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Abstract
Cognitive tests have traditionally resorted to
standardizing testing materials in the name
of equality and because of the onerous na-
ture of creating test items. This approach
ignores participants’ diverse language experi-
ences that potentially significantly affect test-
ing outcomes. Here, we seek to explain our
prior finding of significant performance dif-
ferences on two cognitive tests (reading span
and SPiN) between clusters of participants
based on their media consumption. Here, we
model the language contained in these media
sources using an LSTM trained on corpora
of each cluster’s media sources to predict tar-
get words. We also model semantic similar-
ity of test items with each cluster’s corpus us-
ing skip-thought vectors. We find robust, sig-
nificant correlations between performance on
the SPiN test and the LSTMs and skip-thought
models we present here, but not the reading
span test.

1 Introduction

Generalization of experimental results crucially
relies on the validity and representativeness of
the experiment to study the phenomenon of in-
terest. Researchers therefore invest considerable
resources in experimental design, particularly in
controlling for systematic confounds. When ex-
periments rely on language samples for stimuli,
this issue is further complicated because partic-
ipants bring their complex and diverse language
histories into the lab. When participants’ language
experiences differ systematically and the experi-
ment does not control for this, a confound arises
that compromises experimental validity and leads
to systematic bias. This is the case for many cog-
nitive tests that standardize language materials in
the name of equality, whereas a more equitable ap-
proach would be to normalize test difficulty for in-
dividuals based on their experience.

One of the primary reasons for the traditional
standardization approach over a normalization ap-
proach is that creating stimuli that are natural and
free from confounds is a difficult laborious under-
taking (e.g. as attested by Cutler (1981); Kalikow
et al. (1977); Calandruccio and Smiljanic (2012)).
The time required to create language stimuli is
made worse by the fact that experiments can typi-
cally only use each target word or phrase once over
the course of the experiment, meaning each stim-
ulus must be uniquely created. In addition to the
effort required, experimenter bias and error possi-
bly significantly affect results (Forster, 2000).

While previous automation attempts have re-
duced experimenter bias, error, and workload (e.g.
Lahl and Pietrowsky (2006); van Casteren and
Davis (2007), vs. Hauk and Pulvermller (2004)’s
manual selection) the process still relies on lan-
guage statistics calculated from corpora unrep-
resentative of many participants’ language expe-
riences (e.g. Coltheart (1981); Linguistic Data
Consortium (1996); Kucera and Francis (1967);
Thorndike (1944), etc.). This mismatch between
the language statistics used to generate test items
and participants’ actual language experiences rep-
resents a persistent confound detracting from ex-
perimental validity and perpetuating testing bias.

Our method allows participants to report for
themselves the language they are comfortable
with and regularly consume. Allowing partici-
pants to define their own language experiences en-
sures stimulus representativeness, increases fair-
ness, and captures individual variability. This
moves away from a model that gives researchers
the power to define which language materials are
representative across all participants (e.g. Black
Beauty and Little Women: Thorndike (1944)) and
moves towards a model that empowers partici-
pants to define their own language variety. To
this end, we develop a method for evaluating lan-
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guage experience’s effect on cognitive test perfor-
mance. In this work, we examine the relationship
between the language that participants report con-
suming in media and their performance on two
language-based cognitive tasks. We predict that
participants’ greater familiarity with the particular
language variety of test items (as measured by se-
mantic similarity and statistical predictability) will
decrease test difficulty, resulting in higher scores.

Our previous results showed that participants
cluster into distinct populations based on media
consumption habits (Courtland et al., 2019). We
determined media consumption habits by admin-
istering a self-report survey, asking participants
what media content they currently consume in a
variety of categories (Movies, Books, TV, etc.)
as well as what they consumed in their forma-
tive years. K-means clustering identified two main
clusters of participants based on the media sources
they share in common. These clusters differ sig-
nificantly in their performance on a test of verbal
working memory (Daneman and Carpenter, 1980)
and test of functional hearing (Kalikow et al.,
1977). This is especially noteworthy consider-
ing we found the clusters to be orthogonal to (i.e.
evenly distributed across) the traditionally used
demographic variables we elicited at the end of the
survey (e.g. Race, Socioeconomic Status, etc.).
Here, we pursue a linguistic explanation for this
performance difference by modeling the language
comprising the sources participants reported con-
suming and examining its relationship to their per-
formance on the behavioral tests.

To accomplish this, we use neural network lan-
guage models to learn the joint probability func-
tion of word appearances in a corpus. Learn-
ing the probability of a word appearing at a cer-
tain position in a sentence can be difficult due to
sparse representation in the training corpus. How-
ever, we choose these models based on their abil-
ity to capture long-distance statistical dependen-
cies within a sentence: an advantage they en-
joy over n-grams (Bengio et al., 2003). We ex-
amine a vanilla long short-term memory (LSTM)
model and an attention-based model (Bahdanau
et al., 2014). Both are based on recurrent neu-
ral networks and are designed to exploit seman-
tic information distributed throughout a sentence
to model the probability distribution of vocabulary
words appearing as the sentence-final word (Sun-
dermeyer et al., 2012). In addition to modeling the

predictability of sentence-final words, we also use
a recurrent neural network based encoder to cap-
ture sentence-level semantics (Kiros et al., 2015).
We use this model to examine whether semantic
familiarity affects participants’ performances. We
model semantics by embedding test items and cor-
pus sentences in a high dimensional vector space
and observing the distances between each item and
its neighbors from the corpus. We predict that
greater semantic similarity and greater sentence-
final word predictability as captured by these mod-
els will correlate with participants’ performance
on our cognitive tasks.

2 Methods

2.1 Corpora and Behavioral Data

Participants were recruited from the USC under-
graduate population (N=70) and on a local com-
munity college campus (L.A. Trade-Tech, N=25).
To test language ability, participants complete the
reading span task developed to assess verbal work-
ing memory (Daneman and Carpenter, 1980) and
the speech perception in noise task (SPiN) devel-
oped to assess functional hearing (Kalikow et al.,
1977). In the reading span task, participants read
sets of sentences aloud while remembering the last
word of each sentence. At the end of a set, they
report the full sequence of sentence-final words
in the set (with no partial credit). Set size in-
creases (from 2 to 7) every three sets until partici-
pants cannot correctly recall any set at that length,
at which point the task is terminated. The SPiN
task presents spoken sentences over headphones
masked with 12 talker babble (a combination of 6
male and 6 female voices speaking continuously).
At the end of the sentence, participants are asked
to report the final word of the sentence. We present
the SPiN at +6dB SNR based on pilot results. We
chose these tests for the important, yet often unac-
knowledged, role language processing is likely to
play in both.

To capture participants’ diverse language expe-
riences, we use a proxy measure: the language ma-
terials they choose to consume regularly. Partici-
pants report these sources by completing an online
survey of their current and formative media con-
sumption habits. Using their responses, we aggre-
gate the language data contained in these sources
into corpora. We collect the sources for the cor-
pora from Springfield! Springfield! and YIFY Sub-
titles, online repositories of television scripts and

https://www.springfieldspringfield.co.uk/
https://www.yifysubtitles.com/
https://www.yifysubtitles.com/
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movie subtitles. In total, we collect 1027 scripts
of complete series (e.g. all episodes of Futurama)
and 194 movie subtitles. We then clean the sources
by removing information that does not reach view-
ers (e.g. stage directions, parenthetical notes, etc.).
Each corpus is then tokenized into sentences for
model training.

2.2 Neural Cloze Model

Cloze probability refers to the probability of en-
countering the last word of a sentence given the
sequence of words that precede it (i.e. all non-final
words of that sentence). That is, given a sentence
of words w1 through wn, the cloze probability is
expressed by: P (wn|w1...wn−1). This conditional
probability is a particularly important metric for
our purposes because of the privileged position
sentence-final words enjoy in scoring both of our
behavioral tasks (cf. Duffy and Giolas (1974)’s ef-
fect of predictability on task performance). Both
our behavioral tasks place participants in a con-
dition of increased cognitive burden (either using
adverse listening conditions or simultaneous ver-
bal storage and processing demands) and then ask
them to identify or remember the last word of a
sentence (Daneman and Carpenter, 1980; Kalikow
et al., 1977). If these words are predictable for a
given participant, top-down processing can allevi-
ate the cognitive burden of online language pro-
cessing, making the task easier (Winn, 2016). If
participants systematically differ in their ability
to predict these sentence-final words, as might be
caused by different language experiences, the task
would effectively be easier for one group of par-
ticipants, leading to higher scores.

To test whether performance differences on our
tasks were due to cloze probability differences, we
trained a vanilla LSTM and LSTM with attention
on each cluster’s corpus to predict the last word
of a sentence given all the previous words. The
attention-based LSTM model is composed of a
layer of LSTM cells that capture the hidden rep-
resentation of the sequence of words from the be-
ginning of the sentence up to the last word. The
final representation for sentence i is shown by Hi

(eq. 3, below) and is generated by applying atten-
tion weights (αij , eq. 2) to the LSTM’s hidden
states, hij , corresponding to each word j in sen-
tence i of length n. Ws, Wt, us, bs and bt are
learned simultaneously during back propagation
(Wang et al., 2016).

uij = tanh(Wshij + bs) (1)

αij =
exp(usuij)∑n−1

k=0 exp(usuik)
(2)

Hi =
n−1∑
j=0

(αij ∗ hij) (3)

Using a fully connected and a softmax layer, we
then calculate the probability of each word w in
the vocabulary appearing immediately after the se-
quence as pw(i.e. at the end of that sentence).

viw =WtHi + bt (4)

pw =
exp(viw)∑|vocabulary|

k=0 exp(vik)
(5)

For the experiment, we use a vocabulary con-
sisting of the 10k most frequent words in the cor-
pus. The hidden size of the LSTM and attention
vectors are set to 100. We use 300-dimensional
GloVe word embeddings as the semantic represen-
tation of the words (Pennington et al., 2014).

2.3 Skip-thought Vectors
To obtain a quantitative measure of semantic sim-
ilarity, we embed test items and sentences from
each cluster’s corpus in a high dimensional vec-
tor space and measure the distance of each test
item to neighboring items from the corpus. To
encode target and corpus items into vectors, we
use combine-skip-thought vectors as detailed in
Kiros et al. (2015). These encode sentences using
RNNs with GRU into a 4800-dimensional vector
which is the concatenation of a 2400-dimensional
uni-directional encoder and a 2400-dimensional
bi-directional encoder (1200 dimensions for back-
wards and forwards each). Results from the orig-
inal paper show that these vectors capture a high
degree of sentence-level semantics, particularly as
it relates to encoding similarity as vector-space
distance: the closer two sentences are in the em-
bedded vector space, the more semantically re-
lated they are. We therefore take the distances in
this embedded vector space to be indicative of how
typical a test item’s semantics are given the corpus
of a participant’s cluster.

We measure each test item’s mean distance
from all corpora items using the Taxicab distance
(L1 norm, eq. 6) and standardized Euclidean dis-
tance (eq. 7):
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n∑
i=1

|ui − vi| (6)

√√√√ n∑
i=1

(ui − vi)2/V [xi] (7)

where V [xi] is the variance vector over the com-
ponents of all vectors.

We also measure the mean distance to the clos-
est 100 corpus neighbors in the event that similar-
ity to all corpus items proves less informative than
similarity to the closest matches from the corpus.

3 Results

3.1 Neural Cloze Model

For each test item, we correlate each cluster’s
LSTM activation of the sentence-final word with
that cluster’s mean behavioral performance (i.e.
the percent of the cluster’s participants who an-
swered that item correctly). We use rank corre-
lation as we are uncertain of how linear the map-
ping between predictability and performance ben-
efit will be.

We observe significant rank correlations be-
tween the activation of both clusters’ vanilla
LSTMs and their respective mean performances
on the SPiN items (ρ(48) = .39, p < .01 for
cluster 1, ρ(48) = .46, p < .005 for cluster
2). We observe weaker but still significant cor-
relations between the attention-based LSTM ac-
tivations and mean performances on SPiN items
(ρ(48) = .31, p < .05 for cluster 1, ρ(48) =
.29, p = .05 for cluster 2). This poorer perfor-
mance of the more complex model is notewor-
thy. We observe no significant rank correlations
between any model’s activations and performance
on the corresponding span task item (see Table 1).

3.2 Skip-thought Vectors

For each cluster, we test for a correlation between
the distance from all its corpus items to a given
test item and the mean performance of its partici-
pants on that item. Given uncertainty of whether
the distance-performance relationship will be lin-
ear, we use rank correlation. Using the distance
metrics in eqs. (6) and (7), we observe significant
rank correlations between vector-space distances
and performances on the SPiN task (see Table 1
for test statistics, all ρ(48), p < .005) but not the
span task. In addition to the mean distance of all

Cluster 1 Cluster 2
SPiN span SPiN span

Vanilla LSTM .39 -.03 .46 -.15
Attn. LSTM .31 .02 .29 -.03

Taxicab .486 .075 .519 -.022
Std. Euclid. .408 -.048 .440 .092

Table 1: Mean behavioral performance on SPiN target
items is significantly rank correlated to both LSTM ac-
tivations and skip-thought distances for both clusters.
We find no significant correlations with the span test
for either cluster.

items, we calculated the distance to the closest 100
neighboring corpus items and obtained similar re-
sults.

4 Discussion

Language models tailored to the media consump-
tion of different ”clusters” of English speakers
predict performance at the item level on a test
of functional hearing (SPiN). In particular, LSTM
models, which are perhaps the most natural way to
model a task in which the predictability of the final
word in a sentence has a strong influence on per-
formance, correctly predict accuracy for each clus-
ter. For the reading span task, in contrast, neither
type of model correctly predicted performance. It
is possible that the models are not capturing the
relevant linguistic information for reading span or
that reading span simply depends less on language
(and language experience) overall than SPiN. An
alternative explanation, however, comes from the
difficulty in handling span performance data and
its scoring. In the span task, items are presented
in a fixed order, and difficulty increases from trial
to trial as participants are required to maintain
more items in working memory. This makes scor-
ing at the item level difficult to interpret. Given
these complications with the scoring procedure, it
is possible that item-level analysis of the reading
span is uninformative and invalid compared to the
straight-forward scoring procedure of the SPiN.

Regarding the SPiN task, the robustness of
the correlation between skip-thought vector mean-
neighbor distances and participant performance is
curious, however. The interesting aspect of this
relationship is the direction of the correlation: that
as the distance from corpus neighbors increases,
performance on the item increases. This implies
that unusual items are scored better on than famil-
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iar ones. This finding is not necessarily at odds
with the finding of the neural cloze models: that
increased predictability of the last word positively
correlates with performance on that sentence. The
two models differ in several key aspects which
may explain their differences. Firstly, skipthought
distances do not capture statistical predictability
but rather semantic similarity, so while the last
word (or in fact the sentence as a whole) may be
semantically odd, it also may be relatively easy to
predict the last word from the rest of the sentence.
Secondly, skipthoughts operate at the level of the
entire sentence rather than at the level of just the
last word, which means that all of the words con-
tributing to their embedding but the sentence-final
one do not directly factor into the scoring of be-
havioral performance. This means that the major-
ity of the linguistic information they encode is un-
informative for capturing predictability of the last
word, which is a direct correlate to how the task
is scored. Lastly, skipthoughts are capturing the
semantic novelty of a sentence. It is possible that
the increased attentional resources these items de-
mand above overly typical items actually causes
participants to perform better on these items rather
than worse. This must be tested further before
concrete conclusions can be drawn, but it repre-
sents an interesting future direction for study.

We believe the results obtained here are an ini-
tial step toward taking participants’ self-reported
language experience into account in interpreting
their performance on cognitive tests. In light of
the evidence that a connection likely exists, we
support the approach of normalizing, rather than
standardizing, the language of cognitive tests. We
predict normalization will produce tests that are si-
multaneously more fair and more valid. Regard-
ing increased validity, the use of dynamically gen-
erated corpora would afford a significant benefit
over static corpora by reducing sampling error.
Every corpus necessarily contains idiosyncratic
sampling error affecting results (Clark, 1973). The
repeated use of norms generated from a single cor-
pus (e.g. as was traditionally taken from Kucera
and Francis (1967) or Thorndike (1944)) ampli-
fies this noise and its role in experimental results.
The construction of dynamic corpora we are plan-
ning will mitigate this effect by providing multi-
ple samples across which real statistical regulari-
ties are likely to replicate, while sample noise is
not (like bootstrapping: Efron (1979)).

While the eventual goal of this work is to gen-
erate valid and fair stimuli ex nihilo given peo-
ple’s language models, the evaluation of existing
stimuli materials represents a necessary first step
taken here. The development of models captur-
ing linguistic features that predict behavioral per-
formance provides the possibility for using these
models to identify or synthesize fair test items.
Modeling the relationship between language ex-
perience and task performance allows rapid pro-
totyping and evaluation of stimuli sets with previ-
ously unfeasible speed. This allows a much larger
set of candidate stimuli to be evaluated afford-
ing new levels of rigor to the test creation pro-
cess. This speed also opens the door for individual
personalization of test items, a task far too labor-
intensive to perform manually. Our future work
will test our models’ ability to create test stimuli
equitable across diverse language communities.

These methods for promoting equity are likely
relevant to education where equality vs. equity is
debated as the difference between equal access
to educational resources vs. access to resources
leading to equal outcomes (e.g. Green (1983);
Stromquist (2005); Espinoza (2007)). Language-
based cognitive testing and access to education
share several features in common. Both are mod-
erated by the complex individual variability of per-
sonal experience. Those with the worst outcomes
in both are underrepresented among those setting
policy and creating tests (National Science Foun-
dation, 2013; Thaler and Jones-Forrester, 2013;
Thaler et al., 2015). And most importantly, both
also determine relevant real-world outcomes for
test takers: the tests we consider here are used
clinically to diagnose aphasia (Caspari et al.,
1998), Alzheimer’s disease (Kempler et al., 1998),
schizophrenia (Stone et al., 1998), and age-related
cognitive decline (Salthouse and Kersten, 1993).
Many cognitive tests use linguistic stimuli to as-
sess other cognitive functions; by identifying spe-
cific ways in which individuals’ language variety
influences their performance, we can start to tease
apart potential educationally and clinically mean-
ingful deficits from social and cultural differences
between participant groups.
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