Entity Decisions in Neural Language Modelling:
Approaches and Problems

Jenny Kunz and Christian Hardmeier
Department of Linguistics and Philology
Uppsala University
752 36 Uppsala, Sweden
jenny.kunz.7402@student .uu. se
christian.hardmeier@lingfil.uu.se

Abstract

We explore different approaches to explicit en-
tity modelling in language models (LM). We
independently replicate two existing models in
a controlled setup, introduce a simplified vari-
ant of one of the models and analyze their per-
formance in direct comparison. Our results
suggest that today’s models are limited as sev-
eral stochastic variables make learning diffi-
cult. We show that the most challenging point
in the systems is the decision if the next token
is an entity token. The low precision and recall
for this variable will lead to severe cascading
errors. Our own simplified approach dispenses
with the need for latent variables and improves
the performance in the entity yes/no decision.
A standard well-tuned baseline RNN-LM with
a larger number of hidden units outperforms
all entity-enabled LMs in terms of perplexity.

1 Introduction

Reference to entities in the world is a core fea-
ture of human language, and coreference between
different mentions in a text is a fundamental prop-
erty of coherent communication. Computational
approaches to reference have long been studied
in the area of coreference resolution (Ng, 2017).
Very recently, explicit models of reference have
also been studied in the context of language mod-
elling. The usual approach is to introduce latent
variables modelling whether the next token is part
of an entity mention, and which of the previously
seen entities it refers to.

In this work, we present a comparative study
of three language modelling approaches with ex-
plicit representations of entity coreference: Yang-
LM, the entity-enabled language model (LM) of
Yang et al. (2016), the EntityNLM model of Ji
et al. (2017), and SetLLM, our own extension of the
latter. Yangl.M and EntityNLM differ in the pa-
rameterization of the latent variables and the order

15

in which decisions are made. SetLM is a simpler
architecture with fewer loss functions. It replaces
the latent variable modelling the decision whether
to produce an entity with two extra embeddings,
one for a new entity (similar to the other models)
and one for the case that the token does not be-
long to an entity. We replicate the results of Yang
et al. (2016) and Ji et al. (2017) with an indepen-
dent reimplementation of their models in a com-
parable experimental setup and evaluate the mod-
els in terms of overall language modelling perfor-
mance performance in comparison with a simple
RNN-LM. We also study the accuracy and pre-
cision/recall in each individual decision step and
look at the convergence of variables. We find that
Yangl.M outperforms the other models in terms of
perplexity, whereas SetLM achieves the best re-
sults for the entity yes/no prediction. None of the
entity-enabled LMs is competitive with a simple
RNN-LM having a higher number of hidden units,
and we do not achieve similar gains by enlarging
the hidden sizes of the entity LMs.

2 Approaches

RNNs for language modelling have been state of
the art for a few years (Mikolov et al., 2013),
mostly using LSTMs (Hochreiter and Schmidhu-
ber, 1997; Sundermeyer et al., 2012). They model
each token in a document based on their previous
context:

ht = LSTM(.Ttht_l). (1)

The explicit incorporation of coreference in these
LMs is a relatively new and less researched task.
In the entity prediction process of such models,
two fundamental decisions are made: (1) Is the to-
ken (part of) an entity mention? and (2) Which
entity does it refer to? To our knowledge, Yang
et al. (2016) were the first to implement this idea.
In their model, (1) is handled with the variable z;

Proceedings of the 2nd Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2019), pages 15-19,

Minneapolis, USA, June 7, 2019. ©2019 Association for Computational Linguistics

for each position ¢ with an attention mechanism
(Bahdanau et al., 2014) with the LSTM hidden
state over the set of observed entities h® that also
contains a learnable embedding e,,¢,, for a new en-
tity that has not been observed yet. They estimate
the probability distribution over the known entities
and use the weighted sum for the decision whether
the token is part of an entity mention.

pcoref(vt|h87 ht—l) = ATTN(he, htfl) 2)
de =3 p(oe)s, ®
p(atlhi-1) = sigmoid(Whi1,di]) ()

If z; = 1 (i.e. the word is an entity mention), the
probability for the next word is calculated based
on v; (see Equation 2), the previous hidden state
of the LSTM and the set h¢. If zz = 0 then the
next word is predicted based on the previous hid-
den state of the LSTM only.

EntityNLM (Ji et al., 2017) handles (1) with the
variable Ry, corresponding to z;, but in contrast to
YanglLM solely based on the LSTM hidden state,
using a parametrized embedding associated with
r € {0, 1}. The decision which entity it refers to is
handled with the variable E; that denotes the index
of the current entity in the set of known entities F;
in case R; = 1, using the LSTM hidden state, the
set of entities and a distance feature vector. The
prediction of the next token z is always based on
the LSTM hidden state h;; and the representation
of the current entity e even if it is not an entity. In
this point EntityNLM also differs from YangL.M
that only uses the entity representation in the case
that the token is predicted to be an entity token.

Ji et al. also introduce a length prediction vari-
able L; that is predicted when a new mention is
started, using the last hidden state h;_; and the
most recent embedding of the entity e;.

Clark et al. (2018) build on Ji et al. (2017) and
track entities to use them as contextual informa-
tion when generating narrative text. They evaluate
their model in mention generation, sentence selec-
tion and sentence generation tasks, but not in the
perplexity metric so that we cannot use their model
for quantitative comparison.

Our SetLM model builds on YangL.M and mod-
els each token in a document with an LSTM as
above. It also saves the previously seen entities in
a set, but instead of introducing a variable that con-
trols if the next token is part of an entity mention or
not, we include a learned embedding for the case

16

that the token is not an entity token to the set, in-
spired by approaches in Question Answering with
Answer Triggering (Zhao et al., 2017). The set E
with the previously seen entities e, ..., e, has, be-
sides eney for the detection of a new entity, also
contains the learnable embedding e,,0entity for the
case that the token is not an entity. This makes
it possible to dismiss the decision in Equation 4
in YangLLM while keeping its remaining decision
structure (Equation 1, 2 and 3).

The decision on the next token is, as in Yang et
al.’s model, based on h;_; and the corresponding
embedding with the highest attention score in the
set of entities if the token is part of a mention, and
solely based on h;_; otherwise.

3 Data

We train, optimize and evaluate the three mod-
els on the English subset of the OntoNotes 5.0
corpus (Weischedel et al., 2013) with 1.5 mil-
lion words and anaphoric coreference annotation
within a document, and use the CoNLL-2012 split
into train, development and test set. We lower-
cased all tokens, replaced all numbers by a special
symbol and all tokens with less than 5 occurrences
with a special token for rare words, resulting in a
vocabulary size of 11539. Like Ji et al. (2017),
we keep only the embedding mentions where men-
tions are nested and removed all mention annota-
tion where the mention length is higher than 25.
We did not reduce the length of the mentions
in the data for YangLM to one as in the original
model but use the setting as described above.

4 Implementation

We implemented all models in Python using the
PyTorch deep learning library (Paszke et al.,
2017). As candidate hyperparameters for the hid-
den size of the LSTM and word embedding layer,
we tried the values 32, 48, 64, 128, 256, 512. We
employ dropout (Srivastava et al., 2014) with can-
didate rates of 0.0, 0.1 or 0.2 and for the Adam op-
timizer (Kingma and Ba, 2014), we tried the learn-
ing rates 0.01, 0.005 and 0.001. We tried the mod-
els with GloVe (Pennington et al., 2014) and with
randomly initialized, learnable word embeddings.
We also experimented with a weighted loss with
the intention to force the models to produce more
entity mentions.

Based on the experimental results on the de-
velopment set, we chose a hyperparameter setting

for the model based on Yang et al. (2016) with
64 hidden units for both LSTM hidden size and
word embedding size, Adam optimizer with A\ =
0.005, a dropout rate of 0.2 and randomly initial-
ized word embeddings. The model was trained for
20 epochs.

The best hyperparameter setting for the model
based on EntityNLM was very similar and only
differs in having a hidden size of 128 and being
trained for 22 epochs. For SetLM, we chose a hid-
den size of 48 and 16 epochs.

For the evaluation of our main metric that is
the token perplexity, we implement two baseline
models that are purely LSTM-based LMs. We use
the same architecture in two settings: one in the
same hyperparameter setting as the best Yang et al.
model with a hidden size of 64, trained for twelve
epochs, and one optimized model with a hidden
size of 512, trained for three epochs.

5 Evaluation

As the main metric for the language models gen-
eral performance, we measure the perplexity. We
also evaluate the entity prediction process quali-
tatively by measuring precision and recall for the
question if the next token is part of an entity men-
tion and the accuracy for the choice of the entity
from the set, and evaluate the length prediction in
the model based on EntityNLM. For our model,
we regard the choice of e,oentity as the Entity No-
decision and the choice for either of the entities
as the Entity Yes-decision. For the accuracy of the
choice of the entity from the set, we only looked
at the choices in the Entity Yes-case.

5.1 Perplexity

We report the results for our models and baselines
on the test set along with the original results from
Jietal. (2017) in table 1.!

Based on these results, we cannot confirm that
the models outperform a simple RNN-LM on the
OntoNotes data set. Both RNN-LM baselines eas-
ily outperform both the re-implemented and the
reported results of Ji et al. (2017), and the op-
timized baseline (RNN-512) also performs much

'Please note that we give the two re-implementations ac-
cess to the correct entity lists at test time in order to be able to
evaluate each of the decision steps independently. The origi-
nal results by Ji et al. (2017) did not have this access to gold
entity information, so that the results are not directly compa-
rable. SetLM also comes without access to this information
as the mention decisions are made in one step.

17

All | Ent. | Non-Ent.
RNN-64 121 | 177 114
RNN-512 96 | 126 88
EntityNLM (rep.) | 132 - -
EntityNLM (own) | 131 | 154 127
YangLLM (own) 107 | 132 101
SetLM 114 | 154 108

Table 1: Token perplexity results

better than the model based on Yang et al. (2016)
and our model which though both outperform the
RNN that has same hidden size as itself (RNN-64).
The model based on Yang et al. clearly performs
best among all entity-predicting models.

Perplexity Ratio
RNN-64 0.68
RNN-512 0.76
YangLLM (own) 0.81
EntityNLM (own) 0.85
SetLM 0.74

Table 2: Relation Perplexity All Tokens / Entity Tokens

The decision how to select a token seems to be
generally harder on entity tokens in the data set
as they generally and for all models have a higher
perplexity than non-entity tokens. But measured
by their overall performance, the entity tokens
in the re-implemented EntityNLM and YanglLM
models are relatively better than in the other mod-
els, while SetLM lies between the baseline mod-
els. Table 2 shows the perplexity of all tokens di-
vided by the perplexity of entity tokens only, giv-
ing a measure for the relative performance of the
models on entity tokens. But these results must
be seen with the constraint that EntityNLM and
YanglLM get access to gold entity lists, and that
the perplexity is a metric that grows exponentially,
which limits the comparability of the ratio. The
fact that our model does not improve on entity
tokens suggests that the improvements of the re-
implemented EntityNLM and YangL.M models are
caused by the gold information.

5.2 Entity Prediction

As the models are optimized for perplexity, the
following results would possibly have been bet-
ter in other hyperparameter settings. We observed
higher values on the development set during tun-
ing and great oscillations of the scores for different

epochs which makes it hard to interpret specific re-
sults.

Prec. | Recall F1
Yangl.M (own) 60.9% | 30.2% | 40.3%
EntityNLM (own) | 39.0% | 53.9% | 45.3%
SetLM 41.0% | 58.1% | 48.1%

Table 3: Entity Yes/No Prediction

Precision and recall of both models are low,
suggesting that the question if the next word is
an entity is highly challenging in a LM. SetLM
has the highest F1 score, suggesting that the En-
tity Yes/No prediction is best handled without a
discrete decision.

Accuracy
Yangl.M (own) 65.8%
EntityNLM (own) 67.8%
SetLM 65.1%

Table 4: Entity Choice

The accuracy for the decision which entity to
choose is comparatively high. The EntityNLM re-
implementation obtains the best value with a sub-
stantial margin.

5.3 Length Prediction

The re-implementation of EntityNLM’s length
prediction is correct in 59.4% of all cases, with
the average distance of the false predictions to the
gold mention length being 2.85 tokens. The av-
erage lengths of the mentions in all three mod-
els differ only slightly, being 1.53 for the Enti-
tyNLM re-implementation, 1.43 for the Yang et al.
re-implementation and 1.78 for SetLM. The aver-
age length in the Gold data is 2.25 tokens.

6 Discussion

While we cannot confirm that the incorporation of
explicit entity information is helpful in a general
language modelling task, and the models’ abilities
especially to predict where to form entities have
shown to be limited, we see a potential for the con-
tinuous representations for entities to become bet-
ter and to be useful in certain situations where en-
tities re-appear over long distances, like in the nar-
rative texts that were subject to Clark et al. (2018).

For short texts like in the OntoNotes data set, an
RNN-based LM implicitly seems to learn enough

18

information about entities and the error propaga-
tion caused by wrongly detected entities in the set
and erroneous decisions in the prediction process
outweigh the information gain compared to basing
the decision on the hidden state only.

The models’ results for the decision steps in the
entity prediction process suggest that handling the
question if the word belongs to an entity mention
and which entity it is jointly with information from
the set of entities is preferable over first deciding
if the word belongs to an entity mention. The list
of entities seems to be very helpful context for
the question if the next word is an entity. As the
question if the next token is an entity is by far the
biggest error source, it will lead to relevant error
propagation in real-world applications. Therefore
and because the F1 score is best for SetLM we sug-
gest that it is best handled implicitly. We note that
with left-side context only, the decision if the next
token belongs to an entity mention is extremely
hard for a LM.

We suggest that mention length prediction is not
crucial for a well-performing model. All systems
tend to create shorter mentions than in the gold
predictions to a similar extent and the EntityNLM
re-implementation did not perform notably better
than the other models without length prediction.

A main challenge in the models is the difficulty
to find a good training setting. Unsatisfactorily,
our models did not profit from more hidden units
without pre-training, while a high number of hid-
den units was the modification that lead to the
greatest performance boost for the baseline RNN-
LM. We find it promising that with 64 hidden
units, the Yang et al. re-implementation performs
better than the RNN-LM, but this effect does not
scale to larger hidden sizes.

7 Conclusion

Our evaluation of three LMs that explicitly model
coreference decisions in comparison to standard
RNN-LMs suggests that these procedures do not
improve a LM in a general language modelling
task in perplexity.

The overall performance and the entity predic-
tion results suggest that the decision if the next to-
ken is an entity should be handled with a probabil-
ity distribution over the set of entities rather than
with the current hidden state alone.

We see a need for evaluations on larger high-
quality annotated data sets to study if they can

possibly improve the prediction process with left
context only, and for evaluations on other genres.
Short texts that are mostly news texts are probably
not the genre that takes most profit of explicit en-
tity information. It is possible that in longer texts
or texts with complexly interacting characters that
develop in the text, a language model would take
greater profit from explicit entity modeling.

Despite the limitations of the current models,
we regard it as worthwhile to invest in improve-
ments, especially in the development of models
that are less prone to error propagation, and to ex-
plore these models’ potential.

Acknowledgements

This work was supported by the Swedish Research
Council under grant 2017-930. We thank all
anonymous reviewers for their constructive com-
ments.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Elizabeth Clark, Yangfeng Ji, and Noah A Smith. 2018.
Neural text generation in stories using entity repre-
sentations as context. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 2250-2260.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A Smith. 2017. Dynamic entity
representations in neural language models. arXiv
preprint arXiv:1708.00781.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Vincent Ng. 2017. Machine learning for entity corefer-
ence resolution: A retrospective look at two decades
of research. In AAAI, pages 4877-4884.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.

19

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532—1543.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929-1958.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In Thirteenth Annual Conference of the Inter-
national Speech Communication Association.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. OntoNotes release 5.0
1dc2013t19. Linguistic Data Consortium, Philadel-
phia, PA.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2016. Reference-aware language models.
arXiv preprint arXiv:1611.01628.

Jie Zhao, Yu Su, Ziyu Guan, and Huan Sun. 2017.
An end-to-end deep framework for answer trigger-
ing with a novel group-level objective. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1276-1282.

