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Abstract

Until recently, summarization evaluations
compared systems that produce summaries of
the same target length. Neural approaches to
summarization however have done away with
length requirements. Here we present detailed
experiments demonstrating that summaries of
different length produced by the same sys-
tem have a clear non-linear pattern of quality
as measured by ROUGE F1 scores: initially
steeply improving with summary length, then
starting to gradually decline. Neural models
produce summaries of different length, pos-
sibly confounding improvements of summa-
rization techniques with potentially spurious
learning of optimal summary length. We pro-
pose a new evaluation method where ROUGE
scores are normalized by those of a ran-
dom system producing summaries of the same
length. We reanalyze a number of recently re-
ported results and show that some negative re-
sults are in fact reports of system improvement
once differences in length are taken into ac-
count. Finally, we present a small-scale hu-
man evaluation showing a similar trend of per-
ceived quality increase with summary length,
calling for the need of similar normalization in
reporting human scores.

1 Introduction

Algorithms for text summarization of news de-
veloped between 2000 and 2015, were evaluated
with a requirement to produce a summary of a
pre-specified length.1 This practice likely fol-
lowed the DUC shared task, which called for sum-
maries of length fixed in words or bytes (Over

1Here is a list of the most cited ‘summarization’ papers of
that period according to Google Scholar (Erkan and Radev,
2004; Radev et al., 2004; Gong and Liu, 2001; Conroy and
O’leary, 2001; Lin and Hovy, 2000; Mihalcea, 2004; Gold-
stein et al., 2000). All of them present evaluations in which
alternative systems produce summaries of the same length,
with two of the papers fixing the number of sentences rather
than number of words.

et al., 2007) or influential work advocating for
fixed summary length around 85-90 words (Gold-
stein et al., 1999).

With the advent of neural methods, however, the
practice of fixing required summary length was
summarily abandoned. There are some excep-
tions (Ma and Nakagawa, 2013; Kikuchi et al.,
2016; Liu et al., 2018), but starting with (Rush
et al., 2015), systems produce summaries of vari-
able length. This trend is not necessarily bad.
Prior work has shown that people prefer sum-
maries of different length depending on the infor-
mation they search for (Kaisser et al., 2008) and
that variable length summaries were more effec-
tive in task-based evaluations (Mani et al., 1999).

There are, at the same time, reasons for con-
cern. The confounding effect of output length has
been widely acknowledged for example in earlier
work on sentence compression (McDonald, 2006;
Clarke and Lapata, 2007); for this task a meaning-
ful evaluation should explicitly take output length
into account (Napoles et al., 2011). For summa-
rization in general, prior to 2015, researchers re-
ported ROUGE recall as standard evaluation. Best
practices for using ROUGE call for truncating
the summaries to the desired length (Hong et al.,
2014) 2. (Nallapati et al., 2016) suggested using
ROUGE F1 instead of recall, with the following
justification “full-length recall favors longer sum-
maries, so it may not be fair to use this metric
to compare two systems that differ in summary
lengths. Full-length F1 solves this problem since
it can penalize longer summaries.”. The rest of the
neural summarization literature adopted F1 evalu-
ation without further discussion.

In this paper we study how ROUGE F1 scores

2As a matter of fact, the established practice was to re-
quire human references of different lengths in order to evalu-
ate system outputs of the respective length, a practice that has
recently been shown unnecessary (Shapira et al., 2018).
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Figure 1: ROUGE recall, precision and F1 scores for lead, random, textrank and Pointer-Generator on the
CNN/DailyMail test set.

change with summary length, finding that in the
ranges of typical lengths for neural systems it in
fact does not penalize longer summaries. We pro-
pose an alternative evaluation that appropriately
normalizes ROUGE scores and reinterpret several
recent results to show that not taking into account
differences in length may have favored misleading
conclusions. We also present a pilot analysis of
summary length in human evaluation.

2 ROUGE and Summary Length

First we examine the behavior of four systems and
their respective ROUGE-1 scores (overlap of un-
igrams between the summary and the reference),
on the CNN/DailyMail test set (Nallapati et al.,
2016). ROUGE F1 scores have a non-linear pat-
tern with respect to summary length. The graphs
for ROUGE-2 (bigram) have the same shape as
can be seen from the second row of graphs. Of the
four systems, three non-neural baselines are eval-
uated for lengths between 50 and 300, with a step
of 20. Both sentence and word tokenization are
performed using nltk (Bird et al., 2009) and words
are lowercased. The four systems are as follows:
Lead Extracts full sentences from the beginning
of the article with a total number of tokens no
more than the desired length. Many papers on neu-
ral abstractive methods produce summaries with
ROUGE scores worse than this baseline, usually

comparing with the version of extracting the first
three sentences of the article.
Random Randomly and non-repetitively selects
full sentences with a total number of tokens that
is no more than the desired length.
TextRank Sentences are scored by their centrality
in the graph with sentences as the nodes (Erkan
and Radev, 2004; Mihalcea, 2004). We use the
Gensim.summarization package (Barrios et al.,
2016) to produce these summaries.
Pointer-gen: We use the pre-trained Pointer-
Generator model of (See et al., 2017) to get out-
puts with varying lengths by restricting both min-
imum and maximum decoding steps.3 The largest
values for min and max decoding step are set to
130 and 150 respectively due to limited comput-
ing resources.

Figure 1 shows that ROUGE recall keeps in-
creasing as the summary becomes longer, while
precision decreases. For recall, it is clear that
even the random system produces better scoring
summaries if it is allowed longer length. For all
four systems, ROUGE F1 curves first rise steeply,
then decline gradually. For summaries longer than
100 words, none of the systems produces a bet-
ter score than corresponding system with shorter

3 https://github.com/abisee/pointer-generator, we used the
Tensorflow 1.0 version pre-trained pointer-generator model.
The pre-trained model performs slightly worse than what was
reported in their paper.
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summaries. For the range of less than 100 words
however, where most of the current systems fall
as we will soon see, the trend is unclear since
curves overlap and cross. In that range, differ-
ences in length may be responsible for differences
in ROUGE scores.

It is possible that such behavior is related to the
fact that ROUGE uses word overlap for compari-
son. Given the current trends of using text repre-
sentations and similarity, we also check the shape
of curves when representing the lead baseline and
reference summary in semantic space using differ-
ent methods. A higher cosine similarity between
the two representations indicates a better baseline
summary.

We represent summary and reference in embed-
ding space using five methods: (1,2) two univer-
sal sentence encoders (Cer et al., 2018); (3) the
Infersent (Conneau et al., 2017) model; (4) av-
erage and (5) max over each dimension of every
word in the input with word2vec word embeddings
(Mikolov et al., 2013).

Figure 2 shows the change in similarity be-
tween the lead baseline and the reference sum-
mary. For all representations, for summary lengths
below 100 words, the similarity increases with
length. After 100 words, the similarities plateau
or slightly decrease for one representation. This
indicates that when the number of words is not ex-
plicitly tracked, length is still a confounding factor
and may affect the evaluations that are based on
embedding similarities.

3 Normalizing ROUGE

In the data we saw so far, it is clear that difference
in length may account for difference in system
performance, while in some pairs of system, one
is better than the other irrespective of the length
of their summaries, as with the lead and random
systems. Therefore, it is of interest to adopt a
method that normalizes ROUGE scores for sum-
mary length and then re-examine prior literature
to see if any of the conclusions change once sum-
mary length is taken into account. 4

Simply dividing by summary length is unwar-
ranted given the non-linear shape of the F1 curve.
Instead, we choose to normalize the F1 score of a

4We could penalize summaries that are shorter or longer
than the reference, similar to the brevity penalty in BLEU
(Papineni et al., 2002). Such an approach however assumes
that the reference summary length is ideal and deviations
from that are clearly undesirable, a fairly strong assumption.

system by that of a random system which produces
same average output length. The output length of
a random baseline is easily controllable and any
system is expected to be at least as good in con-
tent selection as the random baseline.
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Figure 2: Cosine similarities between summaries gen-
erated by lead systems and reference in embedding
space on the CNN/DailyMail test set.

The new score also has a useful intuitive in-
terpretation. The score minus one is the per-
centage of a system improving upon a random
system which has same average summary length.
In general, it is easier for a system that pro-
duces shorter summaries to improve a lot upon
a random baseline which has equally short sum-
maries , and more difficult for systems that pro-
duce long summaries. The normalized ROUGE
score can thus distinguish a poor system which
achieves higher ROUGE scores because of gener-
ating longer texts from a system which has good
summarization techniques but tends to generate
shorter summaries. In addition, the random sys-
tem is independent of the systems to be evaluated,
thus the normalizing values can be computed be-
forehand.

4 Evaluation on CNN/DailyMail Test Set

We re-test 16 systems on the CNN/DailyMail test
set:
(1) Pointer-Generator (See et al., 2017) and its
variants: a baseline sequence-to-sequence at-
tentional model (baseline), a Pointer-Generator
model with soft switch between generating from
vocabulary and copying from input (pointer-gen)
and the same Pointer-Generator with coverage loss
(pointer-cov) for preventing repetitive generation.
There are three other content-selection variants
proposed in (Gehrmann et al., 2018) which are
also based on Pointer-Generator: (i) aligning ref-
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erence with source article (mask-hi, mask-lo) (ii)
training tagger and summarizer at the same time
(multitask), and (iii) a differentiable model with
a soft mask predicted by selection probabilities
(DiffMask).
(2) Abstractive system with bottom-up attention
(bottom-up) (Gehrmann et al., 2018) and the same
model using Transformer (BU trans) (Vaswani
et al., 2017).
(3) Neural latent extractive model (latent ext)
and the same model with compression over the
extracted sentences (latent cmpr) (Zhang et al.,
2018). This setting is important to study, be-
cause compression naturally produces a shorter
summary and a meaningful analysis of the effect
is needed.
(4) TextRank system used in previous section,
with maximum summary length set to 50 and 70.
(5) Lead-3 related systems: the first 3 sentences
of each article (lead3); compressed first 3 sen-
tences of each article which has length of corre-
sponding pointer-gen (lead-pointer) and pointer-
cov (lead-cov) output, similar to (3). The compres-
sion model we used is a Pointer-Generator trained
on 1160401 aligned sentence/reference pairs ex-
tracted from CNN/DailyMail training data and
Annotated Gigaword (AGIGA) (Napoles et al.,
2012). We extract the pairs from CNN/DailyMail
when every token from the summary sentence can
be found in the article sentence. The pairs are ex-
tracted from AGIGA when over 70% tokens of a
lead sentence are also in the headline. The min-
imum and maximum decoding step are set to be
equal so that the output lengths are fixed. Specif-
ically, let ci be the length of a summary produced
by pointer-gen, li be the length of lead 3 sentences
for the same article and l

(j)
i be the length of jth

sentence (j ≤ 3). The jth lead sentence is forced
to have output length of l(j)i ci/li tokens. The av-
erage number of tokens are not exactly the same
since the size after scaling may be off by at most 1
token.

The random scores are the average over n acti-
vations of random systems introduced in §2 (n =
10 in our setting). The instability of random sys-
tems can be mitigated by setting n to be large
enough. Besides, the average over large amounts
of test articles can also weaken this issue since
we focus on system-level comparison instead of
input-level. Given a system output length, we use
linear interpolation of the two closest points to

System Len. Sys. F1 Rand. F1 Norm.
latent cmpr 43 0.362[+2] 0.245[+0] 1.473[+13]

baseline 48 0.311[−1] 0.257[+0] 1.209[−1]

textrank 50 50 0.345[−1] 0.259[+0] 1.331[+1]

mask lo 51 0.371[+2] 0.263[+0] 1.410[+9]

BU trans 53 0.410[+10] 0.266[+0] 1.541[+11]

bottom up 55 0.412[+10] 0.272[+0] 1.517[+9]

pointer-gen 56 0.362[−3] 0.273[+0] 1.327[−4]

lead-pointer 56 0.377[+0] 0.273[+0] 1.381[+2]

mask hi 58 0.377[+0] 0.276[+0] 1.366[−2]

DiffMask 58 0.380[+0] 0.277[+0] 1.373[−1]

lead-cov 61 0.383[+0] 0.279[+0] 1.369[−3]

pointer-cov 62 0.392[+0] 0.280[+0] 1.403[+0]

multitask 63 0.376[−6] 0.281[+0] 1.341[−8]

textrank 70 71 0.363[−9] 0.288[+0] 1.259[−12]

latent ext 82 0.409[−1] 0.296[+0] 1.384[−4]

lead3 85 0.401[−3] 0.296[+0] 1.351[−10]

Rank change - 48 0 90
Spearman - 0.500 1.000 0.205
Pearson - 0.491 0.949 0.194

Table 1: System performance on the CNN/DailyMail
test set, including average summary length, system
ROUGE-1 F1 score, ROUGE-1 F1 for the random sys-
tem with same average length. Systems are ordered
by length. Values in the last three columns are sub-
scripted by the difference in rank when sorted by cor-
responding item as compared to when sorted by length.
In the bottom of the table, we show the sum of ab-
solute rank change, Spearman and Pearson correlation
between corresponding values and length.

estimate the ROUGE score of a random system
which has the same average output length.5

Table 1 shows the average length of summaries
produced by each system, the system ROUGE-1
F1 score, the corresponding ROUGE-1 F1 score of
a random system with the same average summary
length, and the proposed normalized ROUGE-1
evaluation score. The bottom of the table gives
the sum of absolute system rank change with re-
spect to the ordering by summary length and cor-
relations between corresponding values with sum-
mary length.

All systems produce summaries in the 43–
85 word range, where we already established
that ROUGE F1 increases steeply with summary
length. Another important observation is that the
scores of random systems follow exactly the or-
dering by length; here summary length alone is re-
sponsible for the over 5 ROUGE point improve-
ment. Next to notice is that the normalization

5We also explored another kind of random baseline where
the last sentence is truncated to get a summary of fixed length.
The effect of that normalization is the same as to that pre-
sented here. Detailed results can be found in our supplemen-
tary material.
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leads to about double the difference in rank change
with respect to length than regular ROUGE F1.
Hence, these scores give information about sum-
mary quality that is less related to summary length.

Now we get to revisit some of the conclusions
drawn solely from ROUGE scores, without taking
summary length into account. Many of the neural
abstractive systems produce outputs with scores
worse than the lead3 baseline. However this base-
line results in the longest summaries. Moreover,
after normalization, it becomes clear that lead3 is
in fact considerably worse than pointer-cov. As
presented in Fig. 1, the TextRank system with
summary length of 70 has better ROUGE scores
than the same system with summary length of 50.
Once these are normalized, however, the system
with shorter summaries appears to be more effec-
tive (6 points better in normalized score). Finally,
we compare the two pairs of extractive systems
as well as their versions in which the extracted
sentences are compressed. The compressed sum-
maries are about 40 words shorter for the systems
in (3) and 30 words shorter in (5). Plain ROUGE
scores decidedly indicate that compression wors-
ens system performance. When normalized how-
ever, latent cmpr emerges as the third most ef-
fective system, immediately follow the bottom-
up systems (Gehrmann et al., 2018). This is not
the case for the simplistic compression variant
in lead3, which produces shorter summaries but
barely changes its rank in the normalized score
ranking.

Finally, we compare the systems that reported
outperforming the lead3 baseline. The latent ext
system results in summaries very similar in length
to lead3. Given previous analysis, one might
think the ROUGE improvement is due to summary
length. However, the normalized score shows that
this is not the case and that the latent ext is indeed
better than lead3. Even more impressive is the
analysis of the bottom-up system, which has better
ROUGE scores than lead even though it produces
shorter summaries. It keeps its first place position
even after normalization.

Overall, the analyses we present provide com-
pelling evidence for the importance of summary
length on system evaluation. Relying only on
ROUGE would at times confound improvement in
content selection with the learned ability to gener-
ate longer summaries.

Dim. Question
IN How well does the summary capture

the key points of the article?
RL Are the details provided by the summary

consistent with details in the article?
VE How efficient do you think the summary

conveys the main point of the article?
UC How much unnecessary content

do you think the summary contains?
SR To what degree do you think the summary

is a perfect surrogate of the article?
CN How much additional informative

information can a reader find from the
article after reading the summary?

Table 2: Prompts presented to Amazon Mechanical
Turk workers

System CN IN RL SR UC VE LE
frag 4.58 2.96 3.79 2.88 3.46 3.59 31.32

lead3 4.32 3.36 4.11 3.27 3.39 3.72 78.80
ptr c 4.43 3.22 3.98 3.05 3.33 3.95 71.37
ptr n 4.40 3.10 4.00 3.11 3.49 3.69 41.50
ptr s 4.37 3.28 3.96 3.26 3.47 3.89 68.42

textrank 4.51 3.16 4.18 3.18 3.54 3.68 49.13

Table 3: Human ratings for each system. LE stands for
summary length. The rest dimensions are described in
table 2.

CN IN RL SR UC VE LE
CN 1.00∗ - - - - - -
IN -0.87∗ 1.00∗ - - - - -
RL -0.40 0.59 1.00∗ - - - -
SR -0.81 0.88∗ 0.74 1.00∗ - - -
UC -0.36 0.42 -0.16 -0.06 1.00∗ - -
VE -0.52 0.61 0.08 0.36 0.60 1.00∗ -
LE -0.79 0.96∗ 0.44 0.71 0.64 0.73 1.00∗

Table 4: Correlation among the six human rating di-
mensions defined in Table 2 and summary length LE.
Each dimension is the same as in Table 3. Entries with
p-value smaller than 0.05 are marked with ∗.

5 Human Evaluation on Newsroom

We also conduct a pilot human evaluation exper-
iment using the same data as in (Grusky et al.,
2018). The human evaluation data are 60 articles
from the Newsroom test set and summaries gen-
erated by seven systems. These are (1) extractive
systems: first three sentences of the article (lead3),
textrank with word limit of 50 (textrank) and the
‘fragments’ system (frag) representing the best
performance an extractive system can achieve. (2)
an abstractive system (Rush et al., 2015) (abstrac-
tive) trained on Newsroom data and (3) systems
with mixed strategies: Pointer-Generator trained
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Max Len. Informativeness Verbosity
50 4.13 4.58
70 4.55 4.35
90 4.94 4.42
110 5.22 4.32

Table 5: Average informativeness and verbosity rating
for lead system with max length of 50, 70, 90 and 110.

on CNN/DailyMail data set (ptr c), on subset of
Newsroom training set (ptr s) and a subset of
Newsroom training data (ptr n). After examining
the outputs of each system, the abstractive system
was excluded because the model was not properly
trained. Human evaluation results for each system
are shown in Table 3.

We ask annotators to rate six aspects of sum-
mary content quality informativeness (IN), rele-
vance (RL), verbosity (VE), unnecessary content
(UC), making people want to continue reading the
original article after reading the summary (CN)
and being a sufficient substitute for the original
article (SR) and compute the correlation among
these dimensions as well as with summary length.
Instead of rating in the range of 1 to 5 as in the
original article, we ask the workers to rate in a
range of 1 to 7, with higher value corresponds to
summary is informative and relevant to the source
article, not verbose, has no unnecessary content,
much information to be attained after reading sum-
mary and can serve as a perfect surrogate to the ar-
ticle. The correlation among six aspects and with
summary length are shown in table 4.

Some of the newly introduced questions, such
as unnecessary content and verbosity, were in-
tended to capture aspects of the summary which
may favor shorter summaries. Relevance is the
score introduced in the original (Grusky et al.,
2018) study and measures to faithfulness of con-
tent, as neural systems tend to include summary
content that is not supported by the original article
being summarized.

We find that in general people favor systems
that produce longer summaries. However, simi-
lar to our initial experiment with ROUGE, there
is no way to know if the improvement is due sim-
ply to the longer length, in which more content
can be presented, or in the content selection capa-
bilities of the system. The highest correlation be-
tween summary length and a human rating is that
for informativeness, which in hind sight is com-
pletely intuitive because the longer the summary,

System CN IN RL SR UC VE
frag 1.16 0.75 0.96 0.73 0.88 0.86

lede3 0.86 0.67 0.82 0.65 0.68 0.66
ptr c 0.91 0.66 0.82 0.63 0.68 0.63
ptr n 1.04 0.73 0.95 0.74 0.83 0.78
ptr s 0.91 0.68 0.82 0.68 0.72 0.64

textrank 1.02 0.71 0.94 0.72 0.80 0.75

Table 6: Human ratings normalized by interpolated in-
formativeness rating in table 5.

the more information it includes. The exact same
informativeness definition is used for the News-
room leaderboard (Grusky et al., 2018)6. Clearly,
a meaningful interpretation of the human scores
will require normalization similar to the one we
presented for ROUGE, with human ratings for ran-
dom or lead summaries of different length, so the
overall effectiveness of the system over these is
measured in evaluation.

To mirror the analysis of ROUGE scores, we
conduct another experiment where we present the
workers with lead system of max length 50, 70,
90 and 110 as well as the reference. Complete
sentences are extracted so that readability is main-
tained. Each HIT is assigned to 3 workers and only
contains one summary-reference pair. The aver-
age length of these four systems are 38.0, 53.4,
75.1, 92.5 respectively. Workers are told that they
may assume the reference summary captures all
key points of the article, then we ask them to rate
the informativeness and verbosity question again.
Average ratings for each length can be seen in Ta-
ble 5. Much like ROUGE, human evaluation of
informativeness is also confounded by summary
length and requires normalization for meaningful
evaluation. We normalize the original human rat-
ings for each system with the interpolated (IN) rat-
ing in table 5 and present it in table 6.

We also evaluated how the verbosity score be-
haves when applied to summaries of that length.
We chose that because it has the lowest overall
correlation with the informativeness and relevance
evaluations introduced in prior work. Its (and its
related evaluation of unnecessary content) correla-
tion with length is not significant but still appears
high. Better sense of the relationship can be ob-
tained in future work when a larger number of sys-
tem can be evaluated.

Unlike informativeness, verbosity human
scores fluctuate with length, increasing and

6https://summari.es

https://summari.es
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decreasing without clear pattern. This suggests
future human evaluations should involve more
similar judgments likely to capture precision in
content selection, which are currently missing in
the field.

6 Conclusion

We have shown that plain ROUGE F1 scores are
not ideal for comparing current neural systems
which on average produce different lengths. This
is due to a non-linear pattern between ROUGE F1
and summary length. To alleviate the effect of
length during evaluation, we have proposed a new
method which normalizes the ROUGE F1 scores
of a system by that of a random system with same
average output length. A pilot human evaluation
has shown that humans prefer short summaries in
terms of the verbosity of a summary but overall
consider longer summaries to be of higher quality.
While human evaluations are more expensive in
time and resources, it is clear that normalization,
such as the one we proposed for automatic evalua-
tion, will make human evaluations more meaning-
ful. Finally, human evaluations related to content
precision are needed for fully evaluating abstrac-
tive summarization systems.
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A Normalizing ROUGE with truncated
random selection

System Len. Sys. F1 Rand. F1 Norm.
latent cmpr 43 0.362[+2] 0.256[+0] 1.413[+13]

baseline 48 0.311[−1] 0.267[+0] 1.165[−1]

textrank 50 50 0.345[−1] 0.270[+0] 1.280[+0]

mask lo 51 0.371[+2] 0.273[+0] 1.359[+7]

BU trans 53 0.410[+10] 0.275[−1] 1.491[+10]

bottom up 55 0.412[+10] 0.274[+1] 1.505[+10]

pointer-gen 56 0.362[−3] 0.279[+0] 1.295[−3]

lead-pointer 56 0.377[+0] 0.280[+0] 1.347[+2]

mask hi 58 0.377[+0] 0.281[+0] 1.344[−1]

DiffMask 58 0.380[+0] 0.283[+0] 1.344[−1]

lead-cov 61 0.383[+0] 0.286[−1] 1.340[−5]

pointer-cov 62 0.392[+0] 0.285[+1] 1.378[+1]

multitask 63 0.376[−6] 0.286[+0] 1.317[−8]

textrank 70 71 0.363[−9] 0.291[+0] 1.245[−12]

latent ext 82 0.409[−1] 0.298[+0] 1.374[−3]

lead3 85 0.401[−3] 0.299[+0] 1.342[−9]

Rank change - 48 4 86
Spearman - 0.500 0.944 -0.115
Pearson - 0.491 0.994 -0.047

Table 7: System performance on the CNN/DailyMail
test set, including average summary length, system
ROUGE-1 F1 score, ROUGE-1 F1 for the random sys-
tem with same average length. Systems are ordered
by length. Values in the last three columns are sub-
scripted by the difference in rank when sorted by cor-
responding item as compared to when sorted by length.
In the bottom of the table, we show the sum of ab-
solute rank change, Spearman and Pearson correlation
between corresponding values and length.


