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Abstract

We propose a novel framework for modeling
event-related potentials (ERPs) collected dur-
ing reading that couples pre-trained convolu-
tional decoders with a language model. Using
this framework, we compare the abilities of a
variety of existing and novel sentence process-
ing models to reconstruct ERPs. We find that
modern contextual word embeddings under-
perform surprisal-based models but that, com-
bined, the two outperform either on its own.

1 Introduction

Understanding the mechanisms by which compre-
henders incrementally process linguistic input in
real time has been a key endeavor of cognitive sci-
entists and psycholinguists. Due to its fine time
resolution, event-related potentials (ERPs) are an
effective tool in probing the rapid, online cog-
nitive processes underlying language comprehen-
sion. Traditionally, ERP research has focused on
how the properties of the language input affect dif-
ferent ERP components (see Van Petten and Luka,
2012; Kuperberg, 2016, for reviews).!

While this approach has been fruitful, re-
searchers have also long been aware of the po-
tential drawbacks to this component-centric ap-
proach: a predictor’s effects can be too transient
to detect when averaging ERP amplitudes over a
wide time window—as is typical in component-
based approaches (see Hauk et al., 2006, for dis-
cussion). Different predictors can affect ERP in
the same time window as an established compo-
nent but have slightly different temporal (Frank
and Willems, 2017) or spatial (DeLong et al.,

"Examples of such components include the N1/P2
(Sereno et al., 1998; Dambacher et al., 2006); N250 (Grainger
et al., 2006); N400 (Kutas and Hillyard, 1980; Hagoort et al.,
2004; Lau et al., 2008); and P600 (Osterhout and Holcomb,
1992; Kuperberg et al., 2003; Kim and Osterhout, 2005)
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Figure 1: An instance of our framework using a bidi-
rectional language model as the text encoder.

2005) profiles. This means that the definition of
a component strongly affects interpretation.

There are two typical approaches to resolving
these issues. The first is to plot the data and use vi-
sual inspection to select an analysis plan, introduc-
ing uncontrollable researcher degrees of freedom
(Gelman and Loken, 2014). Another approach is
to run separate models for each time point (or even
each electrode) to look for the emergence of an ef-
fect. This necessitates complex statistical tests to
monitor for inflated Type I error (see, e.g., Blair
and Karniski, 1993; Laszlo and Federmeier, 2014,
for discussion) and to control for autocorrelation
across time points (Smith and Kutas, 2015a,b).

We explore an alternative approach to the anal-
ysis of ERP data in language studies that substan-
tially reduces such researcher degrees of freedom:
directly decoding the raw electroencephalography
(EEG) measurements by which ERPs are col-
lected. Inspired by multimodal tasks like image
captioning (see Hossain et al., 2019, for a re-
view) and visual question answering (Antol et al.,
2015), we propose to model EEG using standard
convolutional neural networks (CNNs) pre-trained
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under an autoencoding objective. The decoder
CNN can then be decoupled from its encoder and
recoupled with any language processing model,
thus enabling explicit quantitative comparison of
such models. We demonstrate the efficacy of this
framework by using it to compare existing sen-
tence processing models based on surprisal and/or
static word embeddings with novel models based
on contextual word embeddings. We find that
surprisal-based models actually outperform con-
textual word embeddings on their own, but when
combined, the two outperform either model alone.

2 Models

All of the models we present have two compo-
nents: (i) a pre-trained CNN for decoding raw
EEG measurements time-locked to each word in
a sentence; and (ii) a language model from which
features can be extracted for each word—e.g. the
surprisal of that word given previous words or its
contextual word embedding. An example model
structure using ELMo embeddings (Peters et al.,
2018) is illustrated in Figure 1.

Convolutional decoder For all models, we use a
convolutional decoder pre-trained as a component
of an autoencoder. To reduce researcher degrees of
freedom, the decoder architecture is selected from
a set of possible architectures by cross-validation
of the containing autoencoder.

The autoencoder consists of two parts: (a) a
convolutional encoder that finds a way to best
compress the ERP signals; and (b) a convolutional
decoder with a homomorphic architecture that re-
constructs the ERP data from the compressed rep-
resentation. ERPs were organized into a 2D ma-
trix (channel x time points). For the encoder,
we pass the ERPs through multiple interleaved
1D convolutional and max pooling layers with re-
ceptive fields along the time dimension, shrinking
the number of latent channels at each step. Cor-
respondingly, for the decoder part, we use a ho-
momorphic series of 1D transposed convolutional
layers to reconstruct the ERP data.

At train time, the decoder weights are frozen,
and the encoder is replaced by one of the language
models described below. This entails fitting an in-
terface mapping—a linear transformation for each
channel produced by the encoder—from the fea-
tures extracted from the language model into the
representation space output by the encoder.
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Language models We consider a variety of fea-
tures that can be extracted from a language model.

Surprisal We use the lexical surprisal
—log p(w; | w1, ..., w;—1) obtained from a RNN
trained by Frank et al. (2015).

Semantic distance Following Frank and
Willems (2017), we point-wise average the GloVe
embedding (Pennington et al., 2014) of each word
prior to a particular word to obtain a context
embedding and then calculate the cosine distance
between the context embedding and the word
embedding for that word. We use the GloVe
embeddings trained on Wikipedia 2014 and
Gigaword 5 (6B tokens, 400K vocabulary size).

Static word embeddings We also consider
the GloVe embedding dimensions as features. We
do not tune the GloVe embeddings using an ad-
ditional recurrent neural network (RNN), instead
just passing the them through a multi-layer percep-
tron with one hidden layer of tanh nonlinearities.
The idea here is that the GloVe-only model tells us
how much the distributional properties of a word,
outside of the current context, contribute to ERPs.

Contextual word embeddings We consider
contextual word embeddings generated from
ELMo (Peters et al., 2018) using the allennlp
package (Gardner et al., 2017). ELMo produces
contextual word embeddings using a combination
of character-level CNNs and bidirectional RNNs
trained against a language modeling objective, and
thus it is a useful contrast to GloVe, since it cap-
tures not only a word’s distributional properties,
but how they interact with the current context.

We take all three layers of the hidden layer out-
put in the ELMo model and concatenate them. To
ensure a fair comparison with the surprisal- and
GloVe-based models, we use the same tuning pro-
cedure employed for the static word embeddings.
Further, because sentences are presented incre-
mentally in ERP experiments and because ELMo
is bidirectional and thus later words in the sen-
tence will affect the word embeddings of previous
words, we do not obtain an embedding for a par-
ticular word on the basis of the entire sentence, in-
stead using only the portion of the sentence up to
and including that word to obtain its embedding.

Combined models We also consider models
that combine either static or contextual word em-
bedding features with frequency, surprisal, and se-
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Figure 2: Original ERPs and ERPs decoded from the
trained autoencoder of an example trial. a) ERPs from
all 32 channels (denoted by color). b) Original (solid)
and decoded ERPs (dashed) for example electrodes.

mantic distance. The latter features were concate-
nated onto the tuned word embeddings before be-
ing passed to the interface mapping.

3 Experiments

We use the EEG recordings collected and modeled
by Frank and Willems (2017). In their study, 24
subjects read sentences drawn from natural text.
Sentences were presented word-by-word using a
rapid serial visual presentation paradigm. We use
the ERPs of each word epoched from -100 to
700ms and time-locked to word onset from all the
32 recorded scalp channels. After artifact rejection
(provided by Frank and Willems with the data),
this dataset contains 41,009 training instances.

Pre-training To select which decoder to use, we
compare the performance of two CNN architec-
tures motivated by well-known properties of EEG.
The first architecture has 5 latent channels and 9
time steps. Given the sampling rate and size of
the input (250Hz, 200 time steps), this roughly
corresponds to filtering the EEG data with alpha
band frequency (~ 10Hz). The other has 10 la-
tent channels and 20 time steps, thus lying within
the range of beta band activity (~ 25Hz). In ad-
dition to these two architectures, we also examine
whether including subject- and electrode-specific
random intercepts improves model performance.
We conduct a 5-fold cross-validation for each
architecture to find the one that has the best per-
formance in reconstructing ERP data. As shown
in Table 1, the beta models perform better overall
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than alpha models, since they likely capture both
alpha and beta band activities. Adding subject-
specific intercept, on the other hand, did not
greatly improve the model performance.

Model No Intercept Intercept
alpha  49.9 (0.532) 49.7 (0.533)
beta  33.5 (0.686) 32.7 (0.692)

Table 1: Mean MSE and R? (in parentheses).
Figure 2 shows the reconstructed ERPs of the beta
model on one trial. The autoencoder can recon-
struct the ERP signal very well. The selected
channels are illustrative of the reconstruction ac-
curacy across all channels. We thus selected the
beta model without subject-specific intercept as
the decoder for our consequent models.

Training The interface mapping and (where ap-
plicable) word embedding tuner are trained un-
der an MSE loss using mini-batch gradient de-
scent (batch size = 128) with the Adam optimizer
(learning rate=0.001 and default settings
for betal, beta2, and epsilon)implemented
in pytorch (Paszke et al., 2017). Each model is
trained for 200 epochs. Since we need at least one
preceding word to compute contextual word em-
beddings, we do not include the first word of the
sentence. This left ERPs for 1,618 word tokens
per subject (638 word types). After excluding tri-
als containing artifacts, a total of 37,112 training
instances remain.

Development To avoid overfitting, we use early
stopping and report the models with the best per-
formance on the development set. We did a pa-
rameter search over three different weight decays:
le-5, 1e-3, 1e—-1. For each model, we chose
the weight decay that produced the best mean
performance on held-out data in a 5-fold cross-
validation.

Baselines As a baseline we train an intercept-
only model that passes a constant input (optimized
to best predict the data) to the decoder. In addi-
tion, we fit a baseline model that only has word
frequency as a feature. Frequency is also included
as an additional feature in all models.

Metrics To account for the fact that our model
performance is bounded by the performance of the
autoencoder, we report a modified form of R? to
evaluate the overall model performance.
ern o= 1— MSEmodel - MSEautoencoder
MSEintercept - MSEautoencoder




Model R2, 95%CI

Frequency 19.5 [18.5,20.7]

F + Surp 374 [36.5,38.3]

F + SemDis 36.1  [32.3,38.4]

F + GLoVE 35.0 [31.8,38.2]

F + ELMo 352 [34.3,36.2]
F+S+SD 46.6  [43.5,49.7)
F+S+SD+GloVe 47.1 [43.2,49.4]
F+S+SD+ELMo 49.5 [48.9,50.1]

Table 2: Proportion variance explained by each model
(x100) and confidence interval across folds computed
by a nonparametric bootstrap. F = frequency, S(urp) =
surprisal, S(em)D(is) = semantic distance.

4 Results

Table 2 shows the R2 _; metric for each model. We
see that both surprisal and semantic distance out-
perform both types of word embedding features,
all of which outperform frequency alone. When
combined, surprisal and semantic distance outper-
form either alone, and further gains can be made
with the addition of either static (GloVe) or con-
textual (ELMo) embedding features. The addition
of contextual embedding features increases perfor-
mance more than the addition of static word em-
bedding features, such that there is some benefit to
capturing context over and above that provided by
surprisal and semantic distance.

Time course analysis To understand where in
time each predictor improved model performance,
we examine the increase in correlation over the in-
tercept model at each time point (Figure 3). There
are roughly three regions where the language mod-
els outperform the intercept model. The first is
right after 100ms post word onset: correspond-
ing to the N1 component, which is typically con-
sidered to reflect perceptual processing; the sec-
ond is between 200 and 350ms: corresponding to
the N250 component, which correlates with lexi-
cal access (Grainger et al., 2006; Laszlo and Fe-
dermeier, 2014); and the third is between 300ms
and 500ms: corresponding to the N400, which is
typically associated with semantic processing.
Consistent with previous findings (Hauk et al.,
2006; Laszlo and Federmeier, 2014; Yan and
Jaeger, 2019), adding frequency into the model
improved model performance in all three time
windows.  Also consistent with the literature,
adding surprisal and semantic distance improved
model performance in the N400 time window
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Figure 3: Increase in Pearson’s R between predicted
and actual ERPs. Lines show GAM smooth over time.

(Frank and Willems, 2017; Yan and Jaeger, 2019).

Models with word embeddings do not differ
much from the models containing only frequency,
surprisal, and semantic distance, with the biggest
difference around 300ms post word onset. This
might indicate an effect in the early N400 time
window. This could also indicate that processes
commonly associated with the N250 may be bet-
ter captured by the models containing word em-
beddings. If so, it is less expected and potentially
interesting, since most of our models have no ac-
cess to perceptual properties of the input—with
the possible exception of ELMo, whose charCNN
may capture orthographic regularities. These ef-
fects could reflect our models’ ability to capture
top-down lexical processing (see, e.g., Penolazzi
etal., 2007; Yan and Jaeger, 2019) or possibly sys-
tematic correlations between higher-level features
and perceptual features.

Part-of-speech analysis Prior work on ERP
during reading distinguishes function word—such
as determiners, conjunctions, pronouns, preposi-
tions, numerals, particles—from content words—
such as (proper) nouns, verbs, adjectives, adverbs
(Nobre and McCarthy, 1994; Frank et al., 2015).
As such, we also examine whether each model’s
performance differs for content words and func-
tion words. We calculate the Pearson’s correlation
between the predicted and actual ERPs for each
word of each model and used linear mixed-effects
model to examine the influence on model fit with
the inclusion of different information. If a model
included a specific type of information, the corre-
sponding predictor is coded as 1, otherwise it was
coded as -1. For example, the surprisal model was
trained with surprisal but not semantic distance, so
the surprisal predictor is 1 for this model and the
semantic distance predictor is -1. We further in-
cluded the interaction between models and word



Predictor B t
Intercept —0.0013 —0.225
Word Type (Content) 0.0030 2.01 *
Frequency 0.0110 212
Surprisal 0.0050 13.0 **
Semantic Distance 0.0040 11.60 **
GloVe Embeddings 0.0040 10.3 **
ELMo Embeddings 0.0040 10.1  **
Freq : Word Type —-0.0010 —243 *
Surp : Word Type 0.0001 0.24
SemDis : Word Type —0.0003  —0.70
GloVe : Word Type 0.0002 0.55
ELMo : Word Type 0.0007 —-1.85 *

Table 3: Model estimates and t statistics from mixed-
effects model. ** : p < 0.01; * : p < 0.05; T : p < 0.1

types (function=-1, content=1).

Table 3 shows the resulting coefficients. Over-
all, models display better performance for content
words than for function words (B = 0.003,t =
2.01,p < 0.05), consistent with previous find-
ings (Frank et al., 2015). Including each type
of information also significantly increased model
fit (ts > 10.1,p < 0.01). There was a signifi-
cant interaction between frequency and word type
(B = —0.001,t = —2.43,p < 0.02): including
frequency increased model performance for func-
tion words more than for content words. There
was also a marginally significant interaction be-
tween ELMo and word type (B = 0.0007,t =
—1.85,p < 0.064), suggesting that including
ELMo embeddings increased model performance
for content words more than for function words.

We also examine the interaction between each
type of information and each part-of-speech.
Overall, the models had worse performance for
particles (3 = —0.017,t = —3.37,p < 0.01),
nouns (B = —0.007,t = —1.95, p < 0.051) and
pronouns (3 = —0.012,t = —1.76, p < 0.08).
Including each type of information increased over-
all model fit (ts > 6.05,p < 0.01). While
including frequency increased overall model fit,
it increased the model fit for verbs less (B =
—0.003,t = —2.04, p < 0.05). No other effects
reached significance.

5 Related Work

Traditionally, ERP studies of language process-
ing use coarse-grained predictors like cloze rates,
which often lack the precision to differentiate dif-
ferent neural computational models (for discus-
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sion, see Yan et al., 2017; Rabovsky et al., 2018).
To overcome such limitations, a main line of attack
has been to extract measures from probabilistic
language models and evaluate them against ERP
amplitudes (Frank et al., 2015; Brouwer et al.,
2017; Rabovsky et al., 2018; Delaney-Busch et al.,
2019; Fitz and Chang, 2018; Szewczyk and Wod-
niecka, 2018; Biemann et al., 2015).

While prior studies have also predicted ERPs
from language model-based features (Broderick
et al., 2018; Frank and Willems, 2017; Hale et al.,
2018), they fit to aspects of the EEG signals that
are unlikely to be related to language processing.
Our approach threads the needle by first finding
abstract structure in the ERPs with a CNN, then
using that knowledge in predicting that structure
from linguistic features. We are not the first to use
CNNs to model EEG/ERPs (Lawhern et al., 2016;
Schirrmeister et al., 2017; Seeliger et al., 2018;
Acharya et al., 2018; Moon et al., 2018), but to
our knowledge, no other work has yet used CNNs
for modeling ERPs during reading.

6 Conclusion

We proposed a novel framework for modeling
ERPs collected during reading. Using this frame-
work, we compared the abilities of a variety of
existing and novel sentence processing models to
reconstruct ERPs, finding that modern contextual
word embeddings underperform surprisal-based
models but that, combined, the two outperform ei-
ther on its own.

ERP data provides a rich testbed not only for
comparing models of language processing, but po-
tentially also for probing and improving the rep-
resentations constructed by natural language pro-
cessing (NLP) systems. We provided one example
of how such probing might be carried out by ana-
lyzing the differences among models as a function
of processing time, but this analysis only scratches
the surface of what is possible using our frame-
work, especially for understanding the more com-
plex neural models used in NLP.
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