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Abstract

Word embeddings are representations of
words in a dense vector space. Although
they are not recent phenomena in Natural Lan-
guage Processing (NLP), they have gained
momentum after the recent developments of
neural methods and Word2Vec. Regarding
their applications in medical and clinical NLP,
they are invaluable resources when training
in-domain named entity recognition systems,
classifiers or taggers, for instance. Thus, the
development of tailored word embeddings for
medical NLP is of great interest. However,
we identified a gap in the literature which we
aim to fill in this paper: the availability of
embeddings for medical NLP in Spanish, as
well as a standardized form of intrinsic eval-
uation. Since most work has been done for
English, some established datasets for intrinsic
evaluation are already available. In this paper,
we show the steps we employed to adapt such
datasets for the first time to Spanish, of partic-
ular relevance due to the considerable volume
of EHRs in this language, as well as the cre-
ation of in-domain medical word embeddings
for the Spanish using the state-of-the-art Fast-
Text model. We performed intrinsic evalua-
tion with our adapted datasets, as well as ex-
trinsic evaluation with a named entity recog-
nition systems using a baseline embedding of
general-domain. Both experiments proved that
our embeddings are suitable for use in medical
NLP in the Spanish language, and are more ac-
curate than general-domain ones.

1 Introduction

Representation of words in vector space, or word
embedding, is not a new concept in Natural Lan-
guage Processing (NLP) and are used in a several
number of statistical and neural models (Ghannay
et al., 2016). Word embeddings (WE) can include
semantic information and are based on the general
idea of an association of elements (words) with
certain contexts and the similarity in word mean-
ings. In more recent neural networks, embeddings
are used to encode words in a space that is subse-
quently used as input for many possible models.

1.1 Background

In the work of Mikolov et al. (2013a), they intro-
duced two new architectures for estimating con-
tinuous representations of words using log-linear
models, called continuous bag-of-word (CBOW)
and continuous skip-gram (skip-gram). CBOW
calculates the projection for the current word
given the context words in the particular sen-
tence, while skip-gram, following its name, skip
the word being processed and evaluates projec-
tions of the context words. Further works gave
more insights about this method called Word2Vec
(Mikolov et al., 2013b,c). Since its appearance,
Word2Vec has been used and adapted for a wide
range of applications, including sentiment analy-
sis (Nakov et al., 2016; Yu et al., 2017), named
entity recognition (Chiu and Nichols, 2016), clas-
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sification (Zhang et al., 2015), clustering (Kim
et al., 2017), word sense disambiguation (Ia-
cobacci et al., 2016) and many others. More re-
cently, Mikolov et al. (2018) presented the combi-
nation of various ”tricks” in training word embed-
dings that are rarely used together, but that out-
performs the previous state-of-the-art vector rep-
resentations.

1.2 Pre-trained embeddings
Pre-trained word embeddings are widely avail-
able for a plethora of languages and methods.
Google, for instance, makes available Word2Vec
models pre-trained on about 100 billion words
from Google News corpus in English1. Regard-
ing other languages, on FastText website2 one
can download pre-trained embeddings for 157 lan-
guages based on Common Crawl and Wikipedia.
For the specific case of Spanish, the University
of Chile NLP group makes available FasText and
Word2Vec embeddings3 using the Spanish Billion
Word Corpus (SBWCE)4.

1.3 Biomedical embeddings
As pointed out by Chiu et al. (2016), most of
the studies and available embeddings are focused
on general-domain texts and general evaluation
datasets. Thus, their results not necessarily ap-
ply well to medical and biomedical text analysis.
Their study, in English, demonstrates that bigger
corpora do not necessarily produce better biomed-
ical word embeddings. They also made their re-
sulting embeddings available for download.

In another work, Chen et al. (2018) created
sentence embeddings for clinical and biomedi-
cal texts, called BioSentVec trained on PubMed
and clinical notes from the MIMIC-III Clini-
cal Database(Johnson et al., 2016). Similarly,
Sahu and Anand (2015) used the PubMed Cen-
tral Open Access subset (PMC) and PubMed ab-
stracts to train word embeddings for English using
CBOW. They evaluate embeddings performance
using similarity and relatedness datasets, which
will be presented in Section 3.1. However, they
do not compare the trained models with a general-
domain one.

1https://code.google.com/archive/p/
word2vec/

2https://fasttext.cc/docs/en/
crawl-vectors.html

3https://github.com/uchile-nlp/
spanish-word-embeddings

4http://crscardellino.github.io/SBWCE/

In a more fine-grained application, Zhang et al.
(2018) adapted word embeddings to recognize
symptoms in the target domain of psychiatry.
As a source for their embeddings, they used
four corpora: intensive care, biomedical litera-
ture, Wikipedia and Psychiatric Forum. Ling
et al. (2017) developed a method to integrate extra
knowledge into word embeddings for biomedical
NLP tasks via graph regularization.

More related to our work, Santiso et al. (2018)
developed word embeddings tailored for negation
detection in health records written in Spanish. As
corpora, they used both in-domain and general-
domain data. For in-domain, they used unanno-
tated Electronic Health Records (EHRs) from a
hospital in Spain. For the general-domain, they
used the SBWCE corpus. However, they did not
perform any intrinsic evaluation of the generated
embeddings; neither made them available for use
or compared general-domain and in-domain per-
formance.

Also regarding Spanish biomedical embed-
dings, the work of Segura-Bedmar and Martı́nez
(2017) shows the use of pre-trained word em-
beddings with SBWCE for simplification of drug
package leaflets so that they are more friendly to
the patients. However, they do not use in-domain
embeddings for such task. Also, Villegas et al.
(2018) collected a census of Spanish texts that can
be of use in text mining, however, they did not pro-
vide any sort of word embeddings.

1.4 Contributions and Structure

Given that very little attention has been given to
producing and evaluating quality word embed-
dings in Spanish for the biomedical domain, we
propose to develop embeddings based on the state-
of-the-art FastText model with in-domain data.
In addition, only works aiming the English lan-
guage provide a comprehensive performance eval-
uation of in-domain embeddings when compared
to general-domain ones. For that, we will adapt
them to Spanish. We claim as relevant the follow-
ing contributions:

• Development of Spanish embeddings for the
Biomedical domain;

• Intrinsic and extrinsic evaluation of per-
formance using established datasets and a
Named Entity Recognition (NER) task;

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/uchile-nlp/spanish-word-embeddings
https://github.com/uchile-nlp/spanish-word-embeddings
http://crscardellino.github.io/SBWCE/
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• Comparison of in-domain and general-
domain performance;

• Adaptation of established biomedical intrin-
sic evaluation datasets for the Spanish lan-
guage;

• Embeddings are public available5 and li-
censed under CC-BY 4.

We expect that the developed word embeddings
will to be used in several clinical NLP applica-
tions, such as for the identification of sections in
clinical documents since the embedddings can be
used to create phrase and paragraph embeddings.
Also, for text summarization based on neural net-
works, our embeddings can be used as a resource
during training.

The rest of the paper is organized as follows. In
Section 2, we explain the methods and the materi-
als used in our experiments, including corpora and
the training procedure. In Section 3, we detail the
intrinsic and extrinsic evaluations, with the steps
we employed to adapt English datasets to Spanish.
In Section 4, we show the experiments and their
results, while in Section 5 we perform a brief dis-
cussion and conclusion.

2 Material and Methods

In this Section, we present the corpora, the word
embedding model used in our study and the train-
ing procedure.

2.1 FastText

The FastText model (Mikolov et al., 2018) uses
the combination of various subcomponents to pro-
duce high-quality embeddings. It uses a stan-
dard CBOW or skip-gram models, with position-
dependent weighting, phrase representations, and
subword information in a combined manner. The
CBOW and skip-gram models is the same as pro-
posed in Mikolov et al. (2013a).

The position-dependent weighting introduces
information regarding the position of the word be-
ing evaluated. As stated by the authors, the ex-
plicit encoding of the word and its position would
lead to overfitting. The solution was to learn posi-
tion representations and use them to reweight the
word vectors at a minimum computational cost us-
ing linear combination of both representations.

5http://doi.org/10.5281/zenodo.2542722

The original Word2Vec is insensitive to word
order, since it is only based on unigrams. To cap-
ture word order information in a phrase represen-
tation, the authors merge words with high mutual
information in a single token. One example can
be ”brain” and ”dead”, which could be merged
as ”brain dead”. This process of merging tokens
can be repeated several times to produce longer
tokens.

To avoid the fact that standard word vectors ig-
nore word-internal structure, which may contain
useful information, the authors enrich the vectors
with subword information. Each word is decom-
posed into its character n-grams which are then
learned. After that, the final word vector is the
simple sum of the word vector and their n-grams
representations.

2.2 Corpora
To develop our in-domain embeddings, we used
two sources of data: (i) the SciELO database,
which contains full-text articles primarily in En-
glish, Spanish and Portuguese, and (ii) the
Wikipedia, with a subset which we call Wikipedia
Health, comprised by the categories of Pharma-
cology, Pharmacy, Medicine and Biology. This
method of combining large corpora (i.e. SciELO)
and smaller focused (i.e. Wikipedia) was shown
to be an adequate approach to produce quality em-
beddings for clinical NLP (Roberts, 2016). The
choice of SciELO is that this database is the
most comprehensive in term of number of arti-
cles and abstracts available in Spanish. As for the
Wikipedia, it can be a source of information for
specific terms, which can benefit our models.

From Scielo.org, all documents in Spanish were
downloaded, language checked and processed into
sentences. For language check, we used the
langdetect library6 for Python. The scielo.org
node contains all Spanish articles, regardless if
they are from European or Latin American Span-
ish. In the database, articles from the health do-
main correspond to approximately 50% of the re-
sults.

Using the Wikipedia API for Python7, we re-
trieved all articles that are from the aforemen-
tioned categories. We also performed language
checking, to ensure that all sentences were in
Spanish.

6https://github.com/fedelopez77/
langdetect

7https://pypi.org/project/wikipedia/

http://doi.org/10.5281/zenodo.2542722
https://github.com/fedelopez77/langdetect
https://github.com/fedelopez77/langdetect
https://pypi.org/project/wikipedia/
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In Table 1, one can see the statistics regard-
ing the gathered corpora. Sentences were pro-
duced using the sentence tokenizer from the NLTK
package. The SciELO corpus is relatively smaller
than the Wikipedia one regarding number of sen-
tences. However, as for number of tokens, Sci-
ELO contains almost 22% more than Wikipedia.
This is probably due to the fact that scientific arti-
cle sentences are longer than the ones available in
Wikipedia.

Table 1: Statistics for the gathered corpora

Corpus Sentences Tokens
SciELO Full-Text 3.3M 100M
Wikipedia Health 4M 82M

2.3 Training

We used the FastText implementation available in
https://fasttext.cc to train our word em-
beddings. The following setup was used:

• Minimum number of word occurrences: 5

• Phrase representation: No (i.e. length of
word n-gram = 1)

• Minimum length of character n-gram: 3

• Maximum length of character n-gram: 6

• Size of word vectors: 300

• Epochs: 20

3 Evaluation

For the evaluation of our embeddings, we use both
intrinsic and extrinsic evaluation, which are now
detailed, as well as the baseline word embedding.

3.1 Intrinsic

In the intrinsic evaluation, the performances are
measured regarding specific tasks that are only re-
lated to the embedding itself, such as syntactic of
semantic relationships between words. The most
common examples are similarity, relatedness and
analogy evaluations (Schnabel et al., 2015).

For the biomedical domain, some standard
datasets are available for the evaluation of seman-
tic similarity and relatedness. The UMNSRS sim-
ilarity (UMNSRS-sim) and UMNSRS relatedness
(UMNSRS-rel) are datasets consisting of pairs of

UMLS (Unified Medical Language System) con-
cepts manually annotated for similarity and relat-
edness. Details about the original datasets can be
found in Pakhomov et al. (2010). The UMNSRS-
sim contains 566 pairs of concepts, while the
UMNSRS-rel contains 587 pairs.

Another well-known dataset for intrinsic evalu-
ation in biomedical embeddings is the MayoSRS
(Pakhomov et al., 2011), which is used for simi-
larity evaluation and is comprised of 101 UMLS
pairs and their respective manual scores.

The aforementioned datasets, however, are only
available in English. For the best of our knowl-
edge, no standard Spanish dataset is available for
the biomedical domain. Thus, in order to be able
to evaluate our embeddings, we adapted the afore-
mentioned datasets for Spanish.

In Figure 1, we depict the steps employed to
adapt the datasets. In step 1, the datasets are trans-
lated to Spanish using Google Translate8. How-
ever, due to the possible polysemy and translation
errors, we employed additional checking steps.

In step 2, the translated terms are queried
against the already available translations for
that specific CUI (Concept Unique Identifier) in
UMLS. If the translated term is already in the
UMLS translations, we assign such term as a valid
translation.

In step 3, if the translated term is not found in
UMLS, we perform manual evaluation of possible
translations using UMLS browser. The assigned
translations were then revised by a medical doctor
and corrected when needed. Also, at this point all
other assignd terms were also revised.

We must notice that we did not include the con-
cepts that were originally referring to commer-
cial drug names (which are not in the UMLS,
just their pharmacological substance), since this
may vary depending on the country and also de-
pending on regional medical protocols. The fi-
nal number of pairs of terms for UMNSRS-rel is
384, that is, 65.41% of the original in English.
As for UMNSRS-sim, the final number is 380, or
67.14% of the original dataset in English. For the
MayoSRS, all 101 pairs are included in the final
dataset in Spanish, since no drug is included in the
original data.

8https://translate.google.com/

https://fasttext.cc
https://translate.google.com/
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English data

Google Translate
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Compare translation

with UMLS in
Spanish

No
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UMLS?

Term/Translation
Valid

Manual translation
and medical

validation
Term/Translation

Valid

Step 1

Step 2

Step 3

Figure 1: Steps performed to translate the UMNSRS-
sim, UMNSRS-rel and MayoSRS datasets to Spanish

3.2 Extrinsic

As for the extrinsic evaluation, we employed our
embeddings in an NER task to identify pharma-
cological substances, compounds and proteins in
clinical texts.

3.2.1 Data
The data for this experiment comprehends manu-
ally classified collection of clinical case sections
derived from Open access Spanish medical publi-
cations, named the Spanish Clinical Case Corpus
(SPACCC). All clinical case records derived from
various databases were gathered in a first step, pre-
processed and the actual clinical case section was
extracted removing embedded figure references or
citations. These records where classified manually
using the MyMiner9 file labeling online applica-
tion by a practicing oncologist and revised by a
clinical documentalist in order to assure that these
records were related to the medical domain and
they resembled the kind of structure and content
that is relevant to process clinical content.

The final collection of 1000 clinical cases that
make up the corpus had a total of 16504 sentences,
with an average of 16.5 sentences per clinical case.

9http://myminer.armi.monash.edu.au

The SPACCC corpus contains a total of 396,988
words, with an average of 396.2 words per clini-
cal case. It is noteworthy to say that this kind of
narrative shows properties of both, the biomedical
and medical literature as well as clinical records.
Moreover, the clinical cases were not restricted to
a single medical discipline, and thus cover a va-
riety of medical topics, including oncology, urol-
ogy, cardiology, pneumology or infectious dis-
eases, which is key in order to cover a diverse col-
lection of chemicals and drugs.

We must notice that this corpus will not be
available at this point since it is currently being
used as evaluation in a shared task track. However,
in the future, users will be able to access the cor-
pus from the same link to the word embeddings.

3.2.2 Software
As for the NER system, we employed an off-the-
shelf framework called NeuroNER(Dernoncourt
et al., 2017)10. The engine is based on artificial
neural networks, relying on long short-term mem-
ory (LSTM) to predict the label of a sequence of
tokens. The network contains three main layers:
(i) the character-enhanced token-embedding layer,
(ii) the label prediction layer, and (iii) the label se-
quence optimization layer. The word embeddings
are fed to the first layer (i.e token-embedding).

3.2.3 Baseline Word Embedding
As a baseline for our comparisons, we decided
to use the embeddings available from the Univer-
sity of Chile NLP Group11. The embeddings are
trained based on the SBWC corpus and the train-
ing settings are the same we have shown in Section
2.3, thus making our comparisons fair.

One big difference between our training process
is related to the corpora used. SBWC is a general-
domain corpus, comprised of approximately 1.4
billion words, while our combined corpora con-
tain roughly 1.2 million words. Thus, the general-
domain corpus is approximately one order of mag-
nitude larger than ours.

4 Experiments and Results

In this section, we detail how the experiments
were carried out and the results we obtained for
both intrinsic and extrinsic evaluation methods, as

10http://neuroner.com/
11https://github.com/uchile-nlp/

spanish-word-embeddings

http://myminer.armi.monash.edu.au
http://neuroner.com/
https://github.com/uchile-nlp/spanish-word-embeddings
https://github.com/uchile-nlp/spanish-word-embeddings
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well as the comparisons with the baseline embed-
ding presented in Section 3.2.3 and our embed-
dings, which we now call Spanish Health Embed-
ding (SHE).

4.1 Intrinsic

In the intrinsic experiment, for the sake of a fair
comparison between our proposed embedding and
the baseline, we made sure that all the pairs be-
ing compared were available both in SHE and in
the SBWC. For this, we checked for each pair of
translated CUIs (explained in Section 3.1) if the
words were present in both embeddings vocabu-
laries. For multi-word terms, we averaged individ-
ual word vectors to compose the final term vector.
The final number of compared pairs for each trans-
lated dataset are: UMNSRS-sim(322), UMNSRS-
rel(252) and MayoSRS(101).

Regarding the evaluation, we calculated the co-
sine distance for each pair of terms and later com-
pared those values with the human annotated ones
in the datasets by means of Pearson correlation co-
efficient (ρ).

In Table 2, we depict the results for the compar-
ison for each dataset regarding the Pearson corre-
lation coefficient. One can notice that SHE pre-
sented the highest coefficient for the three used
datasets by a large margin, being such statistically
significant for all of them, except to SBWC with
the MayoSRS dataset. Thus, as for intrinsic evalu-
ation, we can assume that our embeddings are bet-
ter than the general-domain embedding trained on
SBWC.

Table 2: Comparison of the intrinsic evaluation
between the proposed embeddings (SHE) and the
general-domain ones (SBWC). Bold numbers represent
the best results for each dataset, while asterisc means
that such coefficient was statistically significant.

SHE (our) SBWC
Dataset ρ ρ

UMNSRS-sim 0.5826* 0.4319*
UMNSRS-rel 0.5239* 0.3947*
MayoSRS 0.3174* 0.1237

4.2 Extrinsic

For the extrinsic evaluation, we used the Neu-
roNER framework, which was described in Sec-
tion 3.2.2, with a biomedical corpus of clinical
notes described in Section 3.2.1. The corpus has 4

entity labels: Proteins, Normalizable Chemicals,
No-Normalizable Chemicals, and Unclear men-
tions. The reason for such lables is that they can be
normalized to a fixed ontology, in the case of Pro-
teins and Chemicals, while some chemicals cannot
be normalzied or are unclear. Since the number
of ”No-Normalizable” mentions is very low com-
pared to all labels, we did not include them in our
evaluation.

We trained NeuroNER with the following stan-
dard parameters using our embeddings and the
SBWC one:

• Data splitting: 80% training, 10% validation,
10% test. Stratified and fixed for both embed-
dings;

• Character-embedding dimension: 25

• Charater LSTM hidden state dimension : 25

• Token LSTM hidden state dimension: 300

• Patience: 10

• Maximum number of epochs: 100

• Optimizer: SGD

• Learning rate: 0.005

• Dropout rate: 0.5

In Table 3 we show the results of our embed-
dings compared to the SBWC trained with the
same parameters as detailed in Section 2.3. One
can notice that our proposed embedding achieved
the best results in the validation set for all the
named entity labels. As for the test set, we
achieved the best scores in 8 out of 13 possible
evaluations. But we must notice that as overall
performance, our system achieved an F1 score of
88.18%, while the baseline achieved only 87.76%.
Thus, our embeddings showed to be superior to
general-domain one in this extrinsic evaluation.

4.3 Visual Evaluation
In Figures 2 and 3, we show the PCA (Principal
Component Analysis) projections of our embed-
dings and the SBWC, respectively. We tried to
follow the standards of Pakhomov et al. (2010) to
categorize the terms using UMLS semantic types
in the following categories: symptoms, diseases
and drugs. Better quality and larger figures can be
accessed online12

12http://doi.org/10.5281/zenodo.2542722

http://doi.org/10.5281/zenodo.2542722
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Table 3: Comparison of the extrinsic evaluation
between the proposed embeddings (SHE) and the
general-domain ones (SBWC). Bold numbers represent
the best results for each metric and data parition, with
Val meaning validation set.

SHE (our) SBWC
Val Test Val Test

Overall
Accuracy 99.51 99.62 99.45 99.57
Precision 90.63 90.42 90.30 90.87
Recall 88.25 86.03 86.12 84.45
F1 89.42 88.17 88.16 87.76

Normalizables
Precision 92.82 93.18 91.87 93.93
Recall 89.81 88.09 88.89 88.34
F1 91.29 90.56 90.35 91.05

Proteins
Precision 87.86 86.94 88.22 86.19
Recall 87.86 84.52 84.39 81.75
F1 87.86 85.71 86.26 83.91

Unclear
Precision 100 84.21 92.86 88.24
Recall 81.25 84.21 81.25 78.95
F1 89.66 84.21 86.67 83.33

One can notice that in Figure 2, there is some
overlapping between the disease and symptoms
categories, but they are not as much overlapped
as shown in Figure 3. In addition, in our embed-
dings, on the top of the drugs cluster, one can see
that most of the antibiotics are clustered together
(e.g. penicilina, eritromicina, cefazolina, doxici-
clina). However, in the SBWC projection, such
drugs are spread inside the cluster. Interestingly,
for both embeddings, the words hierro, calamina,
ajo, alcohol are the ones that are more closer to
the other two clusters.

5 Discussion and Conclusion

By the intrinsic and extrinsic experiments per-
formed in Sections 4.1 and 4.2 we were able
to show that our proposed embeddings can pro-
vide better performance than a general-domain
one, even being trained in a corpus one or-
der of magnitude smaller. We made our em-
beddings available in http://doi.org/10.
5281/zenodo.2542722.

By performing a visual evaluation of the PCA
projections of our embeddings and a general-
domain one, we also provided strong evidence that

the ones trained in a in-domain corpus can provide
better-defined clusters of words.

We oversee that the embeddings we provide can
be used in many different applications that require
them as a resource, especially the ones which em-
ploy artificial neural networks. For instance, we
studied the application in a named entity recogni-
tion example, but they can be used for sentence
similarity evaluation, text classification, machine
translation, clustering, relation extraction, for in-
stance.
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Figure 2: PCA projection of the UMNSRS concepts using our embeddings. Black means symptoms-related
terms, red means disease-related terms, while green means drug-related terms.
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Figure 3: PCA projection of the UMNSRS concepts using the SBWC embeddings. Black means symptoms-
related terms, red means disease-related terms, while green means drug-related terms.
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