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Abstract

Language models have broad adoption in
predictive typing tasks. = When the typ-
ing history contains numerous errors, as in
open-vocabulary predictive typing with brain-
computer interface (BCI) systems, we observe
significant performance degradation in both n-
gram and recurrent neural network language
models trained on clean text. In evaluations
of ranking character predictions, training re-
current LMs on noisy text makes them much
more robust to noisy histories, even when the
error model is misspecified. We also pro-
pose an effective strategy for combining ev-
idence from multiple ambiguous histories of
BCI electroencephalogram measurements.

1 Introduction

Brain-computer interface (BCI) systems provide a
means of language communication for people who
have lost the ability to speak, write, or type, e.g.,
patients with amyotrophic lateral sclerosis (ALS)
or locked-in syndrome (LIS). These systems are
designed to detect a user’s intent from electroen-
cephalogram (EEG) or other signals and to trans-
late them into typing commands.

Recent studies have shown that incorporating
language information into BCI systems can signif-
icantly improve both their typing speed and accu-
racy (Oken et al., 2014; Mora-Cortes et al., 2014;
Speier et al., 2016, 2017, 2018; Dudy et al., 2018).
Existing methods for optimizing BCI systems with
language information either focus on improving
the accuracy of symbol classifiers by adding pri-
ors from language models(Oken et al., 2014), or
on accelerating the typing speed by tying predic-
tion (Dudy et al., 2018), word completion, or au-
tomatic error correction (Ghosh and Kristensson,
2017).

Instead of displaying a keyboard layout, these
BCI systems present candidate characters sequen-
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tially, as in the Shannon game (Shannon, 1951),
and then measure users’ reactions with EEG or
other signals. Predictive performance is thus mea-
sured using the mean reciprocal rank of the correct
character or the recall of the correct character in
the k candidates presented in a batch to the user.

Most previous work on language modeling for
BCI employs n-gram language models although
the past decade has seen recurrent and other neu-
ral architectures surpass these models for many
tasks. Furthermore, most predictive typing meth-
ods, for BCI or other applications, depend on lan-
guage models trained on clean text; however, BCI
output often contains noise due to misclassifica-
tion of EEG or other input signals. To the best
of our knowledge, language models have rarely
been evaluated in with such character-level noise.
Recurrent language models, however, could effec-
tively utilize contexts of 200 tokens on average
(Khandelwal et al., 2018). Although this might be
a disadvantage with noisy histories, we will see
that it is no worse than n-gram models with clean
training and much better with noisy training.

In addition, existing work mainly focuses on
prediction given a single sequence of tokens in the
history, but the signal classifier for BCI systems
might not always correctly rank the users’ intent as
the top candidate. Dudy et al. (2018) proposed in-
corporating ambiguous history into decoding with
a joint word-character finite-state model, but typ-
ing prediction could not be further improved. Al-
though (Sperber et al., 2017) considered lattice de-
coding for neural models, the task of integrating
multiple candidate histories during online predic-
tion has not been studied.

To address these challenges, we propose to train
a noise-tolerant neural language model for online
predictive typing and to provide a richer under-
standing of the effect of the noise on recurrent
neural network language models. We aim to an-
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swer the following questions: (1) what effect noise
in different regions of the history and in different
sentence and word positions has on recurrent lan-
guage model character predictions; (2) how to mit-
igate performance degradation in LM predictive
accuracy with noisy histories; and (3) whether in-
cluding ambiguous history could help to improve
the performance of neural language models.

In this paper, we investigate these questions by
training long short-term memory (LSTM: Hochre-
iter and Schmidhuber, 1997) models on synthetic
noisy data generated from the New York Times
(NYT) corpus and the SUBTLEXus corpus to
cover both formal and colloquial language.

Experimental results show that injecting noise
into the training data improves the generalizabil-
ity of language models on a predictive typing
task. Moreover, a neural language model trained
on noisy text outperforms n-gram language mod-
els trained on noisy or clean text. In fact, some
language models trained on clean text do sub-
stantially worse than a character unigram base-
line when presented with text with only uniform
stationary noise. Taking multiple possible candi-
dates into consideration at each time step further
improves predictive performance.

2 Related Work

Language Modeling for BCI Systems As
noted above, several BCI systems have incorpo-
rated n-gram language models trained on clean
text (Oken et al., 2014; Speier et al., 2016, 2017).
Dudy et al. (2018) propose taking noisy ambigu-
ous outputs from BCI signal classifiers and using
a language model to find an optimal path among
those output to predict the next letter. Their use
of ambiguous histories, however, does not signif-
icantly improve performance for a word-character
hybrid model.

Noisy Language Models Xie et al. (2017) show
that injecting noise into training data for neu-
ral network grammar-correction models could
achieve comparable performance with parameter
regularization and thus make the model more gen-
eralizable with limited training data. Belinkov and
Bisk (2017) show that machine translation models
trained on noisy source text are more robust to the
corresponding type of noise. Li et al. (2013) aim at
using fixed-history neural network models to ana-
lyze the typing stream and predict the next charac-
ter. Ghosh and Kristensson (2017) describe train-
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ing a sequence-to-sequence model with attention
to automatically correct and complete the current
context. Their word-level decoder cannot predict
unseen words, as a character or word-character hy-
brid model could naturally do.

3 Approach

Given an input sequence of characters typed by
a user, the goal of typing prediction is to predict
the next possible character that the user intends
to type, which is the usual objective of language
modeling. Both typing speed and typing accuracy
could be significantly increased if the user’s in-
tended character is ranked higher and presented
earlier to the user at each time step. We apply
LSTM model, which has been proven effective
in capturing long-term dependencies, as our lan-
guage model.

In this paper, we aim to study the effects of
noise in the input sequence on the performance
of language models for typing prediction in BCI
systems. As shown by Belinkov and Bisk (2017)
and Xie et al. (2017), the performance of language
models and translation models degrades dramat-
ically on text unobserved in the training corpus,
but adding appropriate noise to the training corpus
could significantly improve accuracy. We there-
fore propose to generate synthetic noisy data by
randomly choosing p percent of characters from
both the training and test corpus, and substituting
for them a random character excluding the original
correct one. Here we use uniform distribution to
sample the characters. We then train the language
models on the corrupted training set and compare
their performance on the corrupted test set.

4 Experiments

In this section, we first introduce the details of
our experimental setup (§4.1). Then we compare
the performance of the LSTM and baseline mod-
els trained on clean and noisy text (§4.2). Further
discussion of the effect of errors on LSTM models
follows in §4.3 and §4.4. §4.5 explores whether in-
cluding multiple candidate histories could further
improve predictive performance.

4.1 Experimental Setup

Datasets We evaluate our model on two datasets:
the New York Times (NTY) corpus (Sandhaus,
2008) and SUBTLEXus (Brysbaert and New,
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Figure 1: MRR of different models for predictive typing on test sets with different noise rates
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Figure 2: Recall of different models for predictive typing on test sets with different noise rates

2009) corpus of subtitles from movies and tele-
vision. The NYT has relatively longer sentences,
richer vocabulary, and more formal language;
SUBTLEXus tends toward colloquial language
and shorter sentences. To make a fair compari-
son between the two corpora, we randomly sam-
ple two subsets from them with equal numbers of
characters. Both corpora are split into sentences,
80% sentences are randomly sampled as training
set while the rest are used as test set. Table 1 sum-
marizes the data.

Dataset # Sentences | Avg length | Std of Length
NYT 1,750,000 120.11 64.78
SUBTLEXus | 5,602,082 37.54 33.42

Table 1: Corpus sentence count and average character length

Baselines and Comparison We compare the
LSTM model with two baselines: a character un-
igram language model (Unigram) and a character
n-gram language model with Kneser-Ney smooth-
ing trained with KenLM (Heafield, 2011). Here
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we set n as 9 and filter all the n-grams appear-
ing less than 5 times. We also compare the LSTM
with the OCLM model (Dudy et al., 2018), a joint
word-character finite-state model, on the predic-
tive typing task with a ambiguous history. Our
LSTM model has 3 layers with 512 hidden units
for each layer.

Evaluation Metrics Mean reciprocal rank at 10
(MRR@10) and Recall at 10 (Recall@10) are
used for evaluation. Recall@10 reflects whether
the correct characters are included in the top
10 candidates suggested by a language model;
MRR @10 reveals the rank of the correct character.
We use MRR and Recall for short in the following
sections. The average values of each metric across
all time steps of all sequences are reported.

4.2 Main Results

In this experiment, we compare the LSTM models
with Unigram and KenLM models on predictive
typing. We first train all the models on clean text



to get LSTM _clean, KenLLM_clean and Unigram.
LSTM and KenLLM models are then trained on text
with p percent of noise to get the noisy models
{LSTM,KenLM}_p% (p € {1, 5,10, 20, 30,40}).
Since the focus of this paper is on noisy LSTM
models, we summarize the performance of all
noisy KenLM models as KenLM_noisy: for a
given test set, we run KenLM_p% for each p in
{1,5,10,20,30,40} and choose the best perfor-
mance as the performance of KenLM_noisy. Then
we compare these models on test sets with noise
rates varying from 0% (clean) to 40%. Figures 1
and 2 present the performance of all the language
models trained on clean or noisy text when evalu-
ating on noisy text.

Noisy or Clean Model? We see that both
noisy LSTM models and KenLM models signifi-
cantly outperform their corresponding clean mod-
els on noisy test sets. Although LSTM_clean
and KenLM_clean achieve the best performance
on clean test data, their performance drops dra-
matically when applied to noisy data. At 30%
noise, KenLM is no better than a unigram base-
line; LSTM_clean does not suffer quite as much.
The language models trained on clean text are sen-
sitive to the noise rate of the test data, while the
language models trained on noisy data performs
more robustly, even when only 1% noise is added.
Therefore, injecting noise into the training corpus
could significantly improve the generalizability of
language models on unseen noisy data.

Neural or N-gram Language Model? Figures 1
and 2 show that the accuracy of LSTM models
is more stable on unseen noisy text than n-gram
models. This advantage, we conjecture, results
not only from the LSTMs’ incorporation of longer
contexts (which might be a disadvantage, but see
below), but also because the parameter counts of
n-gram models rise with the amount of noise.
Even LSTM clean achieves much higher Recall
than KenLM _noisy on test sets with different noise
rates. The gap in Recall between them becomes
larger when the data is much noisier; however, the
difference between their MRR is not that signifi-
cant. This indicates that errors in the typing his-
tory have a more significant impact on the MRR
than the Recall of the LSTM _clean model.

How to Choose the Training Noise Rate? The
performance of LSTM models trained with dif-
ferent noise rates reveals that all the noisy mod-
els works worse on noisier data. But a model
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performs better when trained and tested on data
with matching noise rates. It is unsurprising that
LSTM_40% works worst on the test data with 1%
of noise, while LSTM_1% works worst on the test
set with 40% of noise. When the noise rate of the
test set is unknown, training the model with only
10% percent of noise is acceptable for test data
with noise rates less than 40%.
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Figure 3: Percentage of predictions whose MRR is
changed by an error, as a function of distance to the error:
LSTM_clean is more sensitive for longer distance.
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Figure 4: Percentage of predictions whose recall is
changed by an error, as a function of distance to the error:
LSTM_clean is more sensitive for longer distance.

4.3 How Do Errors Affect Nearby and
Long-range Predictions?

Since recurrent LMs are sensitive to long-range
contexts (Khandelwal et al., 2018), we investigate
the impact of errors on the predictions following
it. We inject an error into each character of each
sentence in turn, and then examine how the LSTM
models’ predictive performance is affected by the
distance to the error. Results are reported on the
NYT corpus due to space. SUBTLEXus displays
similar behavior.

Percentage of Predictions Affected Figures 3
and 4 show the percentage of predictions affected
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models

by the error at positions with different distance
to the error: the closer to the error, the higher
percentage of predictions affected. The impact
of the error is higher and farther on LSTM_clean
model than on the noisy models. The noisy mod-
els perform similarly, while the most noisy model
(LSTM_40%) is slightly more influenced by the
error. The error also affects MRR more signif-
icantly than Recall. For the noisy LSTMs, the
MRR of more than 20% of prediction has been
affected by the error within a five-character con-
text, while the Recall of less than 10% of them has
been affected. An error also has a longer-range
effect on MRR than on Recall. An error affects
the MRR of predictions about 40 characters after
it, while it only affects the Recall of predictions
about five characters after it. While the rank of the
correct output among all the characters has been
affected by the error, most are still in the top 10.

Performance Degradation Figure 5 presents the
average degradation in performance for those pre-
dictions affected by the error. Again, we see that
the farther away from the error, the smaller the
degradation of performance could be observed.
The drop of MRR and Recall is less significant
about 10 characters after the error for the noisy
LSTMs. It can also be observed that the average
decrease of MRR and Recall fluctuate around 0
about 10 characters and 5 characters after the er-
ror, respectively. This is because the error affects
the predictions of the noisy models farther than
this distance more randomly and less significantly,
i.e., it slightly increases the Recall and MRR of
some predictions. This effect is most significant
on LSTM_40%, which is trained with the most
noisy data. The decrease of recall fluctuates after
5 characters, since the percentage of predictions
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whose recall is affected is much lower after this
distance, as we could see from Figure 4.

4.4 Effect of Error at Different Positions
within Words

Figure 6 presents the performance of LSTM mod-
els when seeing errors in different positions of the
words. For each sentence, we randomly choose
20%, 30% and 40% of the words and corrupt each
word at different positions: the first letter, the in-
termediate letters, the last letter, and the spaces af-
ter it. Since the character error rate is less than
10%, we test with LSTM_10%. We can see that
when the data is noisier, the performance of the
model is worse at all positions of the words. Fur-
thermore, the impact of word error rate is most
dramatic at the first letter, and the performance of
the LSTM gets better when the error moves to later
position in the word.
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Figure 6: MRR of LSTM models tested on words with dif-
ferent noise rates at different positions.



4.5 Exploiting Ambiguous Histories
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Figure 7: Performance of LSTM and OCLM trained with 2
or 3 inputs compared to models trained with 1 less input .

Due to input noise, BCI systems might rank
an erroneous character higher than the user’s in-
tended one. In this section, we explore whether
incorporating ambiguous histories into the model
could further improve the performance of neural
language models on a simulated predictive typing
task.

We simulate ambiguous histories by syntheti-
cally generating the top n candidate characters as
well as their probabilities predicted by BCI sys-
tems at each time step. We ensure that adding one
candidate will introduce 5% to 20% percent more
correct characters to it. The Dirichlet distribution
is used to sample a random multinomial distribu-
tion to assign the probabilities to the candidates.

A sum of the embeddings of candidate charac-
ters, weighted by those characters’ probabilities,
is then fed as input to the LSTM at each time
step. Summing is much more efficient the OCLM
or lattice encoder methods (Sperber et al., 2017).
LSTM or OCLM models trained with n inputs
are named LSTM_n or OCLM_n (n € {1,2,3}).
The correctness probability of characters in the k"
candidate is py (k € {1,2,3}). Performance is re-
ported for LSTM and OCLM trained and tested on
datasets with matched error rates.

We compare LSTM and OCLM models on ran-
domly sampled 50K sentences from the test set for
NYT corpus. This is because OCLM is slow due
to the composition operations between finite state
transducers. We find that LSTM performance with
ambiguous history on the subset is consistent with
its performance on the whole NYT test set as well
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as its performance on the SUBTLEXus test set re-
ported above.

Figure 7 shows that both LSTM and OCLM
work better when more correct characters are
added into the inputs. We can see from Fig-
ure 7 that the MRR of LSTM has been increased
by more than 13% percent when an extra candi-
date with 20% correctness probability is included;
however, adding an extra candidate with 5% cor-
rectness probability does not significantly improve
the performance of LSTM_2 model, compared to
the determinstic model LSTM_1. It even causes
a degradation in the performance of the OCLM,
which means that the OCLM is more sensitive to
the noise in the inputs.

Figure 7 also shows that when adding an in-
put introduces enough correct characters, the per-
formance of the model improves. Figure 7a
shows that LSTM models trained with an am-
biguous history of 2 inputs (LSTM_2) outperform
LSTM models trained with deterministic history
(LSTML_1), when the correct probability of the sec-
ond candidate ps is more than 5%. Similar obser-
vation could be made for LSTM models with 3 in-
puts compared with those with 2 inputs in Figure
7b.

We can also see that the LSTM model signifi-
cantly outperforms the OCLM on ambiguous his-
tories. The OCLM has access to both word and
character information, while the LSTM is trained
on character sequences alone.

5 Conclusion

In this paper, we propose training language mod-
els on noisy text to improve their robustness on
unseen noisy text. We also investigate the impact
of errors in the history on the performance of re-
current language models. An efficient method of
integrating ambiguous histories further improves
model performance. We expect to experiment with
more realistic error distributions as more real typ-
ing data becomes available.
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A Appendices

A.1 Effect of Error at Different Positions
within Sentences

character Error rate: 10%
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Figure 8: MRR of LSTM models tested on sentences with
different noise rates at different positions.

We also investigate how the position of errors
within sentences affects the predictive perfor-
mance of LSTM models. Figure 8 shows the
results of noisy LSTM models tested on sentences
where errors appearing in beginning, middle,
and end sections of a sentence. Each sentence
is split into thirds, and an equal percentage of
noise is added to each section in turn. Here,
LSTM models are trained and tested on data
with consistent noise rate. We can see that the
performance of noisy LSTM models does not
vary too much when the errors appear in different
sections of the sentences. Errors appear at earlier



positions in a sentence do not have a significant
impact on the predictions in later positions in the
sentence.
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