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Abstract

This work introduces a general method for au-
tomatically finding the locations where politi-
cal events in text occurred. Using a novel set
of 8,000 labeled sentences, I create a method
to link automatically extracted events and lo-
cations in text. The model achieves human
level performance on the annotation task and
outperforms previous event geolocation sys-
tems. It can be applied to most event extraction
systems across geographic contexts. I formal-
ize the event-location linking task, describe
the neural network model, describe the poten-
tial uses of such a system in political science,
and demonstrate a workflow to answer an open
question on the role of conventional military
offensives in causing civilian casualties in the
Syrian civil war.

1 Introduction

Researchers in social science, and especially in
comparative politics and security studies, are in-
creasingly turning toward micro-level data, with
subnational variation at very fine resolutions be-
coming a major source of empirical puzzles and
evidence in these fields. At the same time,
text data is becoming one of the most important
sources of new data in social science. I develop
and describe a method that enables researchers
to connect these two trends, automatically linking
events extracted from text to the specific locations
where they are reported to occur.

Specifically, I develop a method that, given a
sentence and an event’s verb in the sentence, will
return the place names from the sentence where
the event took place. Formulated as a general task,
this is an unsolved problem in both political sci-
ence and computer science. Drawing on a set of
8,000 hand-labeled sentences, I train a recurrent
neural network that draws on a rich set of linguis-
tic features to label a sequence of text with la-
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bels for whether the word is a location word corre-
sponding to a specified verb. Measured by token,
the model produces precision and recall scores of
over 0.83, compared with a rule-based model’s
0.25-0.29. A software implementation and exam-
ple workflow is provided.

I provide an example application, creating a
new dataset on the locations of military offensives
in Syria and contributing to an ongoing debate in
conflict studies on the causes of civilian casual-
ties in civil war. The model is general enough for
applied researchers to use in other contexts, in-
cluding the study of protests, political mobiliza-
tion, political violence, and electoral politics. The
new shared dataset will enable other researchers
in NLP to contribute to this task and the wider
research project of better extracting political rela-
tionships from text.

2 Task and Formulation

Event—location linking sits within a larger set of
techniques for extracting information on political
events from text, including entity extraction and
toponym resolution.

Event extraction is the process of recogniz-
ing defined event types in text (e.g. “attack” or
“protest”) and extracting and classifying the actors
involved in the events. Many approaches to this
task exist in both political science and NLP, us-
ing both rule-based and machine learning coders
(Schrodt, Davis, and Weddle 1994; O’Connor,
Stewart, and Smith 2013; Schrodt, Beieler, and
Idris 2014; Boschee et al. 2015; Beieler 2016;
Beieler et al. 2016; Hanna 2017; Keith et al.
2017).

To be useful in subnational research, these
events require information on the location where
they occurred. A second related information ex-
traction task is “geoparsing”, the process of rec-
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ognizing place names in text (“toponym recog-
nition”) and resolving them to their coordinates
or gazetteer entry (“toponym resolution”). Some
work on geoparsing, also referred to as “georefer-
encing” or “toponym resolution” exists (Leidner
2008; Hill 2009; Speriosu and Baldridge 2013;
Berico Technologies, n.d.; D’Ignazio et al. 2014;
Gritta et al. 2017; Halterman 2017; Avvenuti et al.
2018). Performing this task requires disambiguat-
ing place names using heuristics or a model (in a
particular document, is “Prague” the capital of the
Czech Republic or the town in Oklahoma?).

The task that this paper addresses sits between
the two: given an extracted event in a sentence,
which of place name is the location where the
event occurred? Consider the following sentence
as a running example:

After establishing a foothold in the
northern Aleppo towns of Tadif and
Al-Bab, the Turkish Army and allied
Syrian rebels launched an offensive
on its neighbouring town of Bza’a, a
spokesperson for Ankara said today.

An event extraction system may identify events
such an “establish foothold” event or a “launch
offensive” event. A geoparser would be con-
cerned with recognizing the place names in the
text (“Aleppo”, “al-Bab”, “Bza’a”) and resolving
them to their correct coordinates (made difficult
by “Aleppo” being the governorate here, not the
city). An event-location linking system of the
kind introduced here would associate the “estab-
lish foothold” event with “al-Bab” and the “launch
offensive” event with “Bza’a”.

The task can be formalized as follows. Con-
sider X = {wi,...w,}, a sentence of n tokens.
Given an event ey, the location where event ¢
occurred is defined as a set of tokens Gy,
{g91,...,95}. For e; “establish a foothold”,
G = {Tadif, Al-Bab}.

Because a sentence can contain multiple events,
the set of event locations GG and Gy are not
equivalent for ¥ # k’. For e; = “launch an of-
fensive”, Gy = {Bza’a}. G}, can have zero ele-
ments, one, or several elements. Thus, for e
“said”, G'3 = {}, as the “said” event is not associ-
ated with a specific place.

(k)

Each token w; € X is given a label y;"’, where
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1 if w; is where event k occurred

0 otherwise

To make the estimation of §(*) tractable, I make
several assumptions.

First, in order to condition on the event ey,
I assume that the information provided by the
verb v of the event e, is sufficient.! Thus,
y®) = f(X,e;) := f(X,v;). This assump-
tion, that events are “anchored” by a verb, is
a common assumption in semantic role labeling,
a closely related task to event—location linking
(Palmer, Gildea, and Kingsbury 2005; White et al.
2016; Marcheggiani and Titov 2017).2

Second, I assume that an adequate representa-
tion of each word w; is ¢(w;), where ¢ is a feature-
making function that maps w; from a high dimen-
sional one-hot vector to a lower dimensional dense
encoding, drawing on the context of the word in
the sentence. Applied to a sentence,

O(X) = {o(w1), ..., P(wn)}.

Thus,

9" = f(2(X), vp).
Finally, I assume that the event location status

yi(k) of word w; is conditionally independent of
other words’ labels yj(’;)l after conditioning on the
matrix of sentence context (X ). Making this as-
sumption greatly simplifies estimation, as the task
of assigning labels can be decomposed into a set

of independent tasks:

= {F($(w), k), F(d(wn), vp)}

This assumption only carries costs if words’ la-
bels affect each other through a mechanism out-
side of X. The assumption seems warranted here,

'By “verb” I mean the highest verb on the dependency
tree that is uniquely part of event e;. In dictionary-based
event coding methods, this is in practice the lexical “trigger”
word for the event, though the event-location linking method
is agnostic to how the event is coded.

>Though consider the phrase “After the riots in Gu-
jarat...”. This sentence reports a “riot” event but without
a verb. These clausal mentions of events are rarely coded by
event extraction systems, both because of difficulty in coding
and because they often describe historical, rather than con-
temporary events, meaning the decision to require a verb has
little practical difference.



though, because of the binary nature of the classi-
fication task.’

3 Previous work

Many existing open source geolocated event
datasets, including GDELT and Phoenix, make no
effort to explicitly link events and locations, sim-
ply returning a top location from a sentence, with-
out using information on the extracted event to
inform the geolocation step, which has also been
used in NLP (Aone and Ramos-Santacruz 2000).*
Two recently proposed models do attempt to find
events’ locations, however (Imani et al. 2017; Lee,
Liu, and Ward 2018). Both make a major simplify-
ing assumption, that returning the correct location
does not depend on conditioning on an event of
interest: G, = G|y for all e, €). The advantage
of this assumption is that each model can use a
simple bag-of-words model that does not account
for word order or grammatical information, but it
means that the labels they produce for text with
multiple events and locations will be incorrect for
at least some events.

Imani et al. (2017) propose a method for find-
ing the “primary focus location” of a story, which
they define as “the place of occurrence of the
event” (1956). Their method makes the simpli-
fying assumption that documents have one single,
fixed “focus location” that is invariant to different
potential events in the document. During train-
ing and testing, they eliminate all documents with
multiple events and multiple “focus locations.”
Their model discards word order information, rep-
resenting each sentence as a weighted average of
pretrained word embedding, and use this feature
vector as an input to an SVM that predicts which
sentence contains the “focus location.” Then, the
most frequent place name in the “focus sentence”
is the “focus location.”

Lee, Liu, and Ward (2018) also make several
other restrictive assumptions. The implementation

3This conditional independence of labels assumption is
generally not made in part of speech tagging, dependency
parsing, or named entity recognition. In these tasks, each
word can be assigned one of many possible labels, and past
labels dramatically change label probabilities. (For example,
if a word is predicted to have the part-of-speech label VERB,
the following word cannot be labeled be VERB if the sentence
is to be grammatical). These tasks required more sophisti-
cated beam search or shift-reduce models (Goldberg 2017;
Jurafsky and Martin 2018).

*ICEWS uses a proprietary system to link events and lo-
cations that is not documented or accessible to researchers
(Lautenschlager, Starz, and Warfield 2017).
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of their model is only able to located events to
the governorate/province (ADM1) level, and finds
locations based on a dictionary search of known
place names: y; = 0 for any w; that is not present
in the list of place names. This limits the maxi-
mum accuracy to a relatively coarse level, and pre-
vents the method from recognizing places that are
not on a relatively short list of place names, which
is unlikely to contain more rural or obscure places.
Any findings will be biased toward more popu-
lated areas, a known problem in political violence
research (Kalyvas 2004; Douglass and Harkness
2018). Second, they learn a different f for differ-
ent event types, requiring documents to be classi-
fied into event types before geolocation, requiring
a training round with labeled data for each event
type and preventing parameters from being shared
across models for different event types.

Other work, in natural language processing, is
related but not directly applicable. Existing se-
mantic role labeling and event extraction tasks
sometimes include location slots for events (e.g.
Doddington et al. 2004), but none are precisely
suited to a general system focused on political
events. FrameNet (Baker, Fillmore, and Lowe
1998) events have highly specific slots for differ-
ent event types, while PropBank (Palmer, Gildea,
and Kingsbury 2005) defines locations in a broad
way that includes non-tangible places (“keep in
our thoughts). A more specific literature on spa-
tial information in text also exists. For instance,
the SpaceEval task (Pustejovsky et al. 2015) pro-
vides a comprehensive ontology of spatial rela-
tions in text. These relations are focused on en-
tities, rather than events, and provide more detail
than is desirable in a application-oriented model.
The task as I have formulated it thus seeks to be
much more general, in that it attempts to locate
any type of event, but also more limited, in that
it focuses solely on where events occurred, rather
than a larger set of spatial relations between enti-
ties.

The closest existing work in NLP is Chung et
al. (2017). They attempt to find both explicit and
implicit event locations in text, using a corpus of
48 documents. They use a rule-based system built
on top of word embedding similarity and existing
gold standard OntoNotes grammatical information
to infer the locations of events. While the system
shows good performance and is able to geolocate
events even when the location information is not



provided directly in the sentence, it relies on ac-
cess to gold standard dependency parse informa-
tion in a single domain of text.

4 Data

Implementing an automated procedure for geolo-
cating events required collecting a novel set of
data. I created a new dataset of around 8,000 la-
beled sentences in English, each of which is an-
notated with an event verb and its corresponding
location or locations (if any).> Sentences may
have multiple annotations corresponding to differ-
ent verbs of interest. Sentences were selected from
a range of sources to maximize the applicability
of models trained on the data. The text is drawn
from a wide range of sources, including an as-
sortment of international papers and news wires
(50%), a selection of local English-language me-
dia from Syria (35%), and non-news sources such
as Wikipedia, atrocity monitoring reports, or press
releases (15%). Annotation consisted of selecting
a verb, either using a dictionary of specified verbs
that focused on territorial capture-type events, or
using verbs automatically detected using spaCy
with the exception of “to be” to ensure the gener-
alizability of the data. The verbs were not filtered
through an event extraction system to keep the set
as general as possible. Annotators then selected
the tokens representing the event locations for the
verb, if any. Around 5,000 annotations were pro-
vided by a research assistant and 5,000 were anno-
tated by me. After annotation, each sentence looks
something like the following:

He was speaking a day after Ankara
[launched ygrp] an offensive in the Syr-
ian towns of [Jarablus gvenr.Loc] and
[Kobane gyent_Locl-

Annotations consist of the most specific named
place or places, in contrast to previous approaches
that were limited to the city (Imani et al. 2017)
or the governorate/province (Lee, Liu, and Ward
2018). Events can have no reported event, a single
event with multiple location tokens (“New York™),
or multiple event locations (“New York and Wash-
ington”). The modal number of locations is one
(49%), followed by no locations (47%), and mul-
tiple locations comprise the remainder (3%). Most
locations consist of a single token (69%), 19% are

SThe data and related materials are available at https:
//github.com/ahalterman/event_location
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two tokens, and the remaining 12% are three or
more. Sentences have a large number of verbs,
and thus a potentially large number of events. The
average number of verbs per sentences is 3.6, af-
ter excluding auxiliary verbs. Only 9% contain a
single non-auxiliary verb, and 21% contain five or
more verbs.

5 Model

I develop two neural network models to perform
the event—location linking task. I also describe
a rule-based baseline model, along with existing
models from the literature as comparisons.

I use as a baseline model a rule-based event—
location linker that locates an event to the auto-
matically recognized location word in closest lin-
ear proximity to the event’s verb. This model pro-
vides per-event locations, unlike existing models,
and incorporates a minimal sentence distance fea-
ture.

Neural networks are now the dominant ap-
proach to most of natural language processing
(Goldberg 2017; Jurafsky and Martin 2018) so
they are the models adopted here. Determining
the event locations in a sentence using neural net-
works requires a language representation that pre-
serves word order and useful grammatical infor-
mation in the sentence. I preprocess the sentence
by representing each word as a concatenation of
the following information generated by the spaCy
NLP library (Honnibal and Montani 2017) pre-
trained GloVe vector, dependency label, named
entity label, part-of-speech tag, an indicator for
whether the word is the event verb of interest, the
(signed) distance between the word and the indi-
cated verb, and the distance between the verb and
the token on the dependency tree. I use the same
features for two neural network models. Both of
the neural net models below look at a token, along
with its context, and make a binary prediction for
whether the token is an event location for the spec-
ified event.

The first neural network model uses a series of
stacked convolutional layers. Some research sug-
gests that convolutional neural networks (CNNs)
perform equivalently to recurrent neural networks
on sequence modeling tasks with lower computa-
tional cost (Bai, Kolter, and Koltun 2018). Each
convolution looks at three inputs (words) at once,
and slides down the sentence one token at a time.
By stacking layers on top of each other, the ele-
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ments of the final output of the final convolutional
layer includes information from across the sen-
tence. I use residual layers (He et al. 2016), which
are now the state-of-the-art on image recognition
tasks. Residual layers help prevent the “vanish-
ing/exploding gradient” problem that deep neural
networks often encounter, and speed the model’s
fitting. A CNN with residual layers empirically
outperformed a model of similar depth and struc-
ture without residual blocks, and is theoretically
justified because they allow me to train a deeper
network with lower demands on my limited pool
of input data. After training and evaluating several
dozen models, the best performing CNN model
used 7 residual layers with 64 hidden nodes in
each, followed by two dense layers with 512 nodes
each with a dropout of 0.4 and ReLLU activation.
The second class models is recurrent neural net-
work (RNN), specifically a long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhu-
ber 1997), which explicitly models the sequential
nature of their input data (see Figure 1). RNNs
are the dominant approach to sequence modeling
tasks in natural language processing and achieve
state-of-the-art results on many tasks (Goldberg
2017). LSTMs store an internal state at each step
of the input data in the form of a hidden vec-
tor. In contrast to vanilla RNNs, LSTMs can
learn when to add information from their current
input step to the hidden state and when to “for-
get” information from the hidden state. In the-
ory, this allows LSTMs to learn much longer re-
lationships than they would otherwise be able to.
Bidirectional LSTMs are the standard extension to
LSTMs when the model has access to the “future”,
and compute two state vectors for each input step:
one from the left and one from the right. These
two vectors are concatenated and used as input to
the rest of the model. The best LSTM network I
trained used a bidirectional LSTM with a hidden
size of 128 and 0.2 recurrent dropout, followed by
a dense layer of 128 with ReLu and 0.5 dropout,
and a final binary output node for each time step.
All models were trained in Keras with a Tensor-
flow backend on a multicore CPU.5
In addition to my baseline and neural network
models, I also perform comparisons with three ex-
isting approaches. First, PropBank is included as
a point of comparison. The PropBank includes an
%The models are are available in Mordecai, an open-

source document geoparser: https://github.com/
openeventdata/mordecai
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ArgM-LOC label in Palmer, Gildea, and Kings-
bury (2005). The framing of the location task in
PropBank is quite different than the generalized
event—location linking task I introduce, as I de-
scribe above, but the performance of the baseline
model in Palmer, Gildea, and Kingsbury (2005)
on the task serves as another baseline. Second, I
modify Profile (Imani et al. 2017) to accept new
text and compare its performance on my new la-
beled data. Third, I report the best-case values
from Chung et al. (2017).

Finally, I estimate the expected real-world per-
formance of a human annotator by comparing an
annotator’s performance to a “gold standard” set
of annotations. To produce the gold set, I ran-
domly selected sentences annotated by the re-
search assistant. I reannotated them, skipping am-
biguous sentences. Sentences with the same anno-
tations in the two periods were included in the gold
evaluation set totalling 500 sentences. I could then
compare RA performance with a “gold” measure
of performance.

6 Evaluation

I evaluate these and several existing models on the
task and the English-language dataset I introduce.
To evaluate the performance of each model, I as-
sess accuracy on both a per-token and per-sentence
basis. For per-token accuracy, I take a common
approach of calculating the precision and recall
in the evaluation sentences. Each model is eval-
uated on how well it can can produce, for each
token w; € X whether w; is an event location for
event k. This evaluation approach allows “partial
credit” for models that that may miss or falsely in-
clude a single token and is a common approach to
evaluating sequence labeling tasks (Strotgen and
Gertz 2016). I also include a second measure that
more closely matches real-word accuracy. This
measure reports the proportion of documents for
which the annotation produced by the method ex-
actly matches the correct label for each token in
the document: gji(k) = yi(k)W € X. The results for
the word distance baseline measure, existing ap-
proaches, expected human performance, and the
two models I develop are reported in Table 1.7

"Results are not reported for the method developed by
Lee, Liu, and Ward (2018). Unlike the other approaches, this
method only geolocates to the province/ADM1 level, which
is much coarser than these other techniques. It can only find
place names on a provided whitelist of names, and models are
customized to specific countries and events, making it unsuit-
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Figure 1: High-level schematic of LSTM model

Model Prec Rec F1 Sentence
Baseline 0.29 025 0.27 0.28
Profile 0.54 029 0.37 0.51
PropBank® 0.61 0.39 047 -
CNN 0.70 0.54 0.61 -
Chung etal® 0.74 0.62 0.62 -
Annotator 088 065 0.74 0.73
LSTM 0.85 0.83 0.84 0.77

Table 1: Per-token precision, recall, and F1 scores, and
full-sentence accuracy for the word distance baseline
model, expected human performance, existing results
from the literature, and new model-based approaches.

The word distance baseline model, which lo-
cates an event to the closest recognized place name
in the text, performs the worst of any model, per-
haps due to the unreliability of the distance heuris-
tic itself, errors in the NER system, and the model
missing places when multiple correct locations are
present.

Profile (Imani et al. 2017) performs next worst,
with an token-level F1 score of 0.37. The model
is unable to to vary its location prediction by
event type, meaning that it will correctly locate at
best one event’s location in a multi-event, multi-
location sentence. Profile also returns only one
location per sentence, lowering its accuracy on
events that occur in multiple locations. Profile’s
intended use case is on longer pieces of text: its

able for this more general task of linking arbitrary locations
and events. Finally, the replication code provided is not easily
applicable to new datasets, only to run the initial experiments.

8These numbers are performance on the PropBank
dataset, not on the dataset I create.

Performance of Chung et al’s model on their corpus of
48 OntoNotes documents. The maximum values achieved
for precision, recall, and F1 across their models are reported
here. Note that the results on my model report per-token pre-
cision and recall, while they report per-location precision and
recall.

34

poor performance on this task should be taken only
as an indication of its ability to geolocate events in
text, not on its ability to find the primary “focus”
(D’Ignazio et al. 2014) location of a piece of text.

PropBank is included as a point of compari-
son. The PropBank values are reported for the
ArgM-LOC label in Palmer, Gildea, and Kings-
bury (2005). The framing of the location task in
PropBank is quite different than the generalized
event—location linking task I introduce, as I de-
scribe above. The reported F1 score of 0.47 can be
taken as a reasonable baseline performance on an
event—location linking task. Chung et al’s (2017)
accuracy on their dataset and version of the task is
the best of any prior model.

The LSTM model performs much better than
the CNN model, even after extensive tuning for the
CNN model. Inspection of the CNN model’s out-
put (not included) indicates that the model seems
to not learn long-distance relationships well, and
failed to appropriately change probability weights
when the verb of interest changed. The LSTM
model, in contrast, performs very well and is very
sensitive to changes in the input verb: the same
sentence with two different flagged verbs of inter-
est will produce quite different results for those
events’ location. The LSTM and CNN are com-
parable in training time.

Notably, the LSTM also outperforms an es-
timate of expected human performance on the
event—location linking task. While humans are
able to pick up on nuance and deal with grammat-
ical complexity that machines still cannot handle,
humans are also unsuited to the tedium of label-
ing thousands of sentences and may be suscepti-
ble to drift in their definitions or understanding of
the task. Not only is the automated method vastly
cheaper and faster than a human process, it does
so with accuracy at least as good.



6.1 Ablation test

Figure 2 shows the results of an ablation process
on the best performing LSTM model, revealing
that some features are more important than others
across several random partitions and retrainings of
the model.

The ablation test reveals several interesting find-
ings. First, the variability in feature importance
across different train-test splits of the data prevents
overly strong claims. With that in mind, the named
entity label returned by spaCy would seem to be a
useful feature in a task that requires picking one
of potentially several place names. In fact, remov-
ing it leaves the accuracy unchanged, perhaps be-
cause the labeled data skews toward Arabic place
names, which spaCy’s model struggles to recover.
The two distance features, one encoding distance
from each word to the verb of interest and the
other encoding the length of the shortest depen-
dency path between them, both seem marginally
helpful. Surprisingly, the part-of-speech feature
is more useful than the dependency label. This
may be because the tree structure of the depen-
dency parse is not being incorporated, only its la-
bels. Finally, the pretrained GloVe embedding fea-
ture is helpful (second to the right column), but
it is by no means sufficient on its own (rightmost
column). While some of the literature on neural
networks for NLP simply starts from pretrained
word or character embeddings and learns useful
representations from those, these results indicate
that wider feature inclusion is very helpful for the
model’s accuracy. The result is not driven solely
by place names being out-of-vocabulary, as GloVe
contains embeddings for 78% of the place names
in the corpus.

Qualitative inspection of miscoded sentences
also reveals that the model often fails to select
the more specific location when one is available.
Performing the geoparsing step first, and then in-
corporating that information into the event link-
ing step could reduce this mode of failure. Future
work could also replace categorical features, such
as POS and dependency labels, with embeddings
(see, e.g. Nguyen and Grishman 2015).

7 Application: Geolocating offensives in
Syria

To demonstrate the usefulness of this approach, I
use it to create a dataset of Syrian military offen-
sives in 2016 by automatically coding military of-
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fensive events from text and geolocating them.

I collected 15,000 news stories on Syria cov-
ering 2016 from four sources: Al-Masdar news,
Middle East Eye, Ara News, and news put out
by the opposition National Coalition. To recog-
nize the events themselves in the text, I created
a one-off event coder that performs a dependency
parse of the documents in the corpus and compares
different grammatical parts of the sentence with a
hand-specified set of terms to describe military of-
fensives.

After recognizing an event in the text, I then
use my event geoparsing method to find the loca-
tion(s) in the text linked to the event’s verb. In
order to produce final usable event data, I also
perform the final step of resolving the event lo-
cation or locations to their geographical coordi-
nates. To do so I use the Mordecai text geop-
arser (Halterman 2017), which uses a neural net-
work trained on several thousand gold-standard re-
solved place names to infer the country of a loca-
tion mention, then performs a fuzzy-string search
over the Geonames gazetteer (Wick and Boutreux
2011) and selects the best location among the lo-
cations returned from the search.

When combined with geolocated data on civil-
ian deaths in Syria (Halterman 2018), the geolo-
cated offensives allow us to determine that around
7% of civilian deaths in Syria occurred within one
day and 1 kilometer of an announced military op-
eration. This new dataset contributes to a grow-
ing literature on violence against civilians in civil
war, showing that even in a conventional civil war
like Syria’s, only a relatively small number of ca-
sualties are plausibly related to collateral damage
from military operations. Figure 3 shows the geo-
graphic distribution of new offensives. This abil-
ity to create a dataset of when and where conven-
tional fighting is occurring paves the way for better
understanding of the patterns of violence against
civilians in civil wars.

8 Conclusion

This paper introduces a state-of-the-art technique
for linking events and locations in text with perfor-
mance as good as humans. It proposes a new con-
ceptualization of this task, focusing more on broad
applicability than previous approaches in natural
language processing, but more carefully account-
ing for grammar and the potential multiplicity of
events than previous work in political science. It



Ablation test showing percentage decrease in F1 score with omitted features
Omitted features highlighted in red. The first column is the complete model with all features.
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introduces a new labeled corpus of events and their
locations, making the task accessible to other NLP
researchers. The trained model achieves an F1
score of 0.82, making it accurate enough for re-
searchers to begin to use.

In the social sciences, the availability of a model
that can link events and locations in text should
greatly increase the utility of event-type data for
subnational researchers. Event data research on
police violence in the United States (Keith et al.
2017), protest mobilization (Hanna 2017), polit-
ical violence (Hammond and Weidmann 2014),
and instability forecasting (Ward et al. 2013)
could all be greatly improved by better tech-
niques for automatically geolocating events. Re-
searchers’ understandings of many of these social
phenomena are limited by the availability of very
fine-grained geographic data.

Future NLP work could improve accuracy by
integrating the “toponym resolution” and event—
location linking steps to improve accuracy, and
could extend the model beyond a single sentence
to increase the range of event types that the method
can be applied to.

More broadly, this work builds on a growing
body of research at the intersection of NLP and
social science that attempts to extract information



from text, rather than summarizing or categoriz-
ing documents. Text also holds a great deal of fac-
tual information and new techniques are needed to
allow researchers to extract political information
from text. The technique introduced here will im-
prove researchers’ ability to incorporate informa-
tion extracted from text into research studies that
rely on geographically fine-grained data.
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