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Abstract

We propose an end-to-end coreference resolu-
tion system obtained by adapting neural models
that have recently improved the state-of-the-art
on the OntoNotes benchmark to make them
applicable to other paradigms for this task.
We report the performances of our system on
ANCOR, a corpus of transcribed oral French
— for which it constitutes a new baseline with
proper evaluation.

1 Introduction

In the last few years, coreference resolution systems
based on artificial neural networks architectures
have received much attention by tremendously im-
proving upon the previous state-of-the-art. In par-
ticular, the system introduced by K. Lee et al. (2017)
and refined in (K. Lee et al. 2018) have proved that
relatively high scores could be achieved without re-
lying on rich features and preprocessing pipelines.

However, these results were obtained in the
paradigm of the CoNLL-2012 shared task (Prad-
han et al. 2012) and it is not self-evident that they
are generalisable to other datasets, other domains
and other languages. For instance, the choice in to
not include singleton mentions in the CoNLL-2012
dataset is quite uncommon and might rightfully be
suspected to affect the evaluation of coreference
resolution architectures (see for instance the
comparisons made by Poesio et al. (2018)).

In this work, we present an adaptation of K. Lee
et al. (2018)’s system (henceforth E2EC!) to make
it more suitable to other paradigms. We evaluate
our system on ANCOR (Muzerelle et al. 2014) —
a corpus of transcribed oral French.

"From its official repository https://github.com/
kentonl/e2e-coref.

2 Related Works

There is a large existing body of work on corefer-
ence resolution spanning from the 1970s of which
Poesio et al. (2016) provides an exhaustive review.
In recent years, the field has been dominated by
machine learning approaches — with the notable
exception of the rule-based system of H. Lee et al.
(2013) — from shallow learning approaches (C.
Maetal. 2014; Bjorkelund and Kuhn 2014; Durrett
and Klein 2014) to systems based on artificial
neural network architectures (Clark and Manning
2016a; Clark and Manning 2016b; Wiseman et al.
2015; Wiseman et al. 2016), gradually reducing
their dependency on rich features coming from pre-
processing pipelines using linguistic knowledge.
One of the last incarnations of this tendency is the
E2EC system introduced by K. Lee et al. (2017),
which has close to no dependency to external
resources (except for pretrained word embeddings
derived from non-annotated data) and yet reaches
state-of-the-art performance on the most common
benchmark: the fully end-to-end track of the
CoNLL-2012 shared task (Pradhan et al. 2012).

At the core of E2EC is the idea of performing
coreference detection on the set of all possible text
spans instead of using markables detected by an in-
dependent mention detector. This is made possible
through the use of dense representations of arbi-
trary text spans derived from the internal states of
recurrent neural networks. K. Lee et al. (2018) in-
troduced further improvements to this model, most
notably a higher-order approach to coreference de-
tection using incremental refinements of its spans
representations based on their antecedent distribu-
tions and an early pruning of antecedent candidates
based on a coarse-to-fine scoring strategy.

However, to the best of our knowledge, using
a simple classifier on these span embeddings to
detect mentions had not yet been explored. Even
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Sanh et al. (2018) — which used the AllenNLP
(Gardner et al. 2018) implementation of E2EC
for the coreference detection part of its system
— used a sequence labelling-based model for
entity-mention detection instead.

On our target corpus, ANCOR (Muzerelle
et al. 2014), there have been relatively few works
focused on automatic coreference resolution.
Désoyer et al. (2015) presented an exploration of
shallow learning techniques for the coreference
detection phase, using the rich features provided by
the gold annotations, delegating to further works
the task of automatically detecting these features
for a full-end-to-end pipeline. Some exploratory
work on detecting mentions and these features has
been presented in Grobol et al. (2017) with encour-
aging but limited results. The independent work
presented by Godbert and Favre (2017) treated
coreference resolution with a rule-based system on
top of the MACAON pipeline (Nasr et al. 2011),
focusing on pronominal anaphora resolution, yet
reaching encouraging overall performances.

3 Model

Our architecture is mostly an adaptation of the
version of E2EC presented by K. Lee et al. (2018),
modified to address the difficulty of applying it to
other paradigms, which is mainly due to two factors.
The first one is that E2EC always operate at the level
of a whole document. In principle, this would be
a desirable property, since coreference chains are
document-level objects. However, during the train-
ing process, it implies that the whole document has
tobekeptin memory and thaterror backpropagation
must span all of its processing, which results in im-
practical memory and computing requirements. K.
Lee et al. (2017) address this by performing a vari-
ety of aggressive pruning at every step, which com-
plexifies its implementation and makes the training
process less efficient. Despite this, the final im-
plementation is still quite demanding in resources,
particularly with huge documents and not neces-
sarily effective on data — like ANCOR — where
the context outside of the immediate vicinity of a
span might be very noisy. It also prevents the use
of common training techniques, like mini-batching
and sample shuffling, since it imposes the use of
batches that are each the size of a whole document.

The second characteristic we address is the lack
of explicit mention detection. E2ZEC does not make
a distinction between non-mention text spans and

singleton mentions and as such, does not actually
perform mention detection?. This is not a real
problem on CoNLL-2012, but it is one for corpora
that include singleton mentions. It also prevents
the use of gold mentions to evaluate the actual
coreference detection capabilities of a system
without the bias induced by mention detection.

To alleviate these issue, our system are then
should only take into account the immediate con-
text of text spans rather than whole documents and
that perform mention detection as an explicit step
in order to take singleton mentions into account. In
addition to these adaptations, we also added a cer-
tain number of incremental modifications inspired
from recent works on sequence embeddings in
neural networks. These modifications were added
during our initial experiments on the mention
detection part, for which they improved the global
scores on the development dataset, but at the time
of writing, we did not assess their actual impact on
the whole architecture.

Words representations Similarly to e.g. X.
Ma and Hovy (2016), we use a combination of
pretrained word embeddings and character-level
encodings derived from a recurrent neural layer (in
our case a bidirectional GRU (Cho et al. 2014)),
which helps with noisy inputs (including disfluen-
cies, incomplete words and typos in ANCOR) but
also unknown words and casing information that is
not available to the pretrained word embeddings.

Span embeddings The span embeddings are
computed using a combination of recurrent
and self-attentional mechanisms. At the core
is a bidirectional LSTM with two layers, that
we run on the sequence of the representations
(w_g,...,w0, ..., Wp—1,Wn, ..., Wn4p) of the words
of the span (from wg to wy,—1) and its immediate
left and right contexts. We keep the hidden states
h; = [E, hj] of both directions of the top LSTM
layer, and use them in three subsequent treatments

* The hidden states of the first and the last
word of the span are kept as a pure recurrent
representation r = [hg,hy,—1]

e The self-attention soft-head mechanism
introduced by K. Lee et al. (2017) is applied to
the sequence ([wo, hol, ... [Wn—1,hn—1]) With

1t does compute a “mention score”, but more as way to re-

duce the computational complexity of the architecture than as

an explicit mention detection, and the correlation between this
score and “mentionity” of text spans has not yet been studied.



two separate heads (inspired by the multi-head
attention mechanism of Vaswani et al. (2017))
whose concatenation gives us an attentional
representation a

* The final states of the LSTM are kept as a rep-
resentation of the span context ¢ = [h_g, iy 4p)-
This was not part of the initial model, but we
found that it helps significantly (at least for
mention detection) on the most interactive
parts of ANCOR.

The final span embedding s is then obtained by
concatenating these three representations and f, a
low-dimension feature embedding that encodes the
length of the span and passing the result through a
feedforward network giving s = FFNNy(r,a,c, f).

Mentions detection The mention detecting layer
is a simple feedforward classifier that takes s as
input and outputs a vector of class scores: “None”
for non-mention spans and depending on the
corpus, either a simple “NP” class for all mentions
or distinct classes for noun phrases and pronouns.

Antecedents scoring The antecedent scor-
ing layer assign coreference scores to men-
tion/antecedent pairs using the same coarse-to-fine
second-order inference mechanism as E2EC, with
the representation refining done solely for the
mention and not its antecedents. The only other
variation is that instead of fixing the score of the
dummy antecedent € for a span s to 0 we instead
compute a specific mention-new score by applying
a simple feedforward network on s. This was
motivated by the higher number of non-anaphoric
mentions in ANCOR (again due to the inclusion
of singleton mentions) and seems to affect the final
coreference scores positively, although a more
formal assessment of this is still needed.

4 Evaluation

Following the recommendations of Recasens
(2010, p.122) and Salmon-Alt et al. (2004) we
evaluate our system separately on the two subtasks
that it performs. For mention detection, we report
the usual Precision, Recall and F-score detection
metrics. For coreference resolution, we use the
CoNLL-2012 metrics (Pradhan et al. 2014) includ-
ing BLANC (Recasens and Hovy 2011). This is
a standard evaluation procedure for coreference
resolution systems — as seen for example in the
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CRACI18 shared task (Poesio et al. 2018). It also al-
lows us to compare our system with other works on
ANCOR (Désoyer et al. 2015; Godbert and Favre
2017) and to assess the actual capabilities of our
antecedent scoring module by avoiding the noise
caused by the inevitable mention detection errors.

5 Experiments

5.1 Data

The primary object of our study is the ANCOR
corpus (Muzerelle et al. 2014). ANCOR is, for
now, the only currently publicly available® corpus
of French with coreference annotations whose size
is sufficient for machine learning purposes, with
around 418000 words. The source materials of
this corpus are speech transcriptions® , in most
part long interviews with low interactivity taken
from the ESLO corpus (Baude and Dugua 2011)
and smaller parts with higher interactivity®. Its
annotations include coreference and morphosyn-
tactic annotations for noun phrases and pronouns
including singleton mentions, but no linguistic
annotations of other elements.

Since existing works on ANCOR do not provide
detailed training/development/test partitions, ours
is probably different, but we tried to stay reasonably
close to the one described by Désoyer et al. (2015),
with about 60% of the corpus devoted to the
training set. However, we chose to keep most of
the rest to the test set, in order to provide more
significant final scores. The final distribution
is 59 %/12 %/29 %, with a fairly homogeneous
distribution of the different subcorpora, in order
to minimize the disparities caused by their various
levels of interactivity and topics.

5.2 Hyperparameters

In order to stay close to the original E2ZEC model,
we have mostly kept the same hyperparameters and
mention here only those that we changed. All of
these changes were motivated by purely empirical
observations of the performance of the model on
the ANCOR development set.

3 Another large scale corpus exists (Tutin et al. 2000) but is
not publicly available.

“The fact that the source material is not written (or con-
trolled oral) language — as in most coreference corpora—
is another factor that might skew the comparison with other
works, but assessing its actual impact would require a compa-
rable corpus for written French, which does not exist yet.

5See Brassier et al. (2018) for details on this part.



Table 1: Coreference resolution

System MUC B3 CEAF. CoNLL BLANC
P R F P R F P R F Aw P R F
Désoyer et al. (2015) — — 635 — — 838 — — 790 753 — — 674
Godbert and Favre (2017) — — — — — — — — — — — — 657!
Our model? 723 47.7 573 89.771.0 79.2 72.8 86.0 79.4 720 78.2 60.1 65.7

It is not clear if the score reported as BLANC by Godbert and Favre (2017) actually takes into account
both coreference and non-coreference links after rebuilding mention clusters or is simply the raw

F-score of the antecedent finder.
2 Averages on 5 runs.

Words representations We use word embed-
dings pretrained on the Common Crawl for FastText
(Grave et al. 2018) and fine-tuned during training.
The character embeddings are not pretrained and
are initialized randomly.

Span encoding The span contexts considered
are of size 10 on both sides. We only consider
spans of at most 25 words to reduce the time and
material requirements. Experiments made with
longer spans did not show significantly different
results. Our hypothesis is that too few mentions are
longer than this limit to impact the learning.

Antecedent scoring During the antecedent
scoring phase, only the 100 previous mentions
are considered for coarse scoring and only the 25
best-scoring antecedents are kept for fine-scoring.

Training We trained the network sequentially,
first on mention detection, then on antecedent
scoring. For both, the trainable parameters were
optimized using the AdamW (Loshchilov and
Hutter 2019) optimizer.

For mention detection, we minimize the class-
weighted cross-entropy (Panchapagesan et al.
2016) with a weight of 1 for “None” and 3 for the
mention span class. We also undersample the spans
in the training set to a maximum ratio of 90 % of
non-mention spans, to alleviate the usual issues of
neural classifiers with severe classes imbalance.
For antecedent scoring, we follow K. Lee et al.
(2017) and optimize the sum of the log-likelihood
of all the correct antecedents of each mention.

5.3 Results

Mention detection Table 2 presents the results of
our experiments with mention detection compared
to the baseline of Grobol et al. (2017) — which
consists in merely extracting all the NP from the
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Table 2: Mention detection

System | R F

Grobol et al. (2017) 57.28 77.07 65.72
Godbert and Favre (2017) 90.05 87.86 88.94
Our model! 82.99 89.07 85.87

! Averages on 5 runs.

output of an off-the-shelf parser — and the per-
formance reported by Godbert and Favre (2017).
Considering the sparsity of its own resources,
our system does not fare too bad, even though its
precision shows a lot of room for improvements.

Coreference resolution Table 1 presents the
performances of our system for coreference resolu-
tion and compare it with those of previous works.
Note that we didn’t compare with the performances
of the original E2ZEC on ANCOR, since there is no
simple way to provide it with gold mentions® at ei-
ther training or test time, nor to make it distinguish
between singleton mention and non-mention spans
without significantly modifying it.

As mentioned in the previous sections, the exist-
ing work on ANCOR have been developed in dif-
ferent paradigms and as such are not entirely com-
parable to ours. This is particularly true for Désoyer
et al. (2015), which relies on gold features, and as
such was able to get very high scores on all metrics
with arelatively simple system, these results should
thus be considered as an upper baseline than a real
benchmark. In addition, none of these works report
the full detailed CoNLL-2012 metrics, which
limits the interpretability of these results. Taking
these reserves into account the performances of

®In the usual sense and not in the “anaphoric gold
mentions” sense used in K. Lee et al. (2017).



our system suggests that neural architectures can
indeed be effective in the paradigm of ANCOR.

6 Conclusion

We presented an end-to-end coreference resolution
system inspired by the most recent models to
reach state-of-the-art performance on the classic
CoNLL-2012/Ontonotes dataset. Our system is
made suitable for experiments on other datasets
by the extraction of an explicit mention detection
phase from the original end-to-end architecture
of K. Lee et al. (2017) and the restriction of the
input representations to the immediate contexts
of the markables. Given these adaptations, we
report performances on ANCOR — a corpus of
transcribed oral French— that are close to those
reported by previous works, which required the use
of considerably more linguistic knowledge.

This tends to prove that knowledge-poor,
end-to-end neural architectures are applicable to
coreference detection tasks beyond the OntoNotes
benchmark. It also provides future works on
coreference resolution for French with a baseline
for full evaluations on both parts of the task.

However, our system has only been tested on a
single corpus so far, and its architecture is optimized
for it. Further assessment of its capabilities should
include further tests on other, comparable, corpora
such as ARRAU (Poesio and Artstein 2008), the
Polish Coreference Corpus (Ogrodniczuk et al.
2016) or the upcoming DEMOCRAT corpus
(Landragin 2016). Proper evaluation should also
eventually include comparisons on the CoNLL-
2012 dataset itself, possibly in the “gold mention
boundaries” settings for a better comparability.
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