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Abstract
Classic methods for clinical temporal rela-
tion extraction focus on relational candidates
within a sentence. On the other hand, break-
through Bidirectional Encoder Representa-
tions from Transformers (BERT) are trained
on large quantities of arbitrary spans of con-
tiguous text instead of sentences. In this study,
we aim to build a sentence-agnostic framework
for the task of CONTAINS temporal relation
extraction. We establish a new state-of-the-
art result for the task, 0.684F for in-domain
(0.055-point improvement) and 0.565F for
cross-domain (0.018-point improvement), by
fine-tuning BERT and pre-training domain-
specific BERT models on sentence-agnostic
temporal relation instances with WordPiece-
compatible encodings, and augmenting the la-
beled data with automatically generated “sil-
ver” instances.

1 Introduction

The release of BERT (Devlin et al., 2018) has
substantially advanced the state-of-the-art in sev-
eral sentence-level, inter-sentence-level, and token-
level tasks. BERT is trained on very large unlabeled
corpora to achieve good generalizability. Instead of
relying on a recurrent neural network, BERT uses a
transformer architecture to better capture long dis-
tance dependencies. BERT is able to make predic-
tions that go beyond natural sentence boundaries,
because it is trained on fragments of contiguous
text that typically span multiple sentences.

These advantages of BERT motivate us to ap-
ply it to a traditionally sentence-level task – tem-
poral relation extraction from clinical text. The
identification of temporal relations in the clinical
narrative can lead to accurate fine-grained anal-
yses of many medical phenomena (e.g., disease
progression, longitudinal effects of medications),
with a variety of clinical applications such as ques-
tion answering (Das and Musen, 1995; Kahn et al.,

1990), clinical outcomes prediction (Schmidt et al.,
2005), and recognition of temporal patterns and
timelines (Zhou and Hripcsak, 2007; Lin et al.,
2014). However, the labeled instances for this clin-
ical information extraction task are limited, so neu-
ral models trained from scratch may not be able to
learn complex linguistic phenomena. Pre-trained
models like BERT could potentially provide rich
representations as they are trained on massive data.

Classic models for clinical temporal relation ex-
traction have framed the task within a sentence
(Sun et al., 2013; Bethard et al., 2015, 2016, 2017),
making them susceptible to sentence detection er-
rors. Using BERT, on the other hand, eliminates
this sensitivity to sentence boundary errors. The
key contributions of this paper are: (1) introduc-
ing BERT to the challenging task of clinical tem-
poral relation extraction and evaluating its perfor-
mance on a widely used testbed (THYME corpus;
Styler IV et al., 2014), (2) developing a universal
processing mechanism based on a fixed, sentence-
boundary agnostic window of contiguous tokens,
(3) pre-training BERT on MIMIC-III (Medical In-
formation Mart for Intensive Care) dataset (John-
son et al., 2016) and comparing its performance
to BERT and its biomedical adaptation BioBERT
(Lee et al., 2019), (4) augmenting the labeled set
with automatically generated instances from unla-
beled data, and (5) evaluating models for in- and
cross-domain tasks on the THYME corpus.

2 Background

Recently, several pre-trained general-purposed lan-
guage encoders have been proposed, including
CoVe (McCann et al., 2017), ELMo (Peters et al.,
2018), Flair (Akbik et al., 2018), GPT (Radford
et al., 2018), GPT2 (Radford et al., 2019), and
BERT (Devlin et al., 2018). These models are
trained on vast amounts of unlabeled text to achieve
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generalizable contextualized word embeddings,
and some can be fine-tuned to fit a supervised task.

BERT is trained using a masked language model
and the next-sentence objectives. Its architec-
ture consists of stacked multi-layered transform-
ers, each implementing a self-attention mechanism
with multiple attention heads. BERT can be further
pre-trained for specific domains (Lee et al., 2019)
or serve as a backbone model to be fine-tuned with
one output layer for a wide range of tasks.

For the task of clinical temporal relation ex-
traction, recent years have seen the rise of neu-
ral approaches – structured perceptrons (Leeuwen-
berg and Moens, 2017), convolutional neural net-
works (CNNs) (Dligach et al., 2017; Lin et al.,
2017), and Long Short-Term memory (LSTM) net-
works (Tourille et al., 2017; Dligach et al., 2017;
Lin et al., 2018) – where minimally-engineered
inputs have been adopted over heavily feature-
engineered techniques (Sun et al., 2013). The
THYME corpus (Styler IV et al., 2014), which is
annotated with time expressions (TIMEX3), events
(EVENT), and temporal relations (TLINK) using
an extension of TimeML (Pustejovsky et al., 2003;
Pustejovsky and Stubbs, 2011), is a popular choice
for evaluation and was used in the Clinical Temp-
Eval series (Bethard et al., 2015, 2016, 2017).

CONTAINS relations are by far the most fre-
quent type of relation in the THYME corpus. They
signal that an EVENT occurs entirely within the
temporal bounds of a narrative container (Puste-
jovsky and Stubbs, 2011). The THYME corpus is
limited in size so models developed on it may suf-
fer from low generalizability. Recent efforts to im-
prove performance have attempted tree-structured
models (Galvan et al., 2018) or assistance from
unlabeled data (Lin et al., 2018). Years of shared
work on this problem and plateauing scores may
have suggested that performance on this task is at
its peak. However, given the successful application
of BERT on many different tasks in the general
domain, as well as more recent work in relation ex-
traction tasks (Wang et al., 2019; Lee et al., 2019),
we wanted to explore applying this new model to
the clinical temporal relation extraction task.

Conventionally, the tasks of within- and cross-
sentence relation extraction have been treated sep-
arately (Sun et al., 2013; Tourille et al., 2017)
as they call for different features. While some
methods focus on within-sentence relations (as they
are the majority), such methods are susceptible to

. A
EVENT1

surgery was
EVENT2

scheduled on
TIME

March 11, 2014.
⇓

#1: . a es surgery ee was scheduled on ts date te .
#2: . a surgery was es scheduled ee on ts date te .
#3: . a eas surgery eae was ebs scheduled ebe on march

Figure 1: Representations of three candidate relations
produced from an example token sequence.

sentence-boundary detection errors. The input se-
quences of arbitrary lengths that BERT operates
on cover both within-sentence and cross-sentence
situations, enabling us to design a universal model
that is sentence boundary agnostic.

3 Methods

3.1 Task definition
We process the THYME corpus using the segmenta-
tion and tokenization modules of Apache cTAKES
(http://ctakes.apache.org). We consume gold
standard event annotations, gold time expressions
and their classes (Styler IV et al., 2014) for gener-
ating instances of containment relation candidates.
Each instance consists of a pair of event entities,
or an event entity and a time expression entity. We
preserve the natural order of the two entities in
their original context and represent the instance
as a sequence of tokens. Depending on the order
of the entities, each instance can take one out of
three gold standard relational labels, CONTAINS,
CONTAINED-BY, and NONE.

The first line of Figure 1 is the token sequence
for three gold standard entities, of which two are
events, “surgery” and “scheduled”, and one is a
time expression, “March 11, 2014”, whose time
class is “date”. One can form three candidate rela-
tions for these three entities.

3.2 Window-based processing
We aim to build a BERT-based model for both
within- and cross-sentence relations. Figure 2
presents the distribution of the distance between
the relation arguments in the THYME colon cancer
training set expressed as tokens, e.g., 93.07% of the
relation arguments are within 50 tokens; 95.14%
are 60 tokens apart; 75% are within-sentence.

Thus, instead of looking for candidate pairs
within a sentence, we look for pairs within a win-
dow of tokens of each other. We test window sizes
of 50 or 60 tokens to balance coverage and good
positive-to-negative ratio. By using a 60-token win-
dow and closure, we derive 413,327 NONE, 10,483

http://ctakes.apache.org
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Figure 2: Relation coverage per token distance

CONTAINS, and 2,802 CONTAINS-BY instances
from the THYME colon training set. Specifically,
for every pair of entities1 within a section (or if the
document is not sectioned, every pair of entities
within the document), we generate a relational can-
didate if the number of base tokens between the
entities in the pair is less than the set window size.

XML-tags are often used to mark the position
of the entities under consideration in a candidate
pair (Dligach et al., 2017), and time expressions
with their time class (Lin et al., 2017, 2018) for bet-
ter generalizability. BERT uses the WordPiece tok-
enizer which breaks the XML-style tags (especially
delimiters like angle brackets and slashes) into sub-
tags. Therefore, we use non-XML tags to mark the
positions of the entities and to encode time classes.
Such tags should not be actual words and should
not be broken into many tokens by WordPiece. Per
the case in Figure 1, the event in an event-time rela-
tion pair is marked by es (event start) and ee (event
end) and the time expression is represented by non-
XML tags (ts for time start and te for time end) and
its time class, for example ts date te. Event-event
instances are marked with eas for event A start, eae
for event A end, ebs for event B start, and ebe for
event B end, for example . a eas surgery eae is ebs
scheduled ebe on march 11.

3.3 BioBERT and BERT-MIMIC

A recent publication describes pre-training of
BERT on PubMed abstracts (PubMed) and Pub-
Med Central full-text articles (PMC) (BioBERT;
Lee et al., 2019).2 We took this approach a step fur-

1we use the term “entity” to refer to events and time ex-
pressions

2BioBERT model available at https://github.
com/naver/biobert-pretrained

ther and pre-trained BERT on clinical data from the
MIMIC-III (Medical Information Mart for Inten-
sive Care) dataset (Johnson et al., 2016). MIMIC-
III contains 879 million words of patients’ elec-
tronic medical records from Beth Israel Deaconess
Medical Center’s Intensive Care Unit. The re-
sulting BERT-MIMIC model encapsulates clinical-
domain-specific representations.

3.4 Augmenting with “silver” instances

Lin et al. (2018) describe a self-training routing
in which they applied a model trained on the la-
beled THYME data to generate predictions on a
set of unlabeled colon cancer data to create “sil-
ver” annotations. They demonstrated that adding
high confidence positive “silver” relations to the
gold training set improves the neural model perfor-
mance. We apply this technique to our BERT-based
models. The differences are 1) our unlabeled colon
cancer instances are generated through the window-
based mechanism, while their unlabeled instances
were sentence-based; 2) we use a fine-tuned BERT
model for generating “silver” instances.

3.5 Settings

We use a single NVIDIA GTX Titan Xp GPU to
pre-train BERT on MIMIC-III, and fine-tune BERT,
BioBERT, and BERT-MIMIC for our task. We use
BERTbase, as the memory requirement of BERTlarge
is too demanding. For fine-tuning, the batch size
is selected from (16,32) and the learning rate is
selected from (1e-5, 2e-5, 3e-5, 5e-5), using the
THYME colon cancer development set. The fine-
tuning is done with the Tensorflow-based BERT
API, with the hidden state of the “[CLS]” token as
the input to the classification layer. Rather than pre-
training from scratch, which requires significant
computational resources and would remove poten-
tially useful information from the model, we initial-
ize the pre-training on MIMIC data from BERT’s
final check point, with 10,000 training steps, stan-
dard warm up, and takes three hours to finish.

4 Results

All models are evaluated by the standard Clini-
cal TempEval evaluation script so that their per-
formance can be directly compared to published
results. Table 1 shows performance on the Clin-
ical TempEval colon cancer test set for the pre-
vious best systems, Lin et al. (2018) and Galvan
et al. (2018), and window-based universal models.

https://github.com/naver/biobert-pretrained
https://github.com/naver/biobert-pretrained
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Model P R F1
Lin et al. (2018) 0.692 0.576 0.629
Galvan et al. (2018) 0.983 0.462 0.629
1. bi-LSTM 0.712 0.490 0.581
2. BERT 0.699 0.625 0.660
3. BERT-T 0.735 0.613 0.669
4. BERT-TS 0.670 0.697 0.683
5. BioBERT(pmc)-TS 0.674 0.695 0.684
6. BERT-MIMIC-TS 0.673 0.686 0.679

Table 1: Model performance of CONTAINS relation
on colon cancer test set. T: using non-XML tags; S:
adding high confidence positive silver instances.

Model P R F1
Lin et al. (2018) 0.514 0.585 0.547
BERT-TS 0.456 0.704 0.553
BioBERT(pmc)-TS 0.473 0.700 0.565
BERT-MIMIC-TS 0.457 0.715 0.558

Table 2: Model performance of CONTAINS relation on
brain cancer test set.

We feed the window-based instances with XML-
tagged entities to the bidirectional LSTM model
without self-training (Lin et al., 2018) (Table 1(1))
as a comparison. Window-based instances with
XML-tagged entities (Table 1(2)) and with non-
XML tagged entities (Table 1(3)) are fed to BERT
to show the difference from tagging. Then, high-
confidence positive “silver” instances are added to
the training set, fine-tuning is performed for BERT
(Table 1(4)), BioBERT(pmc) (Table 1(5)) which
showed better results than BioBERT trained on
PubMed and PMC+PubMed, and BERT-MIMIC
(Table 1(6)) respectively.

To evaluate the generalizability of the models,
the best performing models trained on the colon
cancer data – BERT (Table 1(4)), Bio-BERT(pmc)
(Table 1(5)), and BERT-MIMIC (Table 1(6)) – are
directly tested on the Clinical TempEval THYME
brain cancer test set. Previous best cross-domain
result is reported by Lin et al. (2018) in Table 2.

Thus, we establish a new state-of-the-art result
for the task – 0.684F for within-domain (0.055
point improvement) and 0.565F for cross-domain
(0.018 point improvement).

5 Discussion

The window-based BERT-fine-tuned model, even
with the XML-tags (Table 1(2)), works for both
within- and cross-sentence relations. Its perfor-

#1:
TIME

Today Mr. A
EVENT1

states that he feels well.

#2: The
EVENT

colonoscopy
EVENT

revealed a low rectal
EVENT

mass that

was noncircumferential. It was
EVENT

fungating ,
EVENT

infiltrative ,

EVENT

ulcerated , and about 4-cm in diameter. It
EVENT

involved ...

Figure 3: Relations picked up by the universal model.

Category P R F1
within-sentence 0.621 0.712 0.663
cross-sentence 0.359 0.310 0.333

Table 3: Within- vs. cross-sentence results on colon
cancer development set.

mance (0.660F) is better than enhanced within-
sentence models (Lin et al., 2018; Galvan et al.,
2018) (0.629F), and the combination of two sepa-
rate within- and cross-sentence models (Tourille
et al., 2017) (0.613F). The improvement comes
from 1) the window-based processing mechanism
that bypasses the errors generated by a sentence
boundary detector (for example, the sentence split-
ter creates two sentences for Figure 3(1) by incor-
rectly disambiguating the period after Mr); 2) the
superb long-distance reasoning ability of BERT
(Figure 3(2) shows relations we now can pick up
from a three-sentence span). As a comparison,
the same window-based approach does not work
well with bidirectional LSTM model (Table 1(1)).
One reason could be that because the bi-LSTM
model is not pre-trained on a large corpus, it is
likely affected by the limited number of gold an-
notations especially for large window sizes (like
50 or 60 tokens) which leads to skewing the posi-
tive/negative instance ratio further towards the neg-
ative labels, thus making fewer positive predictions
(0.490 recall). Another explanation could be the
different ways the bi-LSTM and BERT implement
bidirectionality; each pass of the bi-LSTM is bi-
ased towards its nearby information thus favoring
short-distance relations within a sentence.

The THYME corpus distribution does not pro-
vide gold sentence annotations. The BERT results
we present in Table 1 are derived using a 60-token
window. This window size produced superior re-
sults compared to a 50-token window (0.660F and
0.651F respectively).

Non-XML tags work better with BERT as they
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Figure 4: Distribution of 100 Errors

are not split into sub-tags but better preserved (Ta-
ble 1(2)) vs. (Table 1(3)). We experimented with
adding entity tags into BERT’s vocabulary, instead
of relying on strings (i.e. ”es”, ”ee”) that could
possibly be confused with real tokens, but did not
observe improved performance. We hypothesize
that the BERT model needs to be re-trained with the
added tags to contextualize their representations.
Currently, we are limited by our computational re-
sources to undertake such an endeavor.

Adding high quality silver instances is helpful
as they alleviate the skewed positive to negative
instance ratio, (Table 1(3)) vs. (Table 1(4)).

BERT-TS and its domain-specific versions
(BioBERT(pmc)-TS, BERT-MIMIC-TS) work on
par with each other (Table 1(4-5)) for in-domain
tasks, and BioBERT(pms)-TS performs better
when it is tested for generalizability on the the
brain cancer Clinical TempEval test set (Table 2).
The clinical-domain specific representation BERT-
MIMIC-TS shows slight cross-domain advantage
(0.558F) over BERT-TS (0.553F).

We performed error analysis on the output of the
best performing model – BioBERT(pmc)-TS – on
the THYME colon cancer development set. Ap-
plying this model results in 7.0k within-sentence
CONTAINS predictions (4.3k correct) and 1.6k
cross-sentence predictions (0.6k correct). Table 3
shows the within- and cross-sentence results of the
best model on the colon cancer development set.
However, these results should not be taken literally
but as only an overall trend because closure over
the entire set of relations needs to be factored, mak-

ing it hard to isolate the performance of specific
subtypes. For that reason, we did not subtype the
results into event-event and event-time instances.

We sampled 100 errors evenly distributed over
four categories: within-sentence false positives
(FP), within-sentence false negatives (FN), cross-
sentence FPs, and cross-sentence FNs. The sources
of errors are summarized in fig. 4. 1) “Annotation
error” (46%) – errors in the gold annotations; 2)
“Wrong scope of timex” (12%) – the main reason
for FP predictions, especially for cross-sentence
ones (10%). The system fails to identify the subtle
change of the timex scope and incorrectly links an
event to it; 3) “Confusing timex in between” (9%) –
there is another time expression occurring between
the two arguments, thus the system incorrectly in-
fers the scope of the time expression; 4) “Closure
error” (9%); 5) “Unknown” (7%) – errors for which
we could not provide a plausable explanation ; 6)
“Entities are too close” (7%) – the two entities in
question are too close to each other, thus limiting
the context for correct reasoning. Prior knowledge
would be helpful for these short-distance relations;
7) “Time-time” (4%) – the system generates time-
time relations which are oftentimes FPs because
gold time-time annotations are scarce ; 8) “Dis-
tance > window” (4%) – the distance between the
two entities in question is bigger than the window
size, resulting in cross-sentence FNs ; 9) “Order”
(2%) – the system incorrectly extracts the order of
the relation arguments, e.g. predicts CONTAINS
instead of CONTAINS-BY .

One path for future research is pre-training
BERT on a much larger clinical corpus (for which
large scale computational resources are needed).
The PMC set may not be clinical enough and the
size of MIMIC corpus (0.9B) is too small compared
to the other corpora (PubMed 4.5B, PMC 13.5B)
to provide sufficient representations.
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