 5th and 6th) and used
the resulting 256-d vector as the representation of
the corresponding entity. Out of these entity repre-
sentations we built the representation of the scene
by concatenating the entity vectors. Scenes can
contain min 3 and max 20 entities, hence we use
vectors of 20 ‘cells’. When there are less than
20 entities, there are ‘empty cells’ which are visu-
ally represented by the grey background. We rep-
resented their auditory counterpart with a ‘silent
sound’ computed as following: we recorded a 10-
sec sound clip of silence, picked the 5th and 6th
seconds and obtained the 256-d auditory vector us-
ing the model of Hershey et al. (2017). The 20 to-
tal ‘cells’ are then shuffled, resulting in a 5120-d
auditory vector.

As for the linguistic scenes, for each caption we
extracted the features through the Universal Sen-
tence Encoder (USE) (Cer et al., 2018) producing
512 dimensional vectors for each sentence. Al-
ternatively, we could have used LSTM modules to
process from scratch both the linguistic and acous-
tic inputs exploiting their sequential nature. We
rejected this alternative mainly to avoid that, dur-
ing the training process, the neural network learns
task-dependent representations and arbitrary asso-
ciations. It has been shown (e.g., in Cer et al.
(2018)) that USE provides sentence-level embed-
dings with strong transfer performance on several
NLP tasks. We consider this point as a strong mo-
tivation for our choice: in this way, we get more
consistent representations across different modal-
ities and the overall architecture turns out to be
easier, more scalable and less prone to learn task-
specific representations.

The semantic spaces containing the entity rep-
resentations of the three modalities are rather dif-
ferent. It is interesting to note that the auditory
dataset is much more dense than either the visual
or the linguistic one: The average cosine similar-
ity between entity pairs is 0.73 for sound vs. 0.44
for vision and 0.43 for language. In other words,
entities are visually and linguistically much more
distinct than auditorily. This could be possibly
due to the fact that, as highlighted by Owens et al.
(2018), sound undergoes less transformations than
vision, which is affected by, for instance, lighting,
scene composition, and viewing angle. In other
words, sound could be denser than vision since it

https://research.google.com/youtube8m/
https://research.google.com/youtube8m/
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‘abstracts’ from all the possible visual transforma-
tions that we encounter in the other modality. It
follows that integrating these modalities requires
some degree of generalization over a variety of
transformations, which is intuitively not trivial.

4 Models and Test Settings

Below we describe the ‘Hub and Spoke’ model
(H&S) that takes as input strongly aligned audi-
tory and visual inputs, and the ‘Predictive Code
Model’ (PCM) which differs from the former only
at testing time, when it takes as input the vector
processed by the auditory spoke and the visual
representation obtained by prior knowledge, viz.
through an external mapping. We take as base-
lines the single-modality (visual, auditory inputs)
versions of the model.

Hub and Spoke model (H&S) As illustrated in
Figure 5 (up), this model takes the 2048-d and
5120-d visual and auditory vectors, reduces them
to vectors of the same dimensions (512-d) and
merges them in the Hub through multiplication.
The multimodal output is reduced to 128-d via a
ReLU hidden layer, then a softmax layer is applied
to output a 9-d vector with the probabilities to as-
sign each of the 9 quantifiers.

Unimodal model The three layers of the hub de-
scribed above are trained to perform the quantifi-
cation task from either the visual or auditory rep-
resentations alone.

Predictive Code Model (PCM) We take the hub
trained using the representations produced by the
visual and auditory spokes (namely the hub of the
H&S) and evaluate it on new types of audio-visual
inputs: the auditory vectors are produced by the
auditory spoke as for the H&S, while the visual
vectors are obtained via a linear mapping func-
tion that simulates prior knowledge which ‘hallu-
cinates’ the visual perception. The mapping func-
tion takes as input either (a) the auditory input it-
self (auditory prior) or (b) the corresponding lin-
guistic caption (language prior), as illustrated in
Figure 5 (bottom, (a) left vs. (b) right). For sake of
simplicity, the mapping function is trained outside
the model. It is implemented as a linear neural
network which is exposed to the aligned data of
the training and validation sets used for the H&S.
Hence, when used in the PCM setting it is applied
to data that was never seen before. The mapping
is trained using Mean Squared Error (MSE).

We only experimented with hallucinated visual
representations and left for the future the other di-
rection – a visual experience facilitated by the cor-
responding imagined auditory. Since the semantic
space of the auditory input is rather dense, we ex-
pect that a non-linear mapping might be necessary
to obtain the latter.

Implementation details We used ReLU activa-
tion function for all the hidden layers, and Adam
optimizer (Kingma and Ba, 2015) with learning
rate = 0.0001 and default weight decay. All mod-
els were trained for no more than 150 epochs (us-
ing early stopping) by minimizing the Kullback-
Leibler (KL) divergence loss between the activa-
tions by softmax and the probability distribution of
human responses for each proportion by Pezzelle
et al. (2018a). All models were implemented in
PyTorch v0.4.

5 Experiments and Results

Evaluation All models are evaluated by com-
puting the Pearson product-moment correlation
coefficient between the Softmax probabilities and
the 9-d vectors from Pezzelle et al. (2018a), which
encode the probability of each quantifier to be
used with respect to a given proportion based on
human choices.

5.1 Experiments

Unimodal vs. multimodal models Testing the
models on the unimodal and multimodal data
might lead to results that are influenced by the dif-
ferent sizes of data seen during training. To rule
out this possibility, we use unimodal and multi-
modal datasets of equal size. We take 11,900 dat-
apoints for each single modality; and in the mul-
timodal model, we use 5950 instances for each
modality which sum up to 11,900 datapoints.

Incongruent visual-auditory inputs In order to
test the effectiveness of the integration of the two
modalities, we take the H&S trained on aligned
(congruent) visual-auditory data and we test it
with incongruent data, viz. inputs that do not have
the same proportion of animals. Given a visual in-
put containing, e.g., 3 animals and 2 artifacts (as
in Figure 2 left), we pair it with an auditory input
having 3 artifacts and 2 animals. This way, the cor-
responding probability distributions are different,
hence we refer to these pairs as incongruent audi-
tory input. Similarly, we generate incongruent vi-
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Figure 5: Up: H&S To learn quantifiers, the hub learns to integrate the auditory and visual sensory inputs; Bottom:
PCM The hub trained to perform audio-visual integration can quantify the animals present in the auditory inputs
by exploiting the ‘hallucinated’ visual representation obtained either from (a) the auditory input it self (left corner)
or (b) the the language input (right corner).

sual inputs by pairing an auditory input with, e.g,
a 3:2 proportion with a visual input with a propor-
tion of 2:3, and consider as the correct probability
distribution the one corresponding to the 3:2 pro-
portion encoded by the auditory input. To ensure
that the difference between the two modalities is
high, we avoid pairing proportions with extremely
similar probability distributions. Rather, we focus
on a subset of proportion pairs, namely 0-100%,
10-90%, and 17-83%. If the hub exploits the align-
ment between the modalities, we expect the model
to perform poorly in this setting (lower is better).

Unseen combinations We evaluate the general-
ization power of the models by testing them on un-
seen data. We want to study how well the model
generalizes from (a) small cardinalities to larger
ones and (b) vice versa. To this end, we divide the
training and test sets as following: For each of the
17 proportions, we use as the test set the scenes
containing (a) the largest possible number of ob-
jects (e.g., for proportion 0%, we test on 0:20 and
train on all the other combinations); (b) the small-
est possible number of objects (e.g., for proportion
0%, we test on 0:3 and train on all the other com-
binations).

Pearson’s r
Sound 0.68
Vision 0.72
H&S 0.86
PCM: auditory prior 0.78
PCM: language prior 0.81
H&S on incongruent visual inputs -0.25
H&S on incongruent auditory inputs 0.02

Table 1: Pearson’s r correlation results - human judg-
ments used as target results. Unimodal vs. multimodal
model trained and tested on datasets of equal size.

5.2 Quantitative Results

Unimodal vs. multimodal models Table 1 re-
ports the Pearson’s r correlation results compar-
ing the unimodal and multimodal models. As we
can see, the visual data is slightly more informa-
tive than the auditory one for learning the quan-
tification task (0.68 vs. 0.72). The first main re-
sult is that the multimodal model outperforms the
unimodal ones to a large extent. The H&S ob-
tains 0.18 and 0.14 higher correlation than the au-
ditory and visual model, respectively. This result
shows that the multimodal data provide comple-
mentary information that the model manages to
exploit. Regarding the effect of prior knowledge,
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Figure 6: A: Density plot reporting the frequency of human responses for the 9 quantifiers (y-axis) against the
proportion of targets in the scene (x-axis). B-F: Average probabilities predicted by models in test set (same axes).

Pearson’s r
large→ small small→ large

Sound 0.55 0.73
Vision 0.64 0.76
H&S 0.74 0.85

Table 2: Unimodal vs. multimodal models tested
on unseen combinations which have smaller or larger
number of entities than the seen data.

we see that hallucinating the visual representations
improves over processing only the auditory in-
put. Using the latter to hallucinate the visual scene
leads to an increase of 0.10 in correlation, and an
even higher increase (+0.13) is obtained when the
hallucination is induced by a linguistic description
of the scene. It is worth noticing, however, that
the correlation values obtained by the PCMs are
slightly lower than the one obtained by the H&S.
This is intuitive since the latter can capitalize on
first-hand information from both modalities.

To better understand the behavior of the multi-
modal model, we scrutinize its results by investi-
gating whether the absolute difference between the
animals and artifacts sets has an impact on the per-
formance of the model. Figure 7 reports Pearson’s
r obtained by the H&S model for the smallest and
highest combination of each proportion (we do not
plot proportion 0.5 since the distance is 0 for all its
combinations). For instance, for proportion 67%,
the smallest combination is 2/3 (2 targets, 1 non-
targets), the largest combination is 12/18 (12, 6),
and their absolute difference is equal to 1 and 6,
respectively. As can be seen from the plot, smaller
absolute differences are always harder than higher
ones.

Incongruent sensory pairs As the results in Ta-
ble 1 show, the model is strongly sensitive to these
incongruent data, suggesting that cross-modal in-
tegration is actually part of the models.
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Figure 7: H&S Pearson’s r obtained for the smallest (blue) and biggest (red) combination of each proportion. Note
that numbers in white at the bottom of each bar refer to the absolute difference between animals and artifacts sets.

Unseen combinations Table 2 shows that mod-
els are able to generalize to unseen combinations
quite well. In particular, they turn out to be al-
ways better in generalization when they learn from
small combinations and are tested on large ones.
This pattern of results reflects the findings illus-
trated in Figure 7, assuming that a model trained
on hard cases and tested on easier ones would lead
to higher results compared to the opposite ‘direc-
tion’.

5.3 Qualitative Results
Figure 6 compares the probability distributions
learned by the tested models (panels B-F) against
the distribution of responses by humans (panel A)
from Pezzelle et al. (2018a). As can be clearly
seen, both unimodal models (B-C) show a much
lower correlation with human data compared to
either H&S (D) or PCMs (E-F). In particular,
the unimodal models tend to produce very simi-
lar curves for all quantifiers, thus predicting them
with a similar probability at any proportion (i.e.,
there are no clear ‘peaks’). Both the H&S and
the PCMs, in contrast, output a distribution that is
very similar to that by humans (mirrored in the re-
sults of Table 1). While plots D-F are almost iden-
tical, it can be noted that the H&S is slightly better
than both PCMs at the ‘extreme’ proportions, par-
ticularly 0% and 100%. We conjecture this ability
is responsible of the slightly higher correlation ob-
tained by this model compared to the PCMs.

6 Conclusion

In this paper, we show that concurrent multi-
sensory information bootstraps models perfor-
mance in a semantic task, namely grounding quan-
tifiers, in line with the results on human percep-
tion. Also, we provide computational evidence
that the predicting code hypothesis advocated in
the cognitive literature is an interesting and use-
ful source of inspiration for computational mod-
els. We plan to further investigate how predictions
from prior knowledge can be compared with those
obtained through sensory experience to further im-
prove the performance on semantic tasks.
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tifiers in language and logic. Oxford University
Press.

Sandro Pezzelle, Raffaella Bernardi, and Manuela Pi-
azza. 2018a. Probing the mental representation of
quantifiers. Cognition, 181:117–126.

Sandro Pezzelle, Marco Marelli, and Raffaella
Bernardi. 2017. Be precise or fuzzy: Learning the
meaning of cardinals and quantifiers from vision. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 337–342,
Valencia, Spain. Association for Computational Lin-
guistics.

Sandro Pezzelle, Ionut-Teodor Sorodoc, and Raffaella
Bernardi. 2018b. Comparatives, quantifiers, propor-
tions: a multi-task model for the learning of quan-
tities from vision. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
419–430. Association for Computational Linguis-
tics.

Matthew A Lambon Ralph, Elizabeth Jefferies, Kara-
lyn Patterson, and Timothy T Rogers. 2017. The
neural and computational bases of semantic cogni-
tion. Nature Reviews Neuroscience, 18(1):42.

Santi Seguı́, Oriol Pujol, and Jordi Vitria. 2015. Learn-
ing to count with deep object features. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 90–96.

Irina Simanova, Jolien C Francken, Floris P de Lange,
and Harold Bekkering. 2016. Linguistic priors
shape categorical perception. Language, Cognition
and Neuroscience, 31(1):159–165.

Ionut Sorodoc, Angeliki Lazaridou, Gemma Boleda,
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