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Abstract

Datasets are integral artifacts of empirical sci-
entific research. However, due to natural lan-
guage variation, their recognition can be dif-
ficult and even when identified, can often be
inconsistently referred across and within pub-
lications. We report our approach to the
Coleridge Initiative’s Rich Context Competi-
tion, which tasks participants with identifying
dataset surface forms (dataset mention extrac-
tion) and associating the extracted mention to
its referred dataset (dataset classification). In
this work, we propose various neural base-
lines and evaluate these model on one-plus and
zero-shot classification scenarios. We further
explore various joint learning approaches — ex-
ploring the synergy between the tasks — and
report the issues with such techniques.

1 Introduction

The modern scientific method hinges on replica-
bility and falsifiability. Datasets are an essential
aspect of enabling such analysis in much of mod-
ern empirical studies. Datasets themselves are var-
ied — in size, complexity, substructure, and scope
— and references to them are also varied — in
naming convention and subsequent reference or
citation, both within and across documents.

Dataset mention extraction and classification
has thus become more critical not only to facilitate
the identification of proper target datasets for test-
ing hypotheses but also to benchmark incremental
research by extension. In this work, we explore
various neural approaches to identifying cited sur-
face forms associated with a dataset and interlink-
ing them. We benchmark our approach on the Co-
leridge Initiative’s Rich Text Context Competition
(RTCC), released in 2018, which we participated
in, whose dataset comprises of social science pub-
lications exemplify such confusability problems
with multiple surface dataset citations.

31

2 Related Work

The extraction of important scientific terms within
full-text documents has been desiderata of schol-
arly document analyses extending back decades.
In the early 90s, work by Liddy (Liddy, 1991)
explored the possibility of promoting key schol-
arly document metadata into structured abstracts.
Generic aspects of scholarly documents have been
explored in (Gupta and Manning, 2011) where key
aspects of publications namely focus, domain and
techniques were identified using linguistic pat-
terns. Domain-specific corpora with complex tax-
onomies such as the ACL RD-TEC (QasemiZadeh
and Schumann, 2016) have also been employed
to train systems to identify fine-grained aspects.
In the field of nursing and primary care, the key
metadata of Patients, Intervention, Condition, and
Outcome characterize the acronym “PICO”, which
has also been the target of much work (Zhao et al.,
2010; Wallace et al., 2016).

Recently, shared tasks concerning key generic
metadata (inclusive of datasets) have been run in
the community. The SciencelE shared task (Au-
genstein et al., 2017) benchmarked techniques for
identifying predefined entities matching Process,
Task and Materials; where the definition of Ma-
terial entities overlap with that of datasets. The
task asked to extract such entities and identify the
relations among them on short excerpts of sci-
entific documents. State-of-the-art deep learning
and feature-based sequential labeling models set
the standard for approaches on such tasks, us-
ing Long Short-Term Memory (LSTM) (Ammar
etal., 2017) and Conditional Random Field (CRF)
(Prasad and Kan, 2017) models, respectively.

Though related to a general named entity recog-
nition, we see the problem of dataset mention ex-
traction as having particular challenges. In con-
trast to the related scientific document process-

Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications, pages 31-36
Minneapolis, USA, June 6, 2019. (©2019 Association for Computational Linguistics



Publication:

from the Monitoring the Future (MTF)....

1996; 108: Current Population Survey, May 1973; ...] —

....Source: Monitoring the Future: National Survey on Drug Use, 1975-2009....Section 2 provides a brief
summary of trends in adolescent drinking and smoking, using data for the US from the annual Monitoring the Future sur-

vey.....Trends in Adolescent Drinking and Smoking: Monitoring the Future.....Systematic annual data on the prevalence of
underage drinking and smoking in the US are collected and tracked by several organizations. This section relies on data

Datasets (Present): [ ... 56: Monitoring the Future: A Continuing Study of the Lifestyles and Values of Youth, 1984; 101:
Monitoring the Future: A Continuing Study of the Lifestyles and Values of Youth, 1989;...]
Datasets (Not Present): [ ... 100: Monitoring the Future: A Continuing Study of American Youth (12th-Grade Survey),

Figure 1: A text fragment from the training data. Highlighted text represent dataset mentions (citations). Note
that a particular mention may refer to multiple datasets. In some examples, as highlighted here, there are many
different datasets which closely resemble each other in their surface form.

ing tasks of keyphrase extraction (with 10-15
keywords within a document; i.e., (Kim et al.,
2010)) or identify such semantic entities within a
small excerpt (identifying which 5-10 tokens con-
stitute entities over 30-40 tokens; i.e., (Augenstein
etal., 2017)) dataset mentions within full-text doc-
uments exhibits a much higher ratio of sparsity.
Further, coreference resolution techniques specific
to linking the dataset mention to the dataset have
yet to be well explored.

3 Background

We first formally define the task following the
specification from the RTCC, as consisting of two
sub-problems:

eDataset Mention Extraction: Given a publica-
tion (d;), identify fragments of the text that are
mentions of a dataset.

eDataset Classification: Classify the detection
mention text fragment to a particular dataset in the
knowledge base (D;).

Corpus. The corpus is compiled by Coleridge
Initiative Rich Context Competition! (see the ex-
ample in Fig. 1) and consists of 5K publication
sampled from various social studies, averaging
7K tokens in length. About half of the docu-
ments (2.5K) are annotated, featuring an average
of 2.2 datasets and 7.5 different dataset mentions
per document. Note that some documents do not
mention datasets at all. Additionally, the RTCC
makes a list of known datasets available (sized
10K), which is taken as an input knowledge base
for resolution. Many of the 10K datasets do not
appear in the corpus. Hence for these datasets,
there is no mention—dataset pair. The corpus al-
lows us to explore the dataset classification prob-
lem at three levels of complexity, from easiest to

'nttps://coleridgeinitiative.org/
richcontextcompetition
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most challenging:

oOne-plus classification: at least one dataset—
mention pair is present in training for all the fest-
ing datasets.

eZero-shot classification: no dataset—mention
pairs are known in training data for the testing
dataset, but the dataset is known to the provided
knowledge base. The model knows the dataset de-
scription and has to do the classification subtask,
but not discovery.

eZero-shot discovery: the scenario where even
the dataset (and by extension, dataset—mentions
pairs) is unknown to the system (not present in the
provided knowledge base). This is also the ulti-
mate aim of a discovery system, which simulta-
neously needs to populate datasets and their men-
tions from an empty knowledge base. We do not
address this scenario directly in this current work
but discuss joint models that can potentially cater
to this problem.

4 Model

As the RTCC corpus has only been recently
released, there are no formally published ap-
proaches, nor public results. However, we have
identified that the top performing systems in the
competition treat the subtasks of mention extrac-
tion and dataset classification as two separate
tasks. We explore various neural approaches for
both the individual tasks and the look more closely
the case of joint modeling. Correct extraction
dataset mention is the direct prerequisite task of
dataset classification. This motivates us to investi-
gate joint model to perform both tasks. We exam-
ine two different realizations of such a joint model
that supports multi-task learning.

Baselines. We model mention extraction as
a sequence labeling task. This admits a range
of neural models as sequence labeling baselines


https://coleridgeinitiative.org/richcontextcompetition
https://coleridgeinitiative.org/richcontextcompetition

for this task. We start with a Bidirectional Long
Short-Term Memory (Hochreiter and Schmidhu-
ber, 1997) (‘BiLSTM’) model that employs pre-
trained word embeddings. We then incremen-
tally increase the model’s power of represen-
tation in other baselines. First, we incorpo-
rate a Convolutional Neural Network (CNN) over
character embeddings (‘CNN-BiLSTM’). Second,
we add a CRF layer over the BiLSTM outputs
(‘CNN-BIiLSTM-CRF’); and finally incorporate
Bahdanau attention (Bahdanau et al., 2014) over
the LSTM layer (‘CNN-BiLSTM-Attn-CRF’).

Our selection of these incremental components
is motivated by the aspects of the problem. Apply-
ing a CNN over the character embeddings is intro-
duced to tackle domain-specific terminology that
may conserve internal character sequences, such
as acronyms found in dataset names. Such names
are generally out-of-vocabulary (OOV) with re-
spect to generic word embeddings. The applica-
tion of the CRF is motivated to reduce token-level
noise by incorporating global (i.e., within a sen-
tence input) decoding. The attention mechanism is
similarly motivated to focus the model on the spe-
cific parts of the input sequence, as datasets and
their mentions occur within specific contexts and
are not uniformly distributed. The attention mech-
anism used is defined as follows: first, suppose the
sequence output of the BILSTM H € RNXTxh
where N is the batch size, T' is the sequence length
and h is the hidden dimension of BiLSTM. Then
the model performs the following operations:

A=H"
A = Softmax(A) €))
S=A"oH

where W € RT*T is the weight matrix to be
trained and ® represents the Hadamard prod-
uct. For the third dataset discovery task, we use
sentence classification models i.e. BiLSTM and
CNN (Kim, 2014) as baselines, replacing the stan-
dard sigmoid final binary classification with a soft-
max layer to enable multilabel multiclass classifi-
cation.

Shared Layer Extraction—Classification (‘SL
E-C’). The first joint system selects the best
system for each of the individual subtasks, then
unifies them by providing a common feature
extraction base and optimization using joint losses
over both subtasks. We start with the best overall
baseline for the mention extraction subtask (cf:
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Figure 2: KBSL E-C model. Word embeddings for
tokens in each text fragment 7' F; (upper left) are trans-
lated to its hidden representation via BILSTM-CNN-
Attn-CRF trained with binary labels for mention to-
kens (upper right). Separately, we apply CNN on the
text fragment and all j datasets to obtain datasets rep-
resentation (individually at a time; bottom row). These
are merged and passed to a dense layer, which we train
with binary labels to establish which dataset is refer-
enced.

5): CNN-BiLSTM-Attn-CRF. It uses the single
CNN-BiLSTM-Attn to encode the textual content,
followed by a CRF. For the dataset classification
subtask, we share the output from the CNN-
BiLSTM-Attn base, and substitute the CRF layer
with a CNN layer for dataset classification, as
from our empirical tuning, we found the CNN
model provides the best performance for dataset
classification.

KB Shared Layer Extraction—Classification
(‘KBSL E-C’). In this model (c¢f. Fig. 2), we
leverage on the meta-information of the dataset
knowledge base to better support zero-shot learn-
ing. There is a description (we experiment two
configurations — name and description) of each
dataset in the given knowledge base as part of
the corpus. First, we use convolution followed
by global max pooling to obtain a representation
of each dataset’s description text. We then apply
convolutions to known mentions of the dataset D;.
Both representations are then merged and passed
to a dense layer with a binary output such that
f(TFy, D;) = 1if TF}, mentions D;, else 0. This
step is repeated for all datasets (i € [0, m]) during
testing, and a few randomly, sampled datasets per
text fragment during training.

Unlike SL E-C, KBSL E-C can incorporate
new classes dynamically by creating a new class
representation for predicted new class. Thus
KBSL E-C represents an end-to-end zero-shot



dataset discovery model.
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Figure 3: Token ngram-based CRF performance with
differing segment lengths.
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Figure 4: Token ngram-based CRF performance with
different NSR, segment length 40.

4.1 Experiment

We elaborate on the complete experimental setup,
which has the following configuration:

Hyper-parameters. As the documents in the
corpus have 7K tokens on average, the sequence
lengths are too long for any model to process di-
rectly. We split the documents into shorter text
fragment (1'F;) for training and inference. Most
fragments do not contain any dataset mentions;
these segments we term “negative segments”.

The document collection is thus highly skewed,
with only 0.4% positive tokens (similarly for pos-
itive segments). We under-sample to lessen the ef-
fect of data skew, by only considering some of the
negative segments during training. We sample all
“positive segments”, those with dataset mentions.

Our processing methods involve two hyper-
parameters — the segment length and the sampling
rate of negative segments. Both hyper-parameters
affect the ratio of negative tokens sampled in the
training set, which in turn impacts performance.
We experiment with the CRF baseline model (tri-
gram model, whose hand-tuned features include
uppercasing and digits) to analyze the effect of
these hyper-parameters and select optimal values
(¢f. Fig. 3 and Fig. 4). For example, a negative
sampling rate (NSR) of 0.05 means that we sam-
ple 5% of the total number of negative segments
from the original dataset for training; conversely,
NSR=0 means every training segment contains at
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least one dataset mention. Note that even for
NSR=0, there are still many negative tokens as
each segment only contains a few short mention
phrases (4.7 tokens per mention on average), with
the rest negative.

From the table, we can see that the model
generally works better when the negative token
rate is small. We use the optimal segment length
40 and NSR=0.015 (1.5%) for all neural models
in this paper.

Model Configuration. For all models, we
use the 300-dimensional GloVe (Pennington et al.,
2014) word embeddings. All models are trained
with Adam optimizer.

For dataset mention extraction, the task-specific
parameters are as follows. For the base BiLSTM,
we use a hidden size of 100 and a dropout rate
of 0.2 on word embeddings. We then used a
dense layer with sigmoid activation to determine
the probability of the input being part of a dataset
mention. For the character embedding CNN, we
use character embedding dimension 300, 1D con-
volution 300 filters, window size 6, and a dropout
rate of 0.4. For the CNN-BiLSTM-CRF model,
we add a CRF layer on top of the BiLSTM instead
of a dense layer.

For dataset classification, the task-specific
parameters are as follows. For the CNN model,
we use 1D convolution with 256 kernels, with
window size 6, followed by global max pooling,
and a dense layer for the final classification
output. For the LSTM based model, we use a
BiLSTM with hidden dimension 100 to encode
the input sequence and use a dense layer on the
final state of the BiLSTM for the final dataset
classification. We use a sigmoid for the final
non-linear activation function. As explained
earlier, the rationale to use sigmoid is to allow the
model to associate a single mention to multiple
datasets which appear commonly in the dataset
(see the example in Fig. 1).

Evaluation Method. We evaluate our model
on the development set, the test set and on the
zero-shot test set. We first randomly held out
7% of the datasets from the corpus and select the
publications (219 documents in total) containing
these datasets to form the zero-shot test set. To be
clear, the datasets in the zero-shot test set are not
seen at all within the training set. We then ran-



Development Set Test Set Zero-Shot Test Set
Partial Exact Partial Exact Partial Exact

Model PIR]IJFA|PIR[RA|P]IR[A|[P]JR]JA[P[R[RA|P[R[HFA
BiLSTM 71.4164.4167.7(31.3|34.0(32.6(29.4(32.1]30.7|11.2{12.8[12.0(25.3{20.0(22.4| 63 | 63 | 6.3
CNN-BILSTM 77.5|75.5|76.5|41.4|44.6|43.0|49.8|44.7(47.1|28.6|31.2|29.8|38.7|28.6/32.9|18.0|20.8|19.3
CNN-BiLSTM-CRF | 79.1 | 71.1 | 74.9|42.7 | 44.6 | 43.6 | 54.1 | 44.6|48.9 |35.6|33.834.7 |41.6|27.9|33.4|23.2|22.7|23.0
CNN-BiLSTM-Aun-CRF | 76.1 | 73.8 | 74.9|39.4 | 47.7 | 43.2|58.0 | 50.0| 53.7 | 34.8 | 38.0| 36.4 | 42.6 | 28.9|34.4|17.2|17.3|17.3
SLE-C 77.2]172.6(74.8(39.9(41.6(40.7|40.3(43.1[41.7|27.1|28.4|27.7|29.0|28.0|28.5{16.3|16.7|16.5

Table 1: Mention Extraction Subtask performance. Segment length 40, negative sampling rate: 0.015.

Development Set Test Set Zero-Shot Test Set
Model P R F1 P R F1 P R F1
BIiLSTM 73.1 | 71.6 | 72.3 | 27.5 | 474 | 348 | 3.0 | 5.7 39
CNN 813|795 | 804 | 428 | 46.5 | 44.6 | 49 | 5.0 5.0
SLE-C 70.6 | 70.0 | 70.3 | 31.8 | 49.3 | 38.6 | 3.6 | 6.3 4.6
KBSL E-C 96.0 | 8591 90.7 | 17.6 | 275 | 21.5| 0.8 | 1.1 0.9
KBSL E-C descript | 97.5 | 88.1 | 92.6 | 123 | 446 | 194 | 05| 1.9 0.9

Table 2: Dataset Classification Subtask performance. Segment length 40, negative sampling rate 0.015.

domly hold out 225 publications to form the test
set. The datasets mentioned in these testing docu-
ments may have other mentions in the training set
as well. The dev set is split from the training set
(5%) and has the same distribution and length as
the training set.

Since the test set and zero-shot test set contain
complete documents and do not have any sam-
pling, the distribution is different from the sam-
pled training set. During the evaluation, we do
not sample. We first split the test documents into
text segments of the same length as the training
segments and perform inference with our trained
model on these segments. We combine the pre-
dicted results as the prediction for the entire test
document.

We employ precision (P), recall (R) and Fy
score as our evaluation metrics. For dataset men-
tion subtask, these metrics can be interpreted in a
relaxed or strict manner, with respect to true token
coverage. The relaxed, partial match metric at-
tributes a true positive count if any of the ground
truth tokens are correctly predicted by the model
as a mention phrase. The strict, exact match met-
ric attributes a true positive only when if every to-
ken in the mention is predicted correctly. We also
report exact match P, R, Fj at the document level.

5 Results

CNN-LSTM-Attn-CRF and CNN outperform all
the other models in the single task setup for men-
tion extraction and dataset discovery, respectively.
We note that the performance of sequence labeling
models is not very high even though when the task
seems trivial. We attribute this to the high number
of text fragments with no dataset mention, result-
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ing in low accuracy. Similar to CRF (¢f. Fig. 3 and
Fig. 4), the precision-recall trade-off for smaller-
to-bigger fragments does not allow for optimiza-
tion by mere tuning of fragment size.

We further find that surprisingly the SL E-C
model doesn’t increase the performance of either
of the tasks. The sequence labeling task is more
sensitive to local information. Ideally, the out-
put of mention extraction should be input to clas-
sification and hence prime signal for the classifi-
cation task. But, we find that the classification
benefit from more contextual information than just
the mention (in fact we find using extracted men-
tions works even worse) and hence sharing layers
causes mix-up of representations of the text input
which isn’t ideal for either task.

KBSL E-C model retain the trend of the de-
crease in performance on individual tasks. But
surprisingly the model doesn’t perform well on the
zero-shot test set. On further analysis, we realize
this is caused by the nature of dataset with multiple
similar datasets making it easier for even simple
classification model to achieve a partial score for
classification even when the model has not seen an
example of the dataset.

6 Conclusion

We explore the problem of identifying the mention
of datasets in publications and associate the iden-
tified mention to a dataset. In our experiments we
find CNN-BiLSTM-CRF and CNN models work
best for dataset mention extraction and classifica-
tion respectively. We identify that while mention
extraction is primarily dependent on local signals
the dataset classification uses a much wider con-
text than just the mention.




References

Waleed Ammar, Matthew Peters, Chandra Bhagavat-
ula, and Russell Power. 2017. The AI2 system at
SemEval-2017 task 10 (scienceie): semi-supervised
end-to-end entity and relation extraction. In Pro-
ceedings of the 11th International Workshop on
Semantic Evaluation, SemEval 2017, Vancouver,
Canada, August 3-4, 2017, pages 592-596.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum. 2017.
SemEval 2017 task 10: SciencelE - extracting
keyphrases and relations from scientific publica-
tions. In Proceedings of the 1Ith International
Workshop on Semantic Evaluation, SemEval 2017,
Vancouver, Canada, August 3-4, 2017, pages 546—
555.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Sonal Gupta and Christopher Manning. 2011. Ana-
lyzing the dynamics of research by extracting key
aspects of scientific papers. In Fifth International
Joint Conference on Natural Language Processing,
IJCNLP 2011, Chiang Mai, Thailand, November §-
13, 2011, pages 1-9.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 task 5 : Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, SemEval 2010, Uppsala Uni-
versity, Uppsala, Sweden, July 15-16, 2010, pages
21-26.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, pages 1746—1751.

Elizabeth DuRoss Liddy. 1991. The discourse-level
structure of empirical abstracts: An exploratory
study.  Information Processing & Management,
27(1):55-81.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar.

Animesh Prasad and Min-Yen Kan. 2017. WING-
NUS at SemEval-2017 task 10: Keyphrase identi-
fication and classification as joint sequence labeling.
In Proceedings of the 11th International Workshop
on Semantic Evaluation, SemEval 2017, Vancouver,
Canada, August 3-4, 2017, pages 973-977.

36

Behrang QasemiZadeh and Anne-Kathrin Schumann.
2016. The ACL RD-TEC 2.0: A language resource
for evaluating term extraction and entity recognition
methods. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
LREC 2016, Portoroz, Slovenia, May 23-28, 2016.

Byron C Wallace, Joél Kuiper, Aakash Sharma, Mingxi
Zhu, and Iain J Marshall. 2016. Extracting pico sen-
tences from clinical trial reports using supervised
distant supervision. The Journal of Machine Learn-
ing Research, 17(1):4572-4596.

Jin Zhao, Min-Yen Kan, Paula M Procter, Siti
Zubaidah, Wai Kin Yip, and Goh Mien Li. 2010.
Improving search for evidence-based practice using
information extraction. In AMIA Annual Sympo-
sium Proceedings, volume 2010, page 937. Amer-
ican Medical Informatics Association.


https://doi.org/10.18653/v1/S17-2097
https://doi.org/10.18653/v1/S17-2097
https://doi.org/10.18653/v1/S17-2097
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://aclweb.org/anthology/I/I11/I11-1001.pdf
http://aclweb.org/anthology/I/I11/I11-1001.pdf
http://aclweb.org/anthology/I/I11/I11-1001.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
http://aclweb.org/anthology/S/S10/S10-1004.pdf
http://aclweb.org/anthology/S/S10/S10-1004.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
https://doi.org/10.18653/v1/S17-2170
https://doi.org/10.18653/v1/S17-2170
https://doi.org/10.18653/v1/S17-2170
http://www.lrec-conf.org/proceedings/lrec2016/summaries/681.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/681.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/681.html

