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Abstract

Story infilling involves predicting words to go
into a missing span from a story. This chal-
lenging task has the potential to transform in-
teractive tools for creative writing. However,
state-of-the-art conditional language models
have trouble balancing fluency and coherence
with novelty and diversity. We address this
limitation with a hierarchical model which first
selects a set of rare words and then generates
text conditioned on that set. By relegating the
high entropy task of picking rare words to a
word-sampling model, the second-stage model
conditioned on those words can achieve high
fluency and coherence by searching for likely
sentences, without sacrificing diversity.

1 Introduction

Recent advances in language modeling have made
considerable progress towards the automatic gen-
eration of fluent text (Jozefowicz et al., 2016;
Baevski and Auli, 2019; Radford et al., 2019).
This evolution has sparked the development of
tools to assist human writers. For instance, Fan
et al. (2018b) suggest generating short stories from
high-level prompts, Clark et al. (2018b) study the
interaction of human and language models for cre-
ative writing, and Peng et al. (2018) propose an in-
teractive control of story lines. In addition, prod-
ucts such as Grammarly offer suggestions to im-
prove grammar and wording (Hoover et al., 2015).

Our work is concerned with story infilling. We
envision this task as a step towards a suggestion
tool to help writers interactively replace text spans.
Text infilling, a form of cloze task (Taylor, 1953),
involves removing sequences of words from text
and asking for a replacement. Compared to tradi-
tional left-to-right language modeling, automatic
infilling interacts well with human text revision
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... In the morning when he 
awoke, he began to search 
over hill and dale for this 
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Figure 1: In the one stage baseline, the missing span is
predicted given the context and the target length. In the
two stage method, words that should go in the span are
predicted in inverse frequency order. For visualization,
the left and right contexts have been truncated.

processes, which are rarely purely left-to-right. In
the context of story generation, infilling should en-
sure (i) text fluency, (ii) coherence with the story
line, and (iii) text which is not generic or obvious
to a human. These three objectives require a del-
icate balance for modeling since fluency and co-
herence suggest preferring likely sequences, while
novelty suggests preferring less likely sequences.

We observe that recent conditional neural se-
quence to sequence models (Vaswani et al., 2017)
have difficulty with this balance. As a solution, we
propose to structure our cloze task in a hierarchi-
cal manner. In contrast to Fan et al. (2018b), we
do not assume access to a supervised signal de-
scribing a hierarchy. We instead decompose our
generation task by first randomly sampling from
the high entropy part of the signal before generat-
ing the lower entropy part conditioned on the for-
mer. This decomposition is simple, yet powerful.
The first model chooses rare words through ran-
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dom sampling and the second model then uses a
search algorithm to generate likely sequences con-
ditioned on these words. Beam search in the sec-
ond step allows better fluency (i) and coherence
(ii), while conditioning with sampled words pre-
vents novelty (iii) from being compromised.

We evaluate our proposal in the context of in-
filling passages from children’s books and fairy
tales. We compare vanilla transformer models
with hierarchical alternatives, both through auto-
mated metrics and a human study. Our hierarchi-
cal method results in greater diversity in the gen-
erated text, without sacrificing quality. When we
control for diversity, our method strongly outper-
forms the non-hierarchical baseline.

2 Related Work

Automatic Story Generation Computer-aided
story generation has been a source of interest since
the early days of NLP. Classical AI algorithms re-
lied on symbolic and logical planning and graph
construction (Klein et al., 1973; Meehan, 1977;
Turner, 1993; Riedl and Young, 2006). Statisti-
cal methods have also been proposed (McIntyre
and Lapata, 2009; Li and Riedl, 2015; Gatt and
Krahmer, 2018). Recently, the field has been in-
fluenced by the success of (conditional) neural lan-
guage models (Bengio et al., 2003; Schwenk and
Gauvain, 2004; Bahdanau et al., 2015; Nallapati
et al., 2016). Story generation with neural models
include (Chourdakis and Reiss, 2017; Peng et al.,
2018; Radford et al., 2019).

We build upon recent work that improves co-
herence in story generation by using hierarchical
neural methods. These approaches allow reason-
ing at a higher level than words by considering
a two-level hierarchy where a structuring repre-
sentation conditions text generation. Martin et al.
(2018) use sequences of events to structure gener-
ation while Jain et al. (2017) relies on sequences
of short descriptions. Fan et al. (2018b) rely on
writing prompts. Closer to our work, Clark et al.
(2018a) condition on entity mentions. The train-
ing of these methods requires the availability of
structuring labels which are either present in the
training set (Fan et al., 2018b) or extracted by a
separate system (Martin et al., 2018; Clark et al.,
2018a). In our case, we avoid this step by consid-
ering rare words as the structuring signal.
Infilling Task Rather than generating an entire
novel story, our goal is to replace text spans in an

existing story to make progress towards interac-
tive assistance for creative writers. Text infilling
is known in linguistics as the cloze task (Taylor,
1953) and involves removing words or sequences
of words from a text and asking a computer or a
human to predict them. Existing work has used
the masking of random words to build language
models (Fedus et al., 2018) as well as contextual-
ized word embeddings (Collobert et al., 2011; De-
vlin et al., 2018). Infilling of longer spans has been
considered in work that explores bi-directional de-
coding for image captioning (Sun et al., 2017) .

3 Method

Our method predicts a variable length text
span given a fixed length context from either
side. We rely on the self-attentive Transformer
model (Vaswani et al., 2017) with learned position
embeddings, where the encoder takes the context
as input and the decoder predicts the missing span.
Architecture details and training parameters are
in the Appendix. We use the subword tokenizer
from (Vaswani et al., 2017), but report all statis-
tics except perplexity in term of proper words. In
addition to the context, we also condition our base
model on the desired output length. We append to
the input sequence a marker token denoting one of
5 possible length bins Fan et al. (2018a). Length
conditioning lets us compare different models and
decoding strategies with the same average genera-
tion length, thus avoiding length preference biases
in human evaluation.

In our proposed approach, we decompose the
generation task hierarchically, sampling a set of
words desired for generation, before generating
text that includes these words.
Word Prediction For each infilling instance, our
model ingests the context data and predicts a se-
quence of subwords in frequency order, starting
with rare subwords first. The word prediction
model is a standard Transformer, for which we
prepare the training data such that the target sub-
words are reordered by increasing frequency.

Our motivation for frequency ordering is two-
fold. Conceptually, rare words have a denser
information content in an information-theoretic
sense (Sparck Jones, 1972; Shannon, 1948), i.e., it
is easier to predict the presence of common words
given nearby rare words than the opposite. Practi-
cally, predicting rare words first allows us to inter-
rupt decoding after a fixed number of steps, then
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LC were filled with anger, and de-
cided not to go fishing again, but
to wait for the next appearance
of the fire. But after many days
had passed without their seeing
the fire, they went fishing again,
and behold, there was the fire!

hand he held an iron club,
which he dragged after him
with its end on the ground; and,
as it trailed along, it tore up a
track as deep as the furrow a
farmer ploughs with a team of
oxen. The horse he

cave, whose mouth is beneath the sea.
Here was a broad, dry space with a
lofty, salt-icicled roof. The green,
translucent sea, as it rolled back and
forth at their feet, gave to their brown
faces a

GT And so they were continually tan-
talized. Only when they were out
fishing would the fire appear, and
when they

led was even larger in propor-
tion than the giant himself, and
quite as ugly. His great carcass
was covered all over

ghastly white glare. The scavenger
crabs scrambled away over the dank
and dripping stones, and the loath-
some biting eel, slowly reached

HIER-
3

and there was a shout of joy from
all the people who went fishing
thither, but when they

rode was a lazy ox. He was a
very ugly man. He was a man

faint intake of breath, whence it rose
and curled, as it were, into the sea.
And now it stretched

HIER-
max

and thither they gathered together
at a strong pace, for it was useless
to go fishing at home, and when
another shout

was missing stood in lazy work.
You could see that he was a big,
ugly ox,

shining intake of air, whence the
black bear curled up on the surface of
the water, and turned its head to look

BASE
beam10

and they could not find it. They
could not find it, and when the fire
was

rode was a man of about thirty-
five years of age. He was a tall
man,

look of horror and horror. It seemed
as if it would burst into a flood, and
burst upon them, and burst

BASE
sam-
pling10

and the fire, which had been so
long gone that many had not been
in it for years, and when the fire

had driven was a little man of
about the size of a man, with
shaggy mane, and

deep, almost awful, impression, like
that which was seen on a rock on a
rocky beach. But the kangaroo did
not stretch

BASE
sam-
pling

and at last there was a fierce fire!
And at last Rosetta had an arrow,
and when Oui

wheeled in without pausing to
speak to me was a grotesque
specimen of some repulsive an-
imal. He was short of stature,

flood of radiance, sufficient to kill
them utterly. [Illustration: It certainly
had not a fairy named Serpent] The
monster had cast

RC returned they could not find it.
This was the way of it. The curly-
tailed alae knew that Maui and
Hina had only these four sons, and
if any of them stayed on shore
to watch the fire while the others
were out

with tangled scraggy hair, of a
sooty black; you could count
his ribs and all the points of his
big bones through his hide; his
legs were crooked and knotty;
his neck was twisted; and as for
his jaws, they were

out its well-toothed, wide-gaping jaw
to tear the tender feet that roused it
from its horrid lair, where the dread
sea god dwelt. The poor hapless girl
sank down upon this gloomy shore
and cried, clinging to the kan

Table 1: Two qualitative examples with context extracted from fairytales. Left context (LC), right context (RC),
ground truth center (GT), and the outputs from several methods are shown.

delegate the prediction of more common words to
our second-stage model.
Word-Conditioned Generation The second-
stage model, also a Transformer, is responsible for
generating a text span given the surrounding con-
text, a desired length marker, and a list of words
predicted by the first-stage model. It takes as in-
put the concatenation of these three signals.

At training time, we select a list of k words
from the missing span to condition on, where k is
sampled uniformly between 0 and half the target
length. At inference, this model takes condition-
ing words from the word generation model intro-
duced above. Interestingly, such a word list could
be edited interactively by writers, which we defer
to future work.

Training with a variable number of condition-
ing words allows us to choose the number of pro-
vided words at inference time. We observe that
this choice needs to balance sufficient information
to influence coherence and novelty in generated

spans, while preserving some headroom for the
second stage model to suggest its own common
words and produce fluent text. Some examples of
the unusual wording choices made when the sec-
ond stage model is conditioned on all predicted
words (HIER-max) can be seen in Table 1.

4 Experiments & Results

Experimental Setup We train on the Toronto
Book Corpus (TBC) concatenated with Project
Gutenberg, for a total of over 1.2 billion words af-
ter filtering our exact duplicate books. We with-
held 5% of all books for validation and test.

Training examples consist of a 5 to 50 token-
long target sequence, with 50 tokens of context on
each side. We experimented with longer context
windows but did not observe strong improvement
on automated metrics. We do not force any align-
ment along linguistic boundaries, so context win-
dows and gaps may start or end in the middle of a
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Model Decoding Diversity ROUGE-1 PPL % Votes p-value
dist-1 dist-2 F1 against HIER-3

BASE beam10 .057 .218 0.29 16.61 48.75 0.82
BASE sampling10 .058 .304 0.26 16.61 56.67 0.30
BASE sampling .101 .477 0.23 16.61 27.78 0.000025
HIER-max sampling+beam10 .107 .442 0.24 4.22 28.33 0.00079
HIER-3 sampling+beam10 .104 .347 0.27 6.62 – –

Table 2: Automated and human evaluation for our method (Hier) against baseline (base). Human evaluation reports
A/B testing against Hier-3, along with chi-square test p-values.

sentence or even word.
Evaluation Automatic evaluation is performed on
10,000 spans of length 15-30 from our validation
set. We report the sub-token perplexity of the ref-
erence and evaluate generation diversity with dist-
k, the total number of distinct k-grams, divided by
the total number of tokens produced over all ex-
amples in the validation set.

Three children’s books were chosen from the
validation set for human evaluation (Scott, 1921;
Barrow, 1863; Vandercook, 1912). We hoped
that the more concise prose in children’s literature
would make it easier for evaluators to quickly spot
mistakes. We selected paragraphs of length 50 to
130 subwords, and randomly replaced a span of 15
to 30 subwords from anywhere in the paragraph.

Human raters were shown two instances of each
paragraph, identical except for the selected span,
which may have come from one model or an-
other. The modified span was highlighted in each
paragraph, and evaluators were asked which high-
lighted excerpt seemed better (more on-topic, ex-
citing, and/or coherent) given the context. Further
details about the task are in the the Appendix.
Results As our motivation is to generate diverse
text without compromising on coherence and flu-
ency, we evaluate the baseline non-hierarchical ap-
proach at different level of diversity by consid-
ering different decoding strategies. Conditional
language models generate text word-by-word, ei-
ther through beam search, i.e. approximating the
maximum-a-posteriori sequence (Sutskever et al.,
2014), or through sampling. Beam search often
leads to repetitive, “safe” outputs, while random
sampling results in more diverse outputs that mat
suffer from fluency and coherence issues. While
some work has incorporated a temperature pa-
rameter during random sampling to control the
tradeoff between diversity and quality, we instead
consider restricting sampling to the top-10 next
words (sampling10) (Fan et al., 2018a) as prelim-
inary experiments indicated this method produces

higher quality outputs for equivalent levels of di-
versity.

Table 2 shows that as expected, sampling re-
sults in the richest diversity, beam search the poor-
est, and sampling10 falls between the two. In hu-
man evaluation, sampling10 and beam outperform
or perform equivalently to our Hier-3 method, but
have lower diversity. Unrestricted sampling per-
forms much worse.

In our hierarchical approach (HIER), we achieve
both diverse and fluent generation by using ran-
dom sampling for the word prediction model,
where diversity is more critical than fluency, and
beam search for the second-stage model.

Table 2 evaluates HIER in two settings, con-
ditioning on all words from the word prediction
model or conditioned only on the first three pre-
dicted words. Human raters strongly prefer the
model conditioned on only three words. We
also show that humans rate generation of HIER-3
comparably to BASE/sampling10 while our model
achieves much higher diversity (dist-1 and dist-2).
Our model therefore achieves its goal of diverse
and fluent outputs for story infilling.

5 Conclusions and Future Work

We show that taking a hierarchical approach to
story infilling is an effective strategy for balancing
fluent and coherent generated text with the diver-
sity and interestingness necessary to build a useful
tool for writers. Ultimately, we envision a fully
collaborative system, where writers can upload a
story and then solicit ideas from the computer on
ways to rewrite specific parts. Writers will be able
to choose between guiding generation by manu-
ally specifying words or concepts to be used, or
taking suggestions made by the system.

Future work could investigate insertion-based
architectures better suited to the infilling task
(Stern et al., 2019), and the use of n-gram phrases
instead of independent subwords as conditioning.
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6 Appendix

7 Amazon Mechanical Turk Task

Our evaluation set consisted of 280 paragraphs se-
lected from the evaluation dataset. For each ques-
tion, evaluators were shown the same paragraph
twice, with a highlighted span possibly altered by
a model (Figure 2).

In our initial experiments, these questions were
split into 20 HITs of 11 questions each. Ten of
these questions compared generated text from the
two methods of interest, while one other question
was a honeypot, where one of the method outputs
was replaced by the ground truth. However, af-
ter running multiple trial HITs, we found that the
task was too hard for the average Turker, and per-
formance on the honeypot question was close to
random guessing.

We instead recruited two expert annotators fa-
miliar with reading antiquated English and with
common language model mistakes to complete the
HITs. In total we collected 60+ annotations per
comparison task.

8 Model Parameters

All experiments were done with Transformer
models implemented in the Tensor2Tensor frame-
work (Vaswani et al., 2018). Important hyperpa-
rameters are shown below. All other hyperparam-
eters were left at the Tensor2Tensor default.

{
"attention_dropout": 0.1,
"batch_size": 4096,
"dropout": 0.2,
"ffn_layer": "dense_relu_dense",
"filter_size": 2048,
"hidden_size": 512,
"kernel_height": 3,
"kernel_width": 1,
"label_smoothing": 0.0,
"learning_rate": 0.2,
"learning_rate_constant": 2.0,
"learning_rate_decay_rate": 1.0,
"learning_rate_decay_scheme": "noam",
"learning_rate_decay_steps": 5000,
"learning_rate_warmup_steps": 8000,
"num_heads": 8,
"num_hidden_layers": 6,
"optimizer": "Adam",
"optimizer_adam_beta1": 0.9,
"optimizer_adam_beta2": 0.997,

http://arxiv.org/abs/1803.07416
http://arxiv.org/abs/1803.07416
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Figure 2: User interface for Amazon Mechanical Turk task.

"optimizer_adam_epsilon": 1e-09,
"pos": "emb",
"self_attention_type": "dot_product",
"train_steps": 1000000,

}


