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Abstract

In 2019, we organized the first iteration of a
shared task dedicated to the underlying units
used in discourse parsing across formalisms:
the DISRPT Shared Task on Elementary Dis-
course Unit Segmentation and Connective De-
tection. In this paper we review the data in-
cluded in the task, which cover 2.6 million
manually annotated tokens from 15 datasets
in 10 languages, survey and compare submit-
ted systems and report on system performance
on each task for both annotated and plain-
tokenized versions of the data.

1 Introduction

The past few years have seen substantial advances
in both the development of new discourse anno-
tated corpora for diverse languages (e.g. Iruski-
eta et al. 2013, Zhou et al. 2014, Afantenos
et al. 2012) and approaches to automatic discourse
parsing relying on neural and other architectures
(Braud et al. 2017, Wang and Lan 2015, Li et al.
2016, Perret et al. 2016). Across frameworks,
most work producing substantial amounts of data
in multiple languages has been developed within
Rhetorical Structure Theory (Mann and Thomp-
son, 1988), the Penn Discourse Treebank’s frame-
work (Prasad et al., 2014) and Segmented Dis-
course Representation Theory (Asher, 1993).

At the same time, there is reason to believe
that performance on discourse parsing still has a
substantial way to go (Morey et al., 2017), with
scores on deep discourse parsing for well studied
and homogeneous resources such as the English
RST Discourse Treebank (Carlson et al., 2003)
still well behind human annotators, and results

*Discourse Relation Parsing and Treebanking (DIS-
RPT): 7th Workshop on Rhetorical Structure Theory and
Related Formalisms (https://sites.google.com/

view/disrpt2019) was held in conjunction with Annual
Conference of the NAACL 2019 in Minneapolis, MN.
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for other datasets, especially in less studied and
lower resource languages lagging much farther be-
hind. To make matters worse, the vast majority
of deep discourse parsing papers work with gold
segmented discourse units, which allow for eas-
ier comparisons of scores, but represent an unre-
alistically easy scenario. In their recent survey
of discourse parsing results, Morey et al. (2017,
1322) point out that ““all the parsers in [their] sam-
ple except [two] predict binary trees over manually
segmented EDUs”,! meaning that we have very
limited information on the accuracy of discourse
parsing in realistic settings. In order for discourse
parsing to come closer to the reliability of syn-
tactic parsing, a similarly reliable state of the art
(SOA) for segmentation into terminal units must
be reached.

The comparison with work on syntax parsing
brings another point of interest into focus: the
recent success of Universal Dependencies (Nivre
et al., 2017) as a standard bringing together re-
sources from different languages has been instru-
mental in creating generic NLP tools that are flexi-
ble and applicable to a variety of tasks. This is not
only due to converging cross-linguistic annotation
guidelines and the codification of a uniform for-
mat based on the CoNLL shared task datasets, but
also due to the community building afforded by
the organization of joint workshops which bring
together researchers from a range of domains.

Within this landscape, the first multilingual and
cross-framework task on discourse unit segmen-
tation and connective detection aims to promote
the development of reliable tools for working with
the basic building blocks of discourse annotation.
Although it is clear that there are substantial dif-

'"EDUs or Elementary Discourse units are non-
overlapping “minimal building blocks of a discourse
tree” (Carlson et al., 2003). EDUs are, mostly, (sentences or)
clauses, except for complement and restrictive clauses.
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EDU segmentation

corpus language framework | sentences tokens | documents units
deu.rst.pcc German RST 2,193 33,222 176 3,018
eng.rst.gum English RST 5,274 98,615 114 7,311
eng.rst.rstdt English RST 8,318 205,824 385 | 21,789
eng.sdrt.stac English SDRT 10,020 47,741 41 | 11,531
eus.rst.ert Basque RST 1,660 35,313 140 2,910
fra.sdrt.annodis | French SDRT 1,318 32,411 86 3,709
nld.rst.nldt Dutch RST 1,707 24,920 80 2,371
por.rst.cstn Portuguese | RST 1,950 54,656 136 4,734
rus.rst.rrt Russian RST 12,513 272,664 178 | 19,906
spa.rst.rststb Spanish RST 2,136 58,591 267 3,349
spa.rst.sctb Spanish RST 478 16,512 50 744
zho.rst.sctb Mandarin RST 563 14,442 50 744
Connective detection

corpus language framework | sentences tokens | documents units
eng.pdtb.pdtb English PDTB 48,630 | 1,156,648 2,162 | 26,048
tur.pdtb.tdb Turkish PDTB 31,196 496,355 197 8,397
zho.pdtb.cdtb Mandarin PDTB 2,891 73,314 164 1,660

Table 1: Datasets in the DISRPT 2019 shared task.

ferences in guidelines and goals across different
formalisms and datasets, we hope that the shared
task will contribute to a broad discussion of dis-
course annotation standards and goals, and put less
studied resources in focus, next to more frequently
addressed corpora such as PDTB (Prasad et al.,
2008) and RST-DT (Carlson et al., 2003). Addi-
tionally, the release of the DISRPT 2019 shared
task dataset? in a uniform format, modeled on the
CoNLL-U format used by Universal Dependen-
cies, is meant as a first step in creating a multi-
lingual testing grounds for discourse parsing sys-
tems, starting with the basic task of identifying the
minimal locus at which discourse relations apply:
discourse units and connectives.

2 Shared task data

The DISRPT 2019 shared task dataset comprises
15 datasets in 10 languages, 12 of which tar-
get elementary discourse unit segmentation, and
3 dedicated to explicit connective annotation. Ta-
ble 1 gives an overview of the datasets. Of the
15 datasets, 14 were released approximately 1.5
months before the shared task deadline, while the
final one, connective annotations from the Turk-
ish Discourse Bank, was released as a ‘surprise’
dataset/language together with dev and test sets
just two weeks before the announced deadline.
For four of the datasets, licensing constraints pre-
vented online publication of the underlying texts
(e.g. Wall Street Journal material), meaning that
the public repository contains only annotations

2https ://github.com/disrpt/sharedtask2019.
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for those corpora, with tokens replaced by under-
scores. A script included in the shared task reposi-
tory was provided in order to reconstruct the data,
which requires users to have access to the original
LDC releases of the underlying corpora.

The short names for every dataset begin with
an ISO 639-3 three letter code for the language,
a framework designation (RST/SDRT/PDTB) and
an acronym for the corpus. The names correspond
to the following included corpora:

deu.rst.pcc - Potsdam Commentary Corpus
(Stede and Neumann, 2014).

eng.pdtb.pdtb - Penn Discourse Treebank
(Prasad et al., 2014).

eng.rst.gum - Georgetown University Multi-
layer corpus (Zeldes, 2017).

eng.rst.rstdt - RST Discourse Treebank (Carl-
son et al., 2003).

eng.sdrt.stac - Strategic Conversations corpus
(Asher et al., 2016).

eus.rst.ert - Basque RST Treebank (Iruskieta
et al., 2013).

fra.sdrt.annodis - ANNOtation DIScursive
(Afantenos et al., 2012).

nld.rst.nldt - Dutch Discourse Treebank (Re-
deker et al., 2012).

por.rst.cstn - Cross-document Structure The-
ory News Corpus (Cardoso et al., 2011).

rus.rst.rrt - Russian RST Treebank (Toldova
etal., 2017).
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Figure 1: Data formats: treebanked (*.conll, top) and plain (*.tok, bottom)

— spaastaststb - RST  Spanish Treebank
(da Cunha et al., 2011).

— spa.rst.sctb - RST Spanish-Chinese Treebank
(Spanish) (Shuyuan et al., 2018).

— tur.pdtb.tdb - Turkish Discourse Bank
(Zeyrek et al., 2010).

— zho.pdtb.cdtb - Chinese Discourse Treebank
(Zhou et al., 2014).

— zho.rst.sctb - RST Spanish-Chinese Treebank
(Chinese) (Shuyuan et al., 2018).

As Table 1 shows, these datasets range from
small (under 15,000 tokens for the smallest cor-
pus, zho.rst.sctb), to the larger RST corpora (over
200,000 tokens for RST-DT and the Russian RST
Treebank), to the largest PDTB-style datasets (al-
most half a million tokens for Turkish, and over a
million for the English PDTB). The variability in
sizes, languages, frameworks, and corpus-specific
annotation guidelines were expected to challenge
systems, but also promote architectures which can
be extended to more languages in the future, and
ideally stay robust for low resource settings.

Data was released for all corpora in two for-
mats, corresponding to two scenarios: Treebanked
data (. conl1), which included an (ideally gold)
dependency parse, including gold sentence splits
and POS tags, and unannotated, plain tokens
(*.tok). For datasets that had Universal POS
tags and/or UD dependencies, including these was
preferred, though we followed the CoNLL-U for-
mat’s convention of allowing two POS tag fields
(UPOS for universal tags, XPOS for language
specific tags), a morphology field with unlimited
morphological annotations, and a secondary de-
pendency field (only used in the Dutch dataset).
The tenth column (MISC in CoNLL-U) was used
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for gold standard labels and additional annota-
tions (e.g. SpaceAfter to indicate whites-
pace in underlying data), which all followed the
CoNLL-U key=value format: BeginSeg=Yes
for EDU segmentation and BI tags for connec-
tives, Seg=B—Conn and Seg=I-Conn, versus _
for unannotated tokens. The second scenario in-
cluded no annotations except for tokenization and
the same document boundary annotations found in
the treebanked files. No sentence splits were pro-
vided in this scenario. Figure 1 illustrates both for-
mats.

The shared task repository also contained an
evaluation script to score systems on each dataset.
For both evaluations, we opted to compute preci-
sion, recall and F1 score on discourse unit segmen-
tation and connective detection, micro-averaged
within each dataset, and macro-averaged results
across all corpora for each system in each scenario
(treebank/plain tokens). Similarly to evaluation of
NER performance, scores reward only the positive
classes, i.e. precision and recall of segmentation is
judged purely based on identification of segmenta-
tion points, with no reward for recognizing nega-
tive cases.

For connective detection, the evaluation targets
exact span retrieval, meaning that precision and re-
call are calculated out of the total connective spans
(not tokens) available in the gold data. This means
that partial credit was not given: a system identify-
ing the span in Example (1) is given one precision
error and one recall error, since it misses the gold
span and invents one not present in gold data.

Gold: In/B-Conn order/I-Conn to/_
Pred: In/B-Conn order/I-Conn to/I-Conn

ey



Dataset ToNy GumDrop DFKI RF IXA Mean
(treebanked) P R F P R F P R F P R F

deu.rst.pcc 95.22 | 94.76 | 94.99 | 93.33 | 90.48 | 91.88 | 95.33 | 83.33 | 88.93 | 90.91 | 91.84 | 91.37 91.86
eng.rst.gum 95.84 | 90.74 | 93.21 | 96.47 | 90.77 | 93.53 | 97.96 | 83.71 | 90.27 | 95.52 | 88.61 | 91.94 92.38
eng.rst.rstdt 95.29 | 96.81 | 96.04 | 94.88 | 96.46 | 95.67 | 93.65 | 85.47 | 89.37 | 94.56 | 94.93 | 94.75 93.99
eng.sdrt.stac 94.34 | 96.22 | 95.27 | 95.26 | 95.39 | 95.32 | 97.65 | 91.94 | 94.71 | 92.51 | 90.71 | 91.60 94.24
eus.rst.ert 89.77 | 82.87 | 86.18 | 90.89 | 74.03 | 81.60 | 92.77 | 60.54 | 73.27 | 91.19 | 80.27 | 85.38 82.40
fra.sdrt.annodis | 94.42 | 88.12 | 91.16 | 94.38 | 86.47 | 90.25 | 94.04 | 81.18 | 87.13 | 91.10 | 90.50 | 90.79 89.96
nld.rst.nldt 97.90 | 89.59 | 93.56 | 96.44 | 9448 | 9545 | 98.38 | 88.08 | 92.95 | 90.91 | 93.02 | 91.95 93.60
por.rst.cstn 92.78 | 93.06 | 92.92 | 91.77 | 89.92 | 90.84 | 93.18 | 77.36 | 84.54 | 93.01 | 92.38 | 92.69 90.37
rus.rst.rrt 86.65 | 79.49 | 82.91 | 83.47 | 75.52 | 79.30 | 82.79 | 67.51 | 74.37 | 73.22 | 74.11 | 73.67 77.75
spa.rst.rststb 92.03 | 89.52 | 90.74 | 89.02 | 81.80 | 85.26 | 93.01 | 76.54 | 83.99 | 85.68 | 87.94 | 86.80 86.86
spa.rst.sctb 9143 | 76.19 | 83.12 | 89.76 | 67.86 | 77.29 | 95.28 | 60.12 | 73.72 | 93.22 | 65.48 | 76.92 79.20
zho.rst.sctb 87.07 | 76.19 | 81.27 | 80.95 | 80.95 | 80.95 | 88.81 | 75.60 | 81.67 | 90.37 | 73.57 | 81.11 81.54
mean 92.73 | 87.80 | 90.11 | 91.38 | 85.34 | 88.11 | 93.57 | 77.61 | 84.58 | 90.18 | 85.28 | 87.41 87.84

Table 2: EDU segmentation results on treebanked data.
3 Results sion is usually higher than recall across the board.

We report precision, recall and F1 for systems in
the two tasks, each consisting of two scenarios:
EDU segmentation and connective detection, with
treebanked and plain tokenized data. Four systems
were submitted to the shared task, all of which
attempted the EDU segmentation task, and three
of which also approached the connective detec-
tion task for at least some datasets. For teams that
submitted multiple systems, we selected the sys-
tem that achieved the best macro-averaged F-score
across datasets as the representative submission.

3.1 EDU segmentation

The main results for EDU segmentation on the test
sets are given in Table 2 for treebanked data, and
in Table 3 for plain tokenized data. No one sys-
tem performs best on all corpora, suggesting that
the different approaches have different merits in
different settings. Overall, ToNy (Muller et al.,
2019) performs best on the most datasets, and on
average has the highest F-scores (90.11, computed
by averaging five runs of the system, since GPU
training was not deterministic). The next best sys-
tems by average F-score are GumDrop (Yu et al.
2019, 88.11 Fy), IXA (Iruskieta et al. 2019, 87.18
F1) and DFKI RF (Bourgonje and Schifer 2019,
84.56 Fy).

For the treebanked scenario, the best configura-
tion for ToNy (using contextualized Bert embed-
dings, Devlin et al. 2018), receives the highest F-
score on 8 datasets, the next best system, Gum-
Drop, does so on 3 datasets, and DFKI’s system on
one: the Chinese RST dataset, which is notably the
smallest one in the shared task with around 14,000
tokens.

Results for all systems show clearly that preci-
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This suggests that some ‘safe’ strategies, such as
assuming segment boundaries at the beginnings of
sentences (which are gold standard split in most
cases), yield good results, with the challenge being
much more the identification of non-obvious seg-
mentation points within sentences. Another obvi-
ous trend is the comparatively high performance
on datasets that are large and gold-treebanked.
The counterexample to the generalization that
large corpora fare well is rus.rst.art, which can
be explained by the lack of gold parses for this
dataset, as well as some tricky conventions, such
as handling segmentation differently within aca-
demic abstracts and bibliographies.

For the established RST benchmark dataset,
RST-DT, two systems exceed the previous state
of the art score (93.7, Bach et al. 2012), suggest-
ing substantial progress (ToNy: 96.04; GumDrop:
95.67) compared to results previous to the shared
task. For other languages, previous benchmark re-
sults using different corpora include F-scores of 80
for Spanish (Da Cunha et al., 2010), 73 for French
(Afantenos et al., 2010), 83 for Basque (Iruskieta
and Zapirain, 2015) and between 88 and 93 for
German (Sidarenka et al., 2015).

For automatically parsed data, two systems sub-
mitted results, and results were extracted for a
third system by shared task testers. The two sys-
tems that included results for this scenario in their
papers were conincidentally also the top scoring
systems overall, suggesting that numbers may rep-
resent the state of the art for this task. Inria’s
system ToNy achieves top performance on all but
one dataset, and the best average F-score, possi-
bly owing to the document-level model adopted
by the system, in addition to the use of contextu-
alized embeddings (see Section 4). Both top sys-



Dataset ToNy GumDrop DFKI RF Mean
(plain) P R F P R F P R F

deu.rst.pcc 94.88 | 94.49 | 94.68 | 91.99 | 89.80 | 90.88 | 94.20 | 71.77 | 81.47 || 89.35
eng.rst.gum 92.28 | 82.89 | 87.33 | 94.03 | 77.22 | 84.80 | 90.29 | 64.17 | 75.02 || 83.11
eng.rst.rstdt 93.60 | 93.27 | 93.43 | 89.56 | 91.43 | 90.49 | 45.96 | 35.85 | 40.28 || 74.87
eng.sdrt.stac 87.56 | 80.78 | 83.99 | 84.24 | 77.45 | 80.70 | 80.21 | 50.30 | 61.82 || 76.34
eus.rst.ert 87.43 | 80.94 | 84.06 | 90.06 | 73.36 | 80.86 | 88.21 | 58.01 | 69.99 || 79.21
fra.sdrt.annodis | 94.31 | 89.15 | 91.65 | 94.46 | 85.29 | 89.64 | 93.47 | 67.35 | 78.29 || 87.07
nld.rst.nldt 94.81 | 89.97 | 92.32 | 94.72 | 88.41 | 91.45 | 95.14 | 68.12 | 79.39 || 88.26
por.rst.cstn 93.04 | 90.72 | 91.86 | 92.95 | 85.08 | 88.84 | 90.82 | 67.17 | 77.22 || 86.41
rus.rst.rrt 83.37 | 78.44 | 80.83 | 82.06 | 74.84 | 78.28 | 57.27 | 42.11 | 4853 || 69.53
spa.rst.rststb 89.11 | 90.09 | 89.60 | 87.50 | 79.82 | 83.49 | 89.23 | 63.60 | 74.26 || 82.97
spa.rst.sctb 87.16 | 76.79 | 81.65 | 8527 | 65.48 | 74.07 | 88.35 | 54.17 | 67.16 || 75.57
zho.rst.sctb 66.26 | 64.29 | 6526 | 76.97 | 69.64 | 73.13 | 85.71 | 57.14 | 68.57 || 69.66
mean 88.65 | 84.31 | 86.38 | 88.65 | 79.82 | 83.89 | 83.24 | 58.31 68.5 80.19

Table 3: EDU segmentation

tems exceed the previous SOA of 89.5 on unparsed
RST-DT: Georgetown’s system GumDrop reaches
90.49, and ToNy achieves a remarkable 93.43, al-
most as high as previous results on gold parsed
data. GumDrop performs better by a wide margin
on the small Chinese dataset, but is overall well
behind on many of the larger datasets, and about
2.5 F-score points lower on average than the best
system, ToNy.

3.2 Connective detection

The main results for connective detection are
given in Table 4. Three systems approached
this task, though the DFKI system was not
adapted substantially from the segmentation sce-
nario, leading to low performance (Bourgonje and
Schifer, 2019), and did not report results on auto-
matically parsed data.

ToNy again has the highest scores for the most
datasets, obtaining the highest mean F-score for
the plain tokenized scenario, and coming second
to GumDrop only on the Turkish dataset in the
gold syntax scenario. The margin for this partic-
ular result is however very wide, with GumDrop
leading by almost 10 points, resulting in GumDrop
obtaining the highest average F-score on gold syn-
tax connective detection (though this score is in
fact below the best plain tokenized result). This
surprising result remained robust across 5 runs of
the ToNy system (GumDrop was deterministically
seeded and therefore reproducible in a single run).

Overall the connective detection results demon-
strate that syntax is not central to the task (tree-
banked and plain results are close) and that ac-
curacy is correlated with dataset size, presumably
because the inventory of possible explicit con-
nectives and their disambiguating environments is

results on plain tokenized data.

more exhaustively attested as the dataset grows.

4 Analysis of systems

The four systems submitted to the task all use ei-
ther RNNs with word embeddings (ToNy, IXA),
decision tree ensembles on linguistic features
(DFKTI’s best system) or both (GumDrop). For
two of the systems approaching both shared tasks,
the same architecture is used for both connective
detection and EDU segmentation, whereas Gum-
Drop uses a slightly different architecture in each
case. The high performance of ToNy on both tasks
is remarkable in that a generic sequence labeling
approach achieves excellent results despite not us-
ing engineered features or a tailored learning ap-
proach.

Looking at the internal distribution of scores for
each system, we can observe that ToNy performs
well on some of the less consistent resources, in
particular for the automatically parsed and seg-
mented Russian data, which all other systems de-
grade on, and on corpora with automatic parses
but gold or very high quality sentence splits, such
as the Spanish datasets and German. For some
of the corpora with gold parses in the gold sce-
nario, GumDrop takes the lead, perhaps thanks to
the use of a large number of linguistic features
next to character and word embeddings (notably
for GUM, which has manually produced depen-
dencies, rather than conversion from constituents
in RST-DT).

ToNy’s high scores on almost all datasets in
the plain tokenized scenario seem to be related
not only to contextualized embeddings substitut-
ing for missing morphosyntactic information, but
also to the whole-document or large chunk ap-
proach (see Muller et al. 2019), which makes reli-
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Dataset ToNy GumDrop DFKI RF

(treebanked) P R F P R F P R F
eng.pdtb.pdtb | 89.39 | 87.84 | 88.60 | 87.91 | 88.78 | 88.35 | 84.84 | 74.64 | 79.41
tur.pdtb.tdb 76.89 | 64.00 | 69.85 | 76.69 | 81.86 | 79.19 | 72.29 | 62.63 | 67.11
zho.pdtb.cdtb | 82.67 | 76.25 | 79.32 | 81.27 | 70.22 | 75.35 | 73.21 | 43.22 | 54.35
mean 82.98 | 76.03 | 79.25 | 81.91 | 80.21 | 80.93 | 76.78 | 60.16 | 66.96
(plain) p R F P R F P R F
eng.pdtb.pdtb | 91.32 | 87.84 | 89.54 | 84.56 | 82.81 | 83.68 - - -
tur.pdtb.tdb 84.06 | 86.74 | 85.37 | 76.76 | 81.74 | 79.17 - - -
zho.pdtb.cdtb | 81.64 | 71.07 | 75.99 | 80.62 | 67.31 | 73.37 - - -
mean 85.67 | 81.88 | 83.63 | 80.65 | 77.29 | 78.77 - - -

Table 4: Connective detection results.

able sentence splitting less crucial. At the same
time, the performance advantage of the system
is not found for the smallest corpus, zho.rst.sctb.
DFKI was able to perform substantially better than
ToNy for the gold scenario, while the next best
system, GumDrop, takes the lead for Chinese on
plain data, perhaps thanks to a high accuracy en-
semble sentence splitter included in the system.
The higher scores on this corpus for both DFKI
and GumDrop, which employ Gradient Boosting
and/or Random Forests, may suggest that the ro-
bustness of tree ensembles against overfitting al-
lows for better generalization to the test data in the
lowest resource scenario.

For connective detection, the best DFKI system
using Random Forests does not attain good scores,
probably due to the need to memorize sequences
of vocabulary items. For English PDTB, ToNy
and GumDrop are very close, suggesting that both
systems can memorize the inventory of connec-
tives and disambiguate ambiguous cases with sim-
ilar success. For the smaller datasets, with the ex-
ception of the unexpectedly low performance on
gold Turkish, ToNy has a more substantial lead. It
is also worth noting that in 4/6 scenarios (all but
Chinese), GumDrop has higher recall than preci-
sion, while ToNy has higher precision than recall
in 5/6 scenarios, perhaps pointing to imbalanced
learning issues for the latter versus weaker disam-
biguation capacity for the former.

5 Conclusion

By organizing the first shared task on EDU seg-
mentation and connective detection, we hope to
have pushed the field further in terms of bring-
ing together resources and researchers from re-
lated fields, and making systems available that are
flexible enough to tackle different datatset guide-
lines, but accurate enough to form the basis for
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deeper discourse parsing tasks in the future.

One particular point of progress has been mak-
ing an official scorer and providing data in a uni-
form format based on the popular CoNLL-U spec-
ification used by Universal Dependencies. We ex-
pect this will make it easier to provide discourse
annotations together with manually treebanked or
automatically parsed data, as well as to compare
future results with scores from this shared task.
We also plan to maintain the DISRPT dataset and
possibly extend it for future editions of the work-
shop.
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