
Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP, pages 18–26
Minneapolis, USA, June 6, 2019. c©2019 Association for Computational Linguistics

18

The Influence of Down-Sampling Strategies
on SVD Word Embedding Stability

Johannes Hellrich Bernd Kampe Udo Hahn

{firstname.lastname}@uni-jena.de
Jena University Language & Information Engineering (JULIE) Lab

Friedrich-Schiller-Universität Jena, Jena, Germany
julielab.de

Abstract

The stability of word embedding algorithms,
i.e., the consistency of the word representa-
tions they reveal when trained repeatedly on
the same data set, has recently raised concerns.
We here compare word embedding algorithms
on three corpora of different sizes, and evalu-
ate both their stability and accuracy. We find
strong evidence that down-sampling strategies
(used as part of their training procedures)
are particularly influential for the stability
of SVDPPMI-type embeddings. This finding
seems to explain diverging reports on their
stability and lead us to a simple modification
which provides superior stability as well as
accuracy on par with skip-gram embeddings.

1 Introduction

Word embedding algorithms implement the latest
form of distributional semantics originating from
the seminal work of Harris (1954) or Rubenstein
and Goodenough (1965). They generate dense
vector space representations for words based on
co-occurrences within a context window. They
sample word-context pairs, i.e., typically two co-
occurring tokens, from a corpus and use these
to generate vector representations of words and
their context. Changes to the algorithm’s sampling
mechanism can lead to new capabilities, e.g., pro-
cessing dependency information instead of linear
co-occurrences (Levy and Goldberg, 2014a), or
increased performance, e.g., using word associa-
tion values instead of raw co-occurrence counts
(Bullinaria and Levy, 2007).

Word embedding algorithms commonly down-
sample contexts to lessen the impact of high-
frequency words (termed ‘subsampling’ in Levy
et al. (2015)) or increase the relative importance
of words closer to the center of a context window
(called ‘dynamic context window’ in Levy et al.
(2015)). The effect of using such down-sampling

strategies on accuracy in word similarity and
analogy tasks was explored in several papers (e.g.,
Levy et al. (2015)).

However, down-sampling and details of its
implementation also have major effects on the
stability of word embeddings (also known as
‘reliability’), i.e., the degree to which models
trained independently on the same data agree on
the structure of the resulting embedding space.
This problem has lately raised severe concerns
in the word embedding community (e.g., Hellrich
and Hahn (2016b); Antoniak and Mimno (2018);
Wendlandt et al. (2018)) and is also of interest to
the wider machine learning community due to the
influence of probabilistic—and thus unstable—
methods on experimental results (Reimers and
Gurevych, 2017; Henderson et al., 2018), as
well as replicability and reproducibility (Ivie and
Thain, 2018, pp. 63:3–4).

Stability is critical for studies examining the
underlying semantic space as a more advanced
form of corpus linguistics, e.g., tracking lexical
change (Kim et al., 2014; Kulkarni et al., 2015;
Hellrich et al., 2018). Unstable word embeddings
can lead to serious problems in such applications,
as interpretations will depend on the luck of the
draw. This might also affect high-stake fields
like medical informatics where patients could be
harmed as a consequence of misleading results
(Coiera et al., 2018).

In the light of these concerns, we here eval-
uate down-sampling strategies by modifying the
SVDPPMI (Singular Value Decomposition of a
Positive Pointwise Mutual Information matrix;
Levy et al. (2015)) algorithm and comparing its
results with those of two other embedding algo-
rithms, namely, GLOVE (Pennington et al., 2014)
and SGNS (Mikolov et al., 2013a,c). Our analysis
is based on three corpora of different sizes and
investigates effects on both accuracy and stability.
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The inclusion of accuracy measurements and the
larger size of our training corpora exceed prior
work. We show how the choice of down-sampling
strategies, a seemingly minor detail, leads to major
differences in the characterization of SVDPPMI
in recent studies (Hellrich and Hahn, 2017; An-
toniak and Mimno, 2018). We also present
SVDWPPMI, a simple modification of SVDPPMI
that replaces probabilistic down-sampling with
weighting. What, at first sight, appears to be a
small change leads, nevertheless, to an unrivaled
combination of stability and accuracy, making it
particularly well-suited for the above-mentioned
corpus linguistic applications.

2 Computational Methodology

2.1 Measuring Stability

Measuring word embedding stability can be linked
to older research comparing distributional thesauri
(Salton and Lesk, 1971) by the most similar
words they contain for particular anchor words
(Weeds et al., 2004; Padró et al., 2014). Most
stability experiments focused on repeatedly train-
ing the same algorithm on one corpus (Hellrich
and Hahn, 2016a,b, 2017; Antoniak and Mimno,
2018; Pierrejean and Tanguy, 2018; Chugh et al.,
2018), whereas Wendlandt et al. (2018) quantified
stability by comparing word similarity for models
trained with different algorithms. We follow the
former approach, since we deem it more relevant
for ensuring that study results can be replicated or
reproduced.

Stability can be quantified by calculating the
overlap between sets of words considered most
similar in relation to pre-selected anchor words.
Reasonable metrical choices are, e.g., the Jaccard
coefficient (Jaccard, 1912) between these sets
(Antoniak and Mimno, 2018; Chugh et al., 2018),
or a percentage based coefficient (Hellrich and
Hahn, 2016a,b; Wendlandt et al., 2018; Pierrejean
and Tanguy, 2018). We here use j@n, i.e., the
Jaccard coefficient for the n most similar words.
It depends on a set M of word embedding models,
m, for which the n most similar words (by cosine)
from a set A of anchor words, a, as provided by
the ’most similar words’ function msw(a, n,m),
are compared:

j@n :=
1

|A|
∑
a∈A

|
⋂

m∈M msw(a, n,m)|
|
⋃

m∈M msw(a, n,m)| (1)

2.2 SVDPPMI Word Embeddings

The SVDPPMI algorithm from Levy et al. (2015)
generates word embeddings in a three-step pro-
cess. First, a corpus is transformed to a word-
context matrix listing co-occurrence frequencies.
Next, the frequency-based word-context matrix
is transformed into a word-context matrix that
contains word association values. Finally, singular
value decomposition (SVD; Berry (1992); Saad
(2003)) is applied to the latter matrix to reduce its
dimensionality and generate word embeddings.

Each token from the corpus is successively pro-
cessed in the first step by recording co-occurrences
with other tokens within a symmetric window
of a certain size. For example, in a token se-
quence . . . , wi−2, wi−1, wi, wi+1, wi+2, . . . , with
wi as the currently modeled token, a window
of size 1 would be concerned with wi−1 and
wi+1 only. Down-sampling as described by Levy
et al. (2015) increases accuracy by ignoring certain
co-occurrences while populating the word-context
matrix (further details are described below). A
word-context matrix is also used in GLOVE,
whereas SGNS directly operates on sampled co-
occurrences in a streaming manner.

Positive pointwise mutual information (PPMI)
is a variant of pointwise mutual information (Fano,
1961; Church and Hanks, 1990), independently
developed by Niwa and Nitta (1994) and Bul-
linaria and Levy (2007). PPMI measures the
ratio between observed co-occurrences (normal-
ized and treated as a joint probability) and the
expected co-occurrences (based on normalized
frequencies treated as individual probabilities) for
two words i and j while ignoring all cases in
which the observed co-occurrences are fewer than
the expected ones:

PPMI(i, j) :=

{
0 if P (i,j)

P (i)P (j) < 1

log( P (i,j)
P (i)P (j)) otherwise

(2)
Truncated SVD reduces the dimensionality of

the vector space described by the PPMI word-
context matrix M . SVD factorizes M in three
special1 matrices, so that M = UΣV T. Entries of
Σ are ordered by their size, allowing to infer the
relative importance of vectors in U and V . This
can be used to discard all but the highest d values

1 U and V are orthogonal matrices containing so called
singular vectors. Σ is a diagonal matrix containing singular
values.
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and corresponding vectors during truncated SVD,
so that Md = UdΣdV

T
d ≈ M . Both GLOVE

and SGNS start with randomly initialized vectors
of the desired dimensionality d and have thus
no comparable step in their processing pipeline.
However, Levy and Goldberg (2014c) showed
SGNS to perform as an approximation of SVD
applied to a PPMI matrix.

2.3 Down-sampling
Down-sampling by some factor requires both a
formal expression to define the factor, as well as
a strategy to perform down-sampling according to
this factor—data can either be sampled probabilis-
tically or weighted (see below). The following set
of formulae is shared by SGNS and SVDPPMI,
whereas GLOVE uses a distinct one.

Distance-based down-sampling depends on the
distance between the currently modeled token wi

and a second token wj in a token sequence (such
as the above example). The distance d between wi

and wj is given as:

d(wi, wj) := |j − i| (3)

To increase the effect of the nearest—and thus
assumedly most salient—tokens both SVDPPMI
and SGNS down-sample words based on this
distance with a distance factor, df (s being the size
of the window used for sampling):

df(wi, wj) :=
s + 1− d(wi, wj)

s
(4)

To limit the effect of high-frequency words—
likely to be function words—both algorithms also
down-sample words according to a frequency
factor (ff ), which compares each token’s relative
frequency r(w) with a threshold t:

ff(w) :=

{√
t/r(w) if r(w) > t

1 otherwise
(5)

The frequency down-sampling factor for the co-
occurrence of two tokens wi and wj is then given
by the product of their down-sampling factors, i.e.,
the probabilities are treated as being independent:

ff(wi, wj) := ff(wi) · ff(wj) (6)

The strategy used to apply these down-sampling
factors can affect accuracy and, especially, sta-
bility, as can the decision not to apply them at
all. These down-sampling processes can either
be probabilistic, i.e., each word-context pair is
processed with a probability given by df(wi, wj) ·

ff(wi, wj), or operate by weighting, i.e., for each
observed co-occurrence only a fraction of a count
according to the product of df and ff is added
to the word-context matrix. SGNS uses prob-
abilistic down-sampling, GLOVE uses weighting
and SVDPPMI by Levy et al. (2015) allows for
probabilistic down-sampling or no down-sampling
at all. As SVD itself is non-probabilistic2 (Saad,
2003, chs. 6.3 & 7.1) any instability observed for
SVDPPMI must be caused by its probabilistic
down-sampling. We thus suggest SVDWPPMI, i.e.,
SVD of a PPMI matrix with weighted entries, a
simple modification which uses fractional counts
according to df(wi, wj) · ff(wi, wj). As shown in
Section 5, this modification is beneficial for both
accuracy and stability.

3 Corpora

The corpora used in most stability studies are
relatively small. For instance, the largest corpus in
Antoniak and Mimno (2018) contains 15M tokens,
whereas the corpus used by Hellrich and Hahn
(2017) and the largest corpus from Wendlandt
et al. (2018) each contain about 60M tokens.
Pierrejean and Tanguy (2018) used three corpora
of about 100M words each. Two exceptions are
Hellrich and Hahn (2016a,b) using relatively large
Google Books Ngram corpus subsets (Michel
et al., 2011) with 135M to 4.7G n-grams, as
well as Chugh et al. (2018) who investigated
the influence of embedding dimensionality on
stability based on three corpora with only 1.2–
2.6M tokens.3

We used three different English corpora as
training material: the 2000s decade of the Corpus
of Historical American English (COHA; Davies
(2012)), the English News Crawl Corpus (NEWS)
collected for the 2018 WMT Shared Task4 and a
Wikipedia corpus (WIKI).5 COHA contains 14k
texts and 28M tokens, NEWS 27M texts and
550M tokens, and WIKI 4.5M texts and 1.7G
tokens, respectively. COHA was selected as it
is commonly used in corpus linguistic studies,
whereas NEWS and WIKI serve to gauge the
performance of all algorithms in general applica-

2 Assuming that a non-stochastic SVD algorithm (Halko
et al., 2011) is used, as in Levy et al. (2015).

3 Size information from personal communication.
4 statmt.org/wmt18/translation-task.html
5 To ease replication, we used a pre-compiled 2014

Wikipedia corpus: linguatools.org/tools/
corpora/wikipedia-monolingual-corpora/

http://statmt.org/wmt18/translation-task.html
http://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/
http://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/
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tions. The latter two corpora are far larger than
common in stability studies, making our study the
largest-scale evaluation of embedding stability we
are aware of.

All three corpora were tokenized, transformed
to lower case and cleaned from punctuation. We
used both the corpora as-is, as well as inde-
pendently drawn random subsamples (see also
Hellrich and Hahn (2016a); Antoniak and Mimno
(2018)) to simulate the arbitrary content selection
in most corpora—texts could be removed or
replaced with similar ones without changing the
overall nature of a corpus, e.g., Wikipedia articles
are continuously edited. Subsampling allows us
to quantify the effect of this arbitrariness on the
stability of embeddings, i.e., how consistently
word embeddings are trained on variations of
a corpus. Subsampling was performed on the
level of the constituent texts of each corpus, e.g.,
individual news articles. For a corpus with n texts
we drew n samples with replacement. Texts could
be drawn multiple times, but only one copy was
kept, reducing corpora to 1 − 1/e ≈ 2/3 of their
original size.

4 Experimental Set-up

We compared five algorithm variants: GLOVE,
SGNS, SVDPPMI without down-sampling,
SVDPPMI with probabilistic down-sampling,
and SVDWPPMI. While we could use SGNS6

and GLOVE7 implementations directly, we had
to modify SVDPPMI

8 to support the weighted
sampling used in SVDWPPMI. As proposed by
Antoniak and Mimno (2018), we further modified
our SVDPPMI implementation to use random
numbers generated with a non-fixed seed for
probabilistic down-sampling. A fixed seed would
benefit reliability, but also act as a bias during all
analyses—seed choice has been shown to cause
significant differences in experimental results
(Henderson et al., 2018).

Down-sampling strategies for df and ff can be
chosen independently of each other, e.g., using
probabilistic down-sampling for df together with
weighted down-sampling for ff . However, we
decided to use the same down-sampling strategies,
e.g., weighting, for both factors, taking into ac-

6 github.com/tmikolov/word2vec
7 github.com/stanfordnlp/GloVe
8 github.com/hellrich/hyperwords – See also

further experimental code: github.com/hellrich/
embedding_downsampling_comparison

count computational limitations as well as results
from pre-tests that revealed little benefit of mixed
strategies.9

We trained ten models for each algorithm
variant and corpus.10 In the case of subsampling,
each model was trained on one of the indepen-
dently drawn samples. Stability was evaluated
by selecting the 1k most frequent words in each
non-bootstrap subsampled corpus as anchor words
and calculating j@10 (see Equation 1).11

Following Hellrich and Hahn (2016a,b), we
did not only investigate stability, but also the
accuracy of our models to gauge potential trade-
offs. We measured the Spearman rank correlation
between cosine-based word similarity judgments
and human ones with four psycholinguistic test
sets, i.e., the two crowdsourced test sets MEN
(Bruni et al., 2012) and MTurk (Radinsky et al.,
2011), the especially strict SimLex-999 (Hill et al.,
2014) and the widely used WordSim-353 (WS-
353; Finkelstein et al. (2002)). We also mea-
sured the percentage of correctly solved analogies
(using the multiplicative formula from Levy and
Goldberg (2014b)) with two test sets developed
at Google (Mikolov et al., 2013a) and Microsoft
Research (MSR; Mikolov et al. (2013b)).

5 Experimental Results

Table 1 shows the accuracy and stability for
all tested combinations of algorithm and corpus
variants. Accuracy differences between test sets
are in line with prior observations and general

9 The strongest counterexample is a combination of
probabilistic down-sampling for df and weighting for ff
which lead to small, yet significant improvements in the MEN
(0.703± 0.001) and MTurk (0.568± 0.015) similarity tasks
(cf. Table 1). However, other accuracy tasks showed no
improvements and the stability of this approach (0.475 ±
0.001) was far closer to SVDPPMI with fully probabilistic
down-sampling than to the perfect stability of SVDWPPMI.

10 Hyperparameters roughly follow Levy et al. (2015).
We used symmetric 5 word context windows for all models
as well as frequent word down-sampling thresholds of 100
(GLOVE) and 10−4 (others). Default learning rates and
numbers of iterations were used for all models. Eigenvalues
as well as context vectors were ignored for SVDPPMI
embeddings. 5 negative samples were used for SGNS.
The minimum frequency threshold was 50 for COHA, 100
for NEWS and 750 for WIKI—increased thresholds were
necessary due to SVDPPMI’s memory consumption scaling
quadratically with vocabulary size.

11 Stability calculation was not performed directly between
all 10 models, as this would result in a single value and
preclude significance tests. Instead, we generated ten j@10
values by calculating the stability of all subsets formed by
leaving out each model once in a jackknife procedure.

http://github.com/tmikolov/word2vec
http://github.com/stanfordnlp/GloVe
http://github.com/hellrich/hyperwords
http://github.com/hellrich/embedding_downsampling_comparison
http://github.com/hellrich/embedding_downsampling_comparison
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Corpus Algorithm Down- Word Similarity Analogy Stabilitysampling MEN MTurk SimLex WS-353 Google MSR

COHA
SVDPPMI

none 0.697 0.582 0.318 0.591 0.248 0.226 1.000
prob. 0.689 0.571 0.333 0.577 0.224 0.257 0.324

weight 0.702 0.551 0.351 0.594 0.262 0.277 1.000
SGNS prob. 0.642 0.560 0.394 0.551 0.248 0.311 0.288
GLOVE weight 0.590 0.522 0.222 0.405 0.167 0.214 0.808

COHA
Subs.

SVDPPMI

none 0.645 0.537 0.267 0.569 0.192 0.184 0.310
prob. 0.632 0.519 0.287 0.542 0.169 0.203 0.198

weight 0.651 0.534 0.305 0.568 0.206 0.235 0.329
SGNS prob. 0.551 0.486 0.363 0.479 0.192 0.243 0.091
GLOVE weight 0.518 0.470 0.182 0.383 0.120 0.165 0.330

NEWS
SVDPPMI

none 0.775 0.559 0.406 0.643 0.469 0.357 1.000
prob. 0.784 0.561 0.431 0.666 0.492 0.445 0.654

weight 0.786 0.568 0.435 0.667 0.502 0.444 1.000
SGNS prob. 0.739 0.675 0.430 0.672 0.643 0.553 0.652
GLOVE weight 0.698 0.576 0.309 0.536 0.548 0.444 0.679

NEWS
Subs.

SVDPPMI

none 0.771 0.558 0.401 0.623 0.445 0.335 0.584
prob. 0.776 0.564 0.423 0.642 0.463 0.420 0.571

weight 0.781 0.567 0.430 0.649 0.476 0.421 0.635
SGNS prob. 0.734 0.673 0.417 0.647 0.601 0.513 0.452
GLOVE weight 0.687 0.572 0.301 0.508 0.505 0.408 0.461

WIKI
SVDPPMI

none 0.731 0.510 0.353 0.715 0.432 0.246 1.000
prob. 0.747 0.571 0.392 0.718 0.482 0.311 0.714

weight 0.743 0.560 0.393 0.717 0.482 0.305 1.000
SGNS prob. 0.735 0.659 0.372 0.717 0.669 0.421 0.488
GLOVE weight 0.744 0.651 0.354 0.667 0.653 0.397 0.666

WIKI
Subs.

SVDPPMI

none 0.726 0.526 0.355 0.699 0.410 0.244 0.635
prob. 0.742 0.568 0.391 0.706 0.448 0.304 0.604

weight 0.740 0.555 0.389 0.704 0.451 0.300 0.651
SGNS prob. 0.723 0.657 0.364 0.686 0.629 0.407 0.501
GLOVE weight 0.735 0.642 0.345 0.655 0.599 0.382 0.486

Table 1: Performance of different algorithms and down-sampling strategies with models trained on corpora with
and without subsampling. Bold values are best or not significantly different by independent t-tests (with p < 0.05).

performance on WIKI is roughly in-line with the
data reported in Levy et al. (2015).

In general, corpus size does seem to have a
positive effect on accuracy. However, for MEN,
MTurk and MSR the highest values are achieved
with NEWS and not with WIKI. SVDPPMI vari-
ants seem to be less hampered by small training
corpora, matching observations by Sahlgren and
Lenci (2016). Stability is clearly positively influ-
enced by corpus size for all probabilistic algorithm
variants except GLOVE, which, in contrast, bene-
fits from small training corpora. Also, randomly
subsampling corpora has a negative effect on
both accuracy and stability—this can be explained
by the smaller corpus size for accuracy and the
differences in training material (as subsampling
was performed independently for each model) for
stability.

Figure 1 illustrates the stability of all tested
algorithm variants. SVDWPPMI and SVDPPMI
without down-sampling are the only systems
which achieve perfect stability when trained on
non-subsampled corpora. GLOVE is the third
most reliable algorithm in this scenario, except

for the large WIKI corpus. Corpus subsampling
decreases the stability of all algorithms, with
SVDWPPMI still performing better than all other
alternatives. The only exception is subsampled
COHA where the otherwise suboptimal GLOVE

narrowly (0.330 instead of 0.329; difference
significant with p < .05 by two-sided t-test)
outperforms SVDWPPMI . SVDWPPMI can achieve
stability values on subsampled corpora that are
competitive with those for SGNS and GLOVE

trained on non-subsampled corpora. We found
standard deviations for stability to be very low,
the highest being 0.01 for GLOVE trained on non-
subsampled WIKI, probably due to the overlap in
our jackknife procedure.

Finally, we tested12 the overall performance of
each algorithm variant by first performing a Quade
test (Quade, 1979) as a safeguard against type I

12 All tests were conducted on the averaged accuracy
values of the ten individual models per corpus (both sub-
sampled and as-is) and algorithm variant (as listed in Table
1). Using the models directly would have been ill-advised
because of their overlapping training data (see Demšar (2006,
p. 15)). Analyses on individual corpora would have resulted
in insufficient samples given the pre-conditions of our tests.



23

Figure 1: Stability for each combination of algorithm variant and corpus. Measured with j@10 metric (higher is
better). Same data as in Table 1, standard deviations too small to display.

errors, thus confirming the existence of significant
differences between algorithms (p = 1.3 · 10−7).
We then used a pairwise Wilcoxon rank-sum
test with Holm-Šidák correction (see Demšar
(2006)) in order to compare other algorithms with
SVDWPPMI.13 We found it to be not significantly
different in accuracy from SGNS (p=0.101), but
significantly better than SVDPPMI without down-
sampling (corrected p=5.4 ·10−6) or probabilistic
down-sampling (corrected p = 0.015), as well as
GLOVE (corrected p=0.027).

Our results show SVDWPPMI to be both highly
reliable and accurate, especially on COHA, which
has a size common in both stability studies and
corpus linguistic applications. Diverging reports
on SVDPPMI stability—described as perfectly
reliable in Hellrich and Hahn (2017), yet not
in Antoniak and Mimno (2018)—can thus be
explained by their difference in down-sampling
options, i.e., no down-sampling or probabilistic
down-sampling. GLOVE’s high stability in other
studies (Antoniak and Mimno, 2018; Wendlandt
et al., 2018) seems to be counterbalanced by its
low accuracy and also appears to be limited to
training on small corpora.

6 Discussion

We investigated the effect of down-sampling
strategies on word embedding stability by com-
paring five algorithm variants on three corpora,
two of which were larger than those typically used
in stability studies. We proposed a simple mod-
ification to the down-sampling strategy used for
the SVDPPMI algorithm, SVDWPPMI, which uses
weighting, to achieve an otherwise unmatched
combination of accuracy and stability. We also

13 This test is a non-parametric alternative to the t-test;
corrections prevent false results due to multiple comparisons.

gathered evidence that GLOVE lacks accuracy and
is only stable when trained on small corpora.

We thus recommend using SVDWPPMI, es-
pecially for studies targeting (qualitative) inter-
pretations of semantic spaces (e.g., Kim et al.
(2014)). Overall, SGNS provided no benefit in
accuracy over SVDWPPMI and the latter seemed
especially well-suited for small training corpora.
The only downside of SVDWPPMI we are aware of
is its relatively large memory consumption during
training shared by all SVDPPMI variants.

Further research could investigate the perfor-
mance of SVDWPPMI with other sets of hyperpa-
rameters or scrutinize the effect of down-sampling
strategies on the ill-understood geometry of em-
bedding spaces (Mimno and Thompson, 2017). It
would also be interesting to investigate the effect
of down-sampling and stability on downstream
tasks in a follow-up to Wendlandt et al. (2018).

Finally, the increasingly popular contextualized
embedding algorithms, e.g., BERT (Devlin et al.,
2018) or ELMo (Peters et al., 2018), are also
probabilistic in nature and should thus be affected
by stability problems. A direct transfer of our
type specific evaluation strategy is impossible.
However, an indirect one could be achieved by av-
eraging token-specific contextualized embeddings
to generate type representations.
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(ADHO). Montréal, Quebec, Canada, August 8–11,
2017, pages 250–252.

Peter Henderson, Riashat Islam, Philip Bachman,
Joelle Pineau, Doina Precup, and David Meger.
2018. Deep reinforcement learning that matters.
In AAAI-IAAI-EAAI ’18 — Proceedings of the 32nd
AAAI Conference on Artificial Intelligence & 30th
Conference on Innovative Applications of Artifi-
cial Intelligence & 8th Symposium on Educational
Advances in Artificial Intelligence. New Orleans,
Louisiana, USA, February 2-7, 2018, pages 3207–
3214.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
SimLex-999: Evaluating semantic models with
(genuine) similarity estimation. Computational
Linguistics, 41(4):665–695.

Peter Ivie and Douglas Thain. 2018. Reproducibility
in scientific computing. ACM Computing Surveys,
51(3):63:1–63:36.

Paul Jaccard. 1912. The distribution of the flora in
the alpine zone. New Phytologist, XI(2):37–50.
[Translation of 1901 article].

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


25

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde,
and Slav Petrov. 2014. Temporal analysis of
language through neural language models. In Pro-
ceedings of the Workshop on Language Technologies
and Computational Social Science @ ACL 2014.
Baltimore, Maryland, USA, June 26, 2014, pages
61–65.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2015. Statistically significant de-
tection of linguistic change. In WWW 2015 —
Proceedings of the 24th International Conference on
World Wide Web: Technical Papers. Florence, Italy,
May 18–22, 2015, pages 625–635.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In ACL 2014 — Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics: Short Papers. Bal-
timore, Maryland, USA, June 22–27, 2014, pages
302–308.

Omer Levy and Yoav Goldberg. 2014b. Linguistic
regularities in sparse and explicit word representa-
tions. In CoNLL 2014 — Proceedings of the 18th
Conference on Computational Natural Language
Learning @ ACL 2014. Baltimore, Maryland, USA,
June 26-27, 2014, pages 171–180.

Omer Levy and Yoav Goldberg. 2014c. Neural word
embedding as implicit matrix factorization. In
Advances in Neural Information Processing Systems
27 — NIPS 2014. Proceedings of the 28th Annual
Conference on Neural Information Processing Sys-
tems 2014. Montréal, Québec, Canada, December
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